
1

Extra-functional contract support in components

Olivier Defour, Jean-Marc Jézéquel, Noël Plouzeau

INRIA-Rennes, Campus universitaire de Beaulieu, Avenue du général Leclerc
35042 Rennes Cedex, France

{olivier.defour, jean-marc.jezequel, noel.plouzeau}@irisa.fr
http://www.irisa.fr/triskell

Abstract. According to Szyperski, “a software component is a unit of
composition with contractually specified interfaces and explicit context
dependencies only”. But it is well known that these contractually specified
interfaces should go well beyond mere syntactic aspects: they should also
involve functional, synchronization and Quality of Service (QoS) aspects. In
large, mission-critical component based systems, it is also particularly
important to be able to explicitly relate the QoS contracts attached to provided
interfaces with the QoS contracts obtained from required interfaces. In this
paper we propose a language called QoSCL (defined as an add-on to the
UML2.0 component model) to let the designer explicitly describe and
manipulate these higher level contracts and their dependencies. We show how
the very same QoSCL contracts can then be exploited for validation of
individual components and also validation of a component assembly, including
getting end-to-end QoS information inferred from individual component
contracts, by automatic translation to a Constraint Logic Programming language.
We illustrate our approach with the example of a GPS (Global Positioning
System) software component, from its functional and contractual specifications
to its implementation in a .Net framework.

1 Introduction

In Szyperski’s vision [1], “a software component is a unit of composition with
contractually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by third-
party”. In this vision, any composite application is viewed as a particular
configuration of components, selected at build-time and (re-)configured at run-time.

This point of view is now widely adopted in components middleware technologies
such as Corba Component Model (CCM) [2], Entreprise JavaBean (EJB) [3] or
Microsoft .Net/Com [4]. In these various middleware, a software component is a binary
executable code deployed in an environment which manages it (EJBContainer for EJB
or component home for CCM). A software component only exhibits its provided or

2

required interfaces, hence defining basic contracts between components allowing one
to properly wire them. But it is well known that these contractually specified interfaces
should go well beyond mere syntactic aspects: they should also involve functional,
synchronization [5] and Quality of Service (QoS) aspects [6]. In large, mission-critical
component based systems, it is also particularly important to be able to explicitly relate
the QoS contracts attached to provided interfaces with the QoS contracts obtained
from required interfaces.

The aim of this article is to present a QoS contract model (called QoSCL for QoS
Constraint Language), allowing such QoS contracts and their dependencies to be
specified at design-time in a UML2.0 [7] modeling environment. We then show how
the very same QoSCL contracts can be exploited not only for validation of individual
components but also validation of a component assembly, including getting end-to-
end QoS information inferred from individual component contracts, by automatic
translation to a Constraint Logic Programming [8].

The rest of the paper is organized as follows. Using the example of a GPS (Global
Positioning System) software component, Section 2 introduces the interest of
modelling components with their contracts and their dependencies, and describes the
QoS Constraint Language (QoSCL). Section 3 discusses the problem of validating a
component assembly, including getting end-to-end QoS information inferred from
individual component contracts by automatic translation to a Constraint Logic
Programming (CLP). This is applied to the GPS system example, and experimental
results are presented. Finally, Section 4 presents related works.

2 QoS specification

2.1 The common QoS features

Before to introduce the metamodel of any specification language, it is important to
understand the semantic of the concepts that are handled. What are the concepts that
we want to specify, their semantic, their features, properties and relationships ?

The quality of a service is defined as a set of extra-functional properties.
Consequently, an extra-functional property is an intrinsic qualitative dimension of a
service. An extra-functional property especially is a valuable quantity. This aspect
implies that: 1. an extra-functional property is ever associated to means of measurement;

2. as any valuable quantity, an extra-functional property can be constrained;
3. the effective quality of a service is the value of its extra-functional

properties, compared to a reference totally ordered scale of values: the
quality levels.

A quality level is a set of values, denumerable or not, and usually bounded. For
instance, the getLocation() service provided by the GPS component, shown in Fig. 1
below, can be qualified by two extra-functional properties: the precision eps of the
estimated position, and the response time θC. The precision is defined in the finite set

3

{low; normal; high}, with the total following order: low < normal < high. The response
time is a positive real value, dedicated to be less than a specified time out value.

computer
decoder

receiver satellite

GPS

receiver satellite

receiver satellite

getSignal ()

getData()getLocation()

battery

getPower ()

clock

getTime()

Delegation : Assembly :

getInfo()

Fig. 1. Component-based model of a GPS device

Any artefact that realizes the GPS component model must implement not only the
getLocation service, but also a means of measurement for its two intrinsic extra-
functional properties eps and θC. Consequently, it is useful to consider an extra-
functional property as the specification of its means of measurement: the semantic of
what is measured is defined at the component model level refined with QoS
specifications.

A QoS specification languages, such as QML [9] for exa mple, is dedicated no only
to specify extra-functional properties, but also a set of constraints. Usually, these
constraints are checked at run time, in order to renegotiate contracts. At design time,
the constraints are used to specify either qualitative requirements for required
services, or provided quality levels for provided services. At the assembly level
between two components, we must check that the quality level of the provided service
is compliant with the qualitative requirements.

For instance, the GPS component is connected to a set of satellite components that
provide the required getSignal services. Let θS be the response time of the getSignal
service provided by the satellite components. A signal emitted by a satellite has a
duration of 15 ms and, so, the GPS receives a complete signal in a time greater than 15
ms and less than 30 ms. That is a quality level of the provided getSignal service. But
the GPS can also requires that the response time to complete the signal must be less
than 20 ms: in this case, the constraint on the response time of the getSignal service is
not compliant with the provided QoS level.

An other main feature of the QoS is the extra-functional dependency. A service
provided by a component usually depends on the a subset of services that it requires.
A component-based model refined enough, as the Fig. 1, shown the functional chain
of dependencies that binds a provided service to required ones. On this example, it is
easy to explain the functional dependencies that binds the getLocation service to the
getSignal services, through the assemblies and the delegations.

As the extra-functional properties are intrinsic features of a service, the functional
dependency implies an extra-functional dependency. On our example, consider the

4

GPS component: it is obvious that the getLocation service will be completed after the
getSignal services. This relationship can be explained as a constraint that binds θC
and the whole of θS:

θC ≥ max(θS) .

(1)

A more detailed analysis of the behavior of the GPS (Fig. 1), and particularly of the
functional chain of dependencies that binds the getLocation service to the getSignal
service, implies that:

θR = θS + 2 ,
θD = max(θR) + 3 ,

θC = θD + nbr * log (nbr) .

(2)
(3)
(4)

where :
- θS is the response-time of the getSignal service, i.e. the time spent by a

receiver to acquire a complete signal from a satellite,
- θR is the response-time of the getInfo service, i.e. the reception time of a

signal (θS) more the time spent to demultiplex the signal (2ms),
- θD is the response-time of the getData service, i.e. the maximum of the θR,

more the decoding time of demultiplexed signals (3ms).
- nbr is the number of active receivers (i.e. the number of powered receivers

that get a signal). This number has an impact on the response-time of the
getLocation service (θC) because of the interpolation algorithm used.

This example clearly illustrates how the functional dependency of services can be
translated into an equivalent extra-functional chain of dependencies.

2.2 The QoSCL metamodel

In the previous section, we have introduced the concepts of quality, level of quality
and extra-functional dependency. We propose to extend the UML2.0 metamodel with
these concepts. This specific metamodel, called QoS Constraint Language (QoSCL),
allows a designer to specify:

- the intrinsic qualities of a service,
- the required or provided quality levels of a service
- the extra-functional dependency of a provided service’s quality on a set of

qualities defined on required services.
The Fig. 2 below shown the QoSCL extension of the UML2.0 metamodel. We have

defined four new classes:
- ComponentQoSCL: extends Component. In addition of its functional

provided and required interfaces, it has specific provided and required
ContractTypes.

- ContractType: is a specialized Interface, which all elements of its
ownedOperation attribute are typed as Dimension. Moreover, a provided
(resp. required) ContractType is associated to only one Operation that
belongs to a provided (resp. required) Interface.

5

- Contract: is a class encapsulated by a component that implements a
ContractType. The implementation of the Dimensions depends on each
component, and each contract has its own renegotiation behaviour. This
behaviour can be specified with state charts, activity diagrams, etc…

- Dimension: extends Operation. It specifies the means of measurement of
the effective quality level of an extra-functional property and, by
assimilation, the property itself. The semantic of its three constraints is:
§ body: the set of possible values for this extra-functional

property;
§ pre: the required quality level, which must be compliant with the

body constraint;
§ post: the provided quality level, which must be compliant with

the two previous.
A Dimension has optionally ContractTypes as parameters that represents
its extra-functional dependency with other qualities.

Component

Interface

Operation

Constraint

ComponentQoSCL

TypeParameter

provided required

ownedOperation

typeformalParameter

body, pre, post

ContractType

Dimension

provided required

UML2.0 QoSCL

contract

service
ownedOperation

Contract
«implements »

1

*

Fig. 2. The QoSCL metamodel

The Fig. 3 below shown the QoSCL model of the GPS component. The getLocation
and getSignal services are connected their respective ContractTypes. The thetaC
Dimension depends on the getSignal ContractType (attribute parameter). The thetaS
Dimension has three constraints:

- its body specifies that its value must be positive;
- its post specifies that the getSignal service provided by the Satellite

component is completed in more than 15ms and less than 30ms;
- its pre specifies that the GPS component requires this service with a

response time less than 15.5ms.
The thetaC post-condition ensures that the response time of the getLocation

service is less than 24ms. This service depends on the getSignal service, and, as we
have underline yet, this dependency implies an extra-functional dependency between
their respective extra-functional properties. That is the reason why the qualitative level

6

requirement on thetaC (i.e. its post-condition) implies a requirement on thetaS (i.e. its
pre-condition). This mechanism will be more detailed in the following chapter of this
paper.

GPS Satellite

getSignal()

providedrequired

provided

body

thetaS():double

{ return ≥ 0 }

{ return ≥ 15 and
return ≤ 30 }

post

getLocation()

thetaC():double

body
{ return ≥ 0 }

service

contract

service

contract

required
provided

provided

parameter

{ return ≤ 24 }
post

{ return ≤ 15.5 }
pre

implies

Fig. 3. The QoSCL model of the GPS

The QoSCL model is a platform independent component model, specifying abstract
QoS properties and behaviors (ContractType and Dimension). It can be used to
implement a concrete atefact, including monitors for the extra-functional properties
that implement the specified behavior (Contract). Such implementations have already
done: for instance, in the QCCS European project [10], an aspect weaver has been
implemented in order to weave QoS properties into a functional platform independent
model. A model transformation [11] translates this model into a .Net platform
dependant model that implements a set of monitors and renegotiable contracts.

3 Predict the QoS levels

At this point, we have a QoS specification language, QoSCL, that allows to refine a
UML2.0 component model with QoS properties. This language can support the
implementation of the QoS concepts such as monitors and contracts, thanks to aspect
weaving techniques followed by a model transformation for example. However, at
design time, it is also possible to implement a tool that predicts the QoS levels
according to the QoSCL specifications.

3.1 QoS levels prediction features

In the beginning of the QoS concepts section (§2.1), we have said that a QoS property
is a valuable quantity. It supports a set of constraints and it is bonded to others QoS
properties via the extra-functional dependencies (1,2,3,4). So the first important point
to underline is that QoSCL allows to declare a set of QoS properties and their
relations.

7

The second important point is the form of the declared relations: constraints
(required quality levels), mathematical equations (1-4) or empirical rules. These two
last forms are shown on the two figures below (Fig. 4, Fig. 5):

computer
decoder

receiver satellite

GPS

receiver satellite

receiver satellite

θS [s]

getSignal()

getData()getLocation()

θD [s]
nbr [int]θC [s]

eps [m]

θC = θR+nbr*log(nbr)
P = nbr*3

‘R’ rule
θD = max(θR)+3

battery

getPower()

P [W]

θR = θS+2

θR [s]

Fig. 4. GPS component model refined with its declared QoS properties and
relations

nbr

θC
20 5025 30 35 40 45

3

5

12

lowmedium

lowmedium

medium lowhigh

high

3224

Fig. 5. The ‘R’ rule that binds three QoS properties (eps, nbr and θC)

where P is the reactive power consumed by the computer and decoder components. It
is an extra-functional property of the getPower service.

Our GPS model has twelve receivers (only three shown in the previous figures).
However, all the receivers are not powered, in order to manage the power
consumption, and only a subset of them receive a clear satellite signal. This subset
depends on the environment: for example, this set is empty in a tunnel that blocks the
signals transmission. The nbr property is equal to the number of powered receivers
that have a clear signal.

The third important point of the QoS levels prediction is the nature of the
information that we want to handle and to give at the designer. The QoS properties
belong to valued sets, and that is this high-level information will be handled. Indeed,
for engineers, a symbolic relation that binds a set of variables is not intuitive: it not
allows an immediate knowledge. The only form that a human actor like a designer can
easily understand is a valued set, i.e. either a finite set of values or a numerical inter-
val. For instance, on the Fig. 3 diagram, the designer knows that the response time θS of
the getSignal service belongs to the real interval [15; 15.5]. An empty set would have

8

implied an error, i.e. that the service would not be provided with a quality level
compliant with the set of declared constraints and dependencies.

At last, we want to allow the designer to study the influence of a specific quality
level requirement on any QoS property on the others. In other words, the designer
wants to study the propagation of an information through a network of relations. This
mechanism is more complex than an evaluation of a set of functions.

For instance, we present below two information propagations through the network
of relations shown in Fig. 4:

θS ∈ [15; 30] , nbr ∈ {3,5,12} ⇒
θR ∈ [17; 32] , θD ∈ [20; 35] , θC ∈ [21.43; 47.95] .

(5)

eps = high, P ≤ 15, nbr ∈ {3,5,12} ⇒
θC ∈ [23.49; 24], θD ∈ [20; 20.5], θR ∈ [17; 17.5], θS ∈ [17; 17.5] .

(6)

As a consequence of this last point, the propagation of information through the
network of relations implies the conformance of the pre, post and body conditions of
each extra-functional property defined on an assembly.

3.2 Implementation details

To resume our problem, QoSCL allows a designer to declare a set of extra-functional
properties, bonded between them into a network of relations. Theses relations are
either numerical constraints (the quality levels), mathematical (non-linear) functions
(2,3,4) or empirical rules (Fig. 5). The designer wants to select any extra-functional
properties and to observe the propagation of a qualitative level requirement on the
others properties through the network. The result that he obtains must be under the
same form as its requirement, i.e. a valued set.

Finally, we want the following features:
1. a declarative technology;
2. a network of relations that binds a set of variables;
3. relations as constraints, mathematical non-linear functions or rules;
4. information as valued sets (finite sets or numerical intervals).

The only technology that covers the whole of these four points is the Constraint
Logic Programming (CLP) [12] including a real interval arithmetic solver, denoted
CLP(R) [13]. The tools that implement this particular technology are few: PrologIV [14]
and Eclipse [15]. There exist also interval arithmetic solvers only, such as RealPaver
[16]. These software handle intervals, which are reduced by considering the
constraints. The result is the most reduced interval including the solution, if there
exists. Here is an example [ref p4]:

 >> X ~ cc(0,pi), sin(X) = cos(X).

 >> X ~ oo(0.739085, 0.7390852).

9

It is important to note that many CLP software declare to integrate a CLP(R) solver,
like SICStus-Prolog [17] for example. However, their solvers are not based on the
interval arithmetic, but on a symbolic computation, which does not handle interval and
fails to compute non-linear constraints:

 |?- {X > 0, X < 3.14159, sin(X) = cos(X)}.

 {X>0},
 {X<3.14159},
 clpr:{-(cos(X))+sin(X)=0.0)}.

The QoS specifications are written in QoSCL. Although this language has all the

features of a CLP compliant language, it was not originally dedicated to this specific
use. Implementing a dedicated CLP solver engine, with its interval arithmetic solver, is
not an easy task. Because of the common features, it is more judicious to transform
QoSCL into an existing CLP language, using a MOF compliant model transformation
such as MTL [11]. The result of a transformation of the GPS comp onent-based model
with QoSCL into a PrologIV program for example is:

00- %% CONTRACTUAL DEPENDENCIES
01- >> receiver(ThetaR, ThetaS) :-
02- ThetaR ~ ThetaS + 2.
03-
04- >> decoder(ThetaD, ThetaS) :-
05- receiver(ThetaR1, ThetaS),
06- receiver(ThetaR2, ThetaS),…,
07- max(X, [ThetaR1, ThetaR2,…]),
08- ThetaD ~ X + 3.
09-
10- >> computer(ThetaC, Eps, P, ThetaD, Nbr) :-
11- ThetaC ~ ThetaD + Nbr * log(Nbr),
12- P ~ Nbr * 3,
13- rule(Eps, P, Nbr).
14-
15- >> rule(medium, P, 3) :- P =< 25.
16- >> rule(low, P, 3) :- P > 25.
17- >> rule(high, P, 5) :- P =< 24.
18- >> rule(medium, P, 5) :- P ~ oc(24,30).
19- >> rule(low, P, 5) :- P > 30.
20- >> rule(high, P, 12) :- P =< 32.
21- >> rule(medium, P, 12) :- P ~ oc(32,45).
22- >> rule(low, P, 12) :- P > 45.
23-
24- %% PROPAGATION OF VALIDITY DOMAINS
25- >> P =< 15, Eps = high, ThetaS ~ cc(15,30), in(
Nbr, [3,5,12]),

10

26- decoder(ThetaD, ThetaS),
27- computer(ThetaC, Eps, P, ThetaD, Nbr).

The three first predicates (receiver/2, decoder/2 and computer/5) reify the
dependencies of the extra-functional properties defined on each component. The
rule/3 predicate is used by the computer/5 predicate in order to bind the Eps, P and
Nbr variables. The lines 25 to 27 is a request (6), which is made up of two parts:

1. line 25: the ThetaS (resp. Nbr, P, Eps) variable belongs to the [15;30] (resp.
{3,5,12}, [0;15], {high}). These numerical constraints are either induced by the
specifications and the environment, or by a designer who wants to know the
global extra-functional impact of a specific stress applied on one or more
properties.

2. line 26-27: represents the connection between the components, extracted from
the component-based model. The extra-functional properties can be shared at
this level between two components, like the ThetaD variable is shared by the
decoder and the computer. It is also a request that the designer can answer.
The answer computed by the inference engine is:

29- ThetaS ~ cc(15, 15.5),
30- Nbr = 5,
31- ThetaD ~ cc(20, 20.5),
32- ThetaC ~ cc(23.49, 24),
33- Eps = high,
34- P = 15.

The result is a piece of PrologIV code, which is not very easy to understand. The
semantic of this result and the chaining of the rules by the inference engine are
explained in the following section.

3.3 Inference and result

In a CLP software, it is important to underline the fact that the use of numerical
predicates (+/3, -/3, ...) on a variable implies that this variable belongs to the real R or
the integer N sets by construction. However, this kind of information induces few new
knowledge by propagation and reduction of the intervals. That is the reason why, in
line 25, we stress some properties in order to reduce their validity domains. These
constraints are either provided by the specifications of the device (θS∈[15;30],
nbr∈{3;5;12}) or by designer’s requirements (P≤15, eps=high).

The computation of the current location has a power cost P, which depends on the
number of active receivers nbr according the simple formula:

P = nbr * 3 . (7)

According to (7) and the requirement that the power must be less or equal than 15,
we obtain that the number of active receivers must be equal to 3 or 5:

11

nbr ∈ {3; 5} . (8)

The lines 15 to 22 express the rule that binds the precision eps , the response time θC
and the power P of the getLocation service (Fig. 5). According to this rule, the
constraints (7) and (8), and the fact that eps is required to be high, it is obvious that:

nbr = 3,

P = 15 .

(9)

(10)

The relationship that binds the response time θC to the response time θD and the
number of active receivers nbr is:

θC = θD + nbr * log (nbr) . (11)

The second term (nbr*log(nbr)) is the time spend by the computer to interpolates
the position from the data. Since the validity domain of θD and the value of nbr are
known, we have:

θC ∈[23.49; 24] . (12)

This interval can be propagated again through the response time chain of
dependencies (Fig. 4), and finally we obtain the result on θD and θS:

θD ∈[20; 20.5] ,

θS ∈[15; 15.5] .

(13)

(14)

That is the result obtain by the CLP software (l. 29-34).

4 Related works

QoS and ext ra-functional properties are not a new concept in the component-based
software engineering [1][5]. Many authors have developed languages dedicated to
extra-functional specifications: SMIL [18], TINA-ODL [19], QIDL [20], QDL [21] and so
on. An interesting analysis of these languages and their common features is done by
Aagedal [22]. He concludes that the QoS Modeling Language (QML) [9] is the most
general language for QoS specification. Indeed, the concepts defined in QML are
representative of specifications languages dedicated to the extra-functional aspects.
These concepts have been integrated into QoSCL.

QML has three main abstraction mechanisms for the QoS specification: contract
type, contract and profile. A contract type represents a specific QoS aspect, such as
reliability for example. It defines valuable dimensions, used to characterize a particular
QoS aspect. A contract is an instance of a contract type and represents a particular
QoS specification. Finally, QoS profiles associate contracts with interfaces.

With QML, it is possible to write a contract which specifies that an operation must
be completed with a delay less than 30 seconds:

12

type TimeOut = contract {
 delay : decreasing numeric s;
}

TimeOutImpl = TimeOut contract {
 delay < 30;
}

TimeOutProfile for ComputerI = profile {
 from getSignal require TimeOutImpl
}

In spite of its generality, QML, as the other languages mentioned above, does not
have explicit dependencies between extra-functional properties. The properties are
considered as independent quantities, evaluated at run time by monitors. But that
does not match reality: we have shown that extra-functional properties have
dependencies in the same way as a provided service depends on a set of required
services. QoSCL makes these dependencies explicit.

The QoS specifications can be used either to implement contracts evaluation and
renegotiation at run time, or to evaluate a priori the global quality of the assembly at
design time.

G. Blair has proposed a specific architecture in order to manage component
composition, based on a reflective component model [23][24]. In fact, the component
reflection is dedicated to access at properties value and structural information of the
composite. A set of rules, called StyleRule, manages the adaptation of the composite
to its environment. In fact, these rules can be considered as model transformations
used to reconfigure the composite: properties values, connections between
components and graph actions.

In the various models shown, the extra-functional properties are not explicitly
defined, neither their dependencies a fortiori. Consequently, it is not possible to
predict at design time the global quality of the assembly.

Moreover, according to us, the use of rules in order to dynamically configure an
assembly at run time is dangerous. Indeed, the authors of [25], which have
implemented a declarative approach for adaptative components, underline the limit of
such approach: the set of rules which governs the adaptation must respect
completeness and uniqueness.

Completeness guarantees that for every possible situation there exits at least one
adaptation action, and uniqueness ensures that this action is unique. The authors
indicates that the two following properties can be enforced by use of the CLP.
However, not only these two properties are not compatible with non-linear constraints
[25], but also the extra-functional dependencies can be non-linear (see formula #4).

That is the reasons why we have chosen to implement the contracts evaluation and
renegotiation in imperative language with a weaving aspect technology. Like Genβler
and Zeidler [26], or in the Itacio tool [27], the use of CLP is kept till the design time, to
check the validity of an assembly according to a set of rules (consistency rules,

13

contractual rules, etc..). However, none of them exhibits a component model with
explicit extra-functional dependencies.

At last, researchers of the Software Engineering Institute at Carnegie Mellon
University (USA) have underlined the importance to integrate more analysis
technology in components-based software [28]. We think that this integration must be
considered at the highest level: the component model. QoSCL (specification) and its
dedicated tools (validation and renegotiation) presented in this paper are a
contribution in this sense.

5 Conclusion and future work

In mission-critical component based systems, it is particularly important to be able to
explicitly relate the QoS contracts attached to provided interfaces of components with
the QoS contracts obtained from their required interfaces. In this paper we have
introduced a language called QoSCL (defined as an add-on to the UML2.0 comp onent
model) to let the designer explicitly describe and manipulate these higher level
contracts and their dependencies.

An important feature of QoSCL is that this language distinguishes four degrees of
conformance for component-based diagram refined with extra-functional properties:

- 1st degree: the functional conformance. That is the well-known conformance
between provided and required typed interfaces.

- 2nd degree: because the QoSCL ContractTypes are interfaces which
operations are Dimensions, the extra-functional conformance is very close
of the previous degree, applied to the ContractTypes of a component.

- 3rd degree: each extra-functional property is a valuable quantity,
constrained by body, pre and post conditions. At the assembly level, the
conformance of these three constraints must be checked.

- 4th degree: the quality levels of the whole of the extra-functional properties
must be compliant with the networks of (non-linear) relations.

The other main feature of QoSCL contracts is that they can be exploited for:
- validation of individual components, by automatically weaving contract

monitoring code into the components for example;
- validation of a component assembly, including getting end-to-end QoS

information inferred from individual component contracts, by automatic
translation into a CLP(R) language.

Both validation activities builds on the model transformation framework developed
at INRIA (cf. http://modelware.inria.fr). Preliminary implementations of these ideas
have been prototyped in the context of the QCCS project (cf. http://www.qccs.org) for
the weaving of contract monitoring code into components part, and on the Artist
project (http://www.systemes-critiques.org/ARTIST) for the validation of a component
assembly part. Both parts still need to be better integrated with UML2.0 modelling
environments, which is work in progress.

14

Acknowledgments

This work has been partly founded by the ARTIST IST project. The authors thank
Jean-Philippe Thibault for the discussions.

References

1. “Component software, beyond object-oriented programming”, 2nd ed., by C. Szyperski.
Addison-Wesley, 2002

2. “CORBA Components, v3.0”, adopted specification of the OMG, June 2002.
3. “EJB 2.1 Specification Final Release”, Sun, 2002.
4. “Applied Microsoft .Net framework programming” by J. Richter. Microsoft Press, January

23, 2002.
5. “Synchronization in concurrent object-oriented languages:expressive power, genericity and

inheritance” by C. McHale. Doctoral dissertation, Trinity College, Dept. of computer
science, Dublin, 1994.

6. “Making components contract aware” by A. Beugnard, J.M. Jézéquel, N. Plouzeau and D
Watkins in Computer, pp. 38-45, IEEE Computer Society, July 1999.

7. “UML Superstructure 2.0”, OMG, August 2003.
8. “Constraint logic programming” by J. Jaffar and Lassez J.L. in proceedings of 14th ACM

Symposium on principles of programming languages (POPL’87), pp-111-119, ACM, 1987
9. “QoS specification in distributed object systems” by S. Frolund and J. Koistinen in

Distributed Systems Engineering, vol. 5, July 1998, The British Computer Society
10. http://www.qccs.org, Quality Control of Component-based Software (QCCS) European

project home page.
11. “Reflective model driven engineering” by J. Bézivin, N. Farcet, J.-M. Jézéquel, B. Langlois,

and D. Pollet in Proceedings of UML 2003, San Francisco, volume 2863 of LNCS, pages
175-189. Springer, October 2003.

12. “Logical arithmetic” by J.G. Cleary in Future computing systems 2, n°2, pp-125-149, 1987
13. “Applying interval arithmetic to real, integer and Boolean constraints” by F. Benhamou and

W.J. Older, in Journal of logic programming 32, n°1, pp-1-24, 1997
14. “PrologIV: reference manual and user’s guide”, PrologIA, Tech. Rep., 1994
15. “Hybrid Problem Solving in ECLiPSe”, by F. Ajili and M. Wallace, §6 in “Constraint and

integer programming: toward a unified methodology”, pp. 169-201. Michela Milano. Kluwer
Academic Publishers. October 2003.

16. “An interval component for continuous constraints”. Journal of Computational and Applied
Mathematics, 2003.

17. http://www.sics.se/sicstus/
18. “Synchronized Multimedia Integration Language 2.0 specification” by W3C:

http://www.w3.org/TR/smil20
19. “TINA object definition language manual”, TINA-C, report : TP_NM_002_2.2_96, 1996
20. “QoS, aspects of distributed programs” by C. Becker and K. Geiths, in proceedings of
international workshop on aspect-oriented programming at ICSEE’98, Kyoto, Japan, 1998.

15

21. “Integration of QoS in distributed objects systems” by J. Daniels, B. Traverson and S.
Vignes, in proceedings of IFIP TC6 WG6.1 2nd international working conference on Distributed
Applications and Interoperable Systems (DAIS’99), Helsinki, Finland, pp. 31-43, 1999.
22. “Quality of service support in development of distributed systems” by J.O. Aagedal. Ph.D
thesis report, University of Oslo, Dept. Informatics, March 2001.
23. “v-QoS project home page”: http://www.comp.lancs.ac.uk/computing/users/lb/v-qos.html
24. “A reflective and architecture aware component model for middleware composition
management” by G.S. Blair, R. Silva Moreira and E.M. Carrapatose in 3rd international
symposium on Distributed Objects and Application (DOA’01), September 2001, Roma (It).
25. “ A declarative approach for designing and developing adaptative components” by P.

Boinot, R. Marlet, G. Muller and C. Consel, in 15th international conference on Automated
Software Engineering (ASE’01), pp-111-119, September 2000, Grenoble (Fr).

26. “Rule-driven component composition for embedded systems” by. T. Genssler and C.
Zeidler in 4th ICSE workshop on component-based software engineering: component
certification and system prediction, ICSE’01, Toronto (Ca).

27. “Itacio: a component model for verifying software at construction time” by A. Cernuda del
Rio, J.E. Labra Gayo and J.M. Cueva Lovelle in international workshop on component-
based engineering, ICSE’00, Mimerick (Ir).

28. “Packaging and deploying predictable assembly” by S.A. Hissam, G.A. Moreno, J. Stafford
and K.C. Wallnau, in the proceedings of IFIP/ACM working conference on component
deployment (CD2002), , pp. 108-124, Berlin, Germany, June 2002.

