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Abstract 
 
Handling the various derivations of a product can be a 
daunting (and costly) task. To tackle this problem, we 
propose a method based on the use of a creational design 
pattern to uncouple the variations from the selection 
process. This makes it possible to automatically derive a 
given product from the set of all possible ones, and to 
specialize its model accordingly. The contribution of this 
paper is to provide a set of patterns for modeling 
variability issues of a Product Line Architecture to define 
architectural constraints for Product Line expressed in 
UML as meta-level OCL constraints and to propose an 
approach to automate the derivation process. 

1. Introduction 

Software Product Line (SPL) captures "commonality" and 
“variability” between a set of software products in the 
same domain. Commonality designates elements that are 
common to all products while variability designates 
elements that may vary from a product to another one. 
Software Product Line engineering aims at improving 
productivity and decrease realization times by gathering 
the analysis, design and implementation activities of a 
family of systems. It is based on the reuse of assets 
instead of working from scratch. A Software Product Line 
Architecture also called a reference architecture is a 
generic architecture from which the model of each 
product can be derived. The role of software product line 
architecture is to describe commonalities and variabilities 
of the products contained in the Product Line (PL) and, as 
such, to provide a common overall structure. 
To model SPL with the UML (Unified Modeling 
Language) [19], we need mechanisms to specify 
variabilities and commonalities, and techniques to derive 
products. We also need to manage a set of constraints that          
specify variation point dependencies in the PL. 
This work focuses on the PL derivation activity and  
proposes an approach based on a creational design pattern 

to derive product models from a PL architecture modeled 
by the UML. The derivation process should preserve PL 
coherence, so we have defined and specified a set of PL 
constraints as OCL (Object Constraint Language) meta-
model constraints. To illustrate our approach, we use a 
Mercure PL. 
The paper is organized as follows: Section 2 briefly 
presents the Software Product Line Engineering approach 
and the Mercure PL. In section 3, we propose some 
mechanisms to specify variability in the UML class 
diagrams. Section 4 presents PL constraints and their 
specification with the OCL, and the section 5 illustrates 
the derivation process. Finally section 6 concludes this 
work. 

2. Background in Product Line Engineering 

2.1. The Software Product Line approach 
The general process of Product Line Engineering, as 
found in the literature [4,5,18], is illustrated in the figure 
1. We distinguish two main activities: 
Domain Engineering. The domain engineering activity is 
twofold: 
- Collecting, organizing, and storing past experiences 

in building systems in the form of reusable assets (i.e. 
reusable work products) in a particular domain, 

- providing an adequate means for reusing these assets 
when building new systems [4].  

The term Developing for reuse is often used to 
characterize the Domain Engineering. It can be divided in 
three main processes: Domain Analysis, Domain Design, 
and Domain Implementation. The domain analysis 
consists in capturing information and organizing it as a 
model. Some methods, such as FODA (Feature-Oriented 
Domain Analysis) [13] propose a set of notations for the 
domain modeling using the notion of "features" to refer to 
products properties. The domain design consists in 
establishing the product line architecture. The domain 
implementation consists in implementing the architecture 
defined during the domain design as software 
components. 
Application Engineering. The application engineering 
activity consists in building systems based on the results 



of Domain Engineering. During application requirements 
of a new system, we select the requirements from the 
existing domain model, which matches the customer’s 
needs. We assemble applications from the existing 
reusable components. The term Developing by reuse is 
used to characterize the application engineering activity. 
 

 
 
Figure 1. The general process for Product Lines 
Engineering 
 
2.2. The Software Variability Management  
 
The main challenge in the context of software product 
lines is to model and implement the variability. Even if 
the product line approach is a new paradigm, managing 
variability in software systems is not a new problem, and 
it can be solved by some existing approaches. [14,16] 
study how existing techniques can be used for the 
variability management. We briefly list some of these 
techniques: 
Compilation techniques: it is used to derive products at 
the compilation time by the inclusion or the exclusion of 
code segments during program compilation. For example, 
the conditional compilation can be used to manage 
variability at the compilation time. 
Programming languages properties: Object Oriented 
Languages offer some techniques such as inheritance, 
overloading, and dynamic binding that can be used to 
implement variability. Variation points are defined as 
abstract properties in the Product Line and each product 
defines these points in a specific way. Variability can also 
be implemented using class templates if the variants differ 
by a set of parameters.  
Design patterns: Design Patterns [8] can be used to model 
variability in software product line architectures. Patterns 
provide reusable solutions to certain types of problems 
and support the reuse of underlying implementations. In 

[12], the Abstract Factory pattern is proposed for reifying 
variants (we will present in more detail this solution in   
section 5). [2] proposes a set of patterns to model 
variability in product line architectures based on the 
notion of  “Discriminants”.  
Programming approaches: some recent approaches of 
Software Engineering can be used for the variability 
management. Aspect-Oriented paradigm [6] is an 
engineering principle that aims at reducing systems 
complexity:  it decomposes problems into a set of 
functional components and a set of aspects that crosscut 
functional components. Then it composes these 
components and aspects to obtain a system 
implementation. Some work [9,14,17] say that this 
approach can be used to implement variability. Aspects 
can be viewed as variation points, and product line 
members are specified by the aspects they contain. 
Generative Programming [4] is a software engineering 
paradigm based on the notion of “generator” for system 
families. Viability in Product Line can be managed by 
implementing components and generators as generic 
artifacts. A specific instantiation can be used to generate 
the implementation of a product. 
 
The techniques presented above are generally related to 
programming languages. We also find some work 
[3,5,15] about the modeling of variability in the UML. 
These work mainly are based on the UML extensions 
mechanisms such as stereotypes and tagged values. We 
will present in the next section mechanisms that we have 
used to specify variability in UML class diagrams.  
 
2.3. The Variability in the Mercure PL 
 
As a case study for evaluating our approach, we consider 
the Mercure PL, which is a family of SMDS (Switched 
Multi-Megabits Data Service) servers whose design and 
implementation have been described in [10,11]. It can 
abstractly be described as a communication software 
delivering, forwarding, and relaying “messages” from and 
to a set of network interfaces connected into an 
heterogeneous distributed system.  
Mercure PL must handle variants for five variation 
points: any number of specialized processors (Engines), 
network interface boards (NetDriver), levels of 
functionality (Manager), user interface (GUI) and support 
for languages (Language). To identify variabilities in the 
Mercure PL, we specify its domain model using FODA 
notations, slightly modified and extended by [4]. We use 
a set of feature kinds to specify variability and 
commonality: 
Mandatory features: to specify features that are common 
to all products, we use mandatory features whose 
ancestors are also mandatory. Mandatory features are 
shown in the FODA diagram by nodes with black circles.  



Optional features: it represents features that can be 
omitted in some products; it is shown by nodes with an 
empty circle.  
Or-features: a feature may have one or more sets of direct 
or-features. If the parent of a set of or-features is included 
in the description of a specific product, then any 
nonempty subset from the set of or-features is included.  
The nodes of a set of or-features are pointed to by edges 
connected by a filled arc. 

 
 
  Figure 2. The FODA diagram for the Mercure PL 
 
Figure 2. shows a feature diagram of the Mercure PL. The 
Mercure consists of Engine, Net Driver, Manager, GUI, 
and Language; all these features are mandatory. The 
Mercure product may support one or more of Engine 
1,..Engine N, we use FODA or-features to represent it. In 
the same way, we define all NetDrivers and Managers 
dimensions. However all Mercure products should 
support one GUI, which is GUI 1, so it is defined 
mandatory. Other GUIs are defined as FODA or-features. 
We distinguish two categories of languages: Language 
Cat1 and Language Cat2, all products should support the 
first one and the second one is optional. 
The FODA notations allow us to specify dependencies 
relationships, called “composition rules”, between 
domain features. FODA supports two types of 
composition rules: the requires rule that expresses the 
presence implication of two features, and the mutually-

exclusive rule that captures the mutual exclusion 
constraint on feature combinations. Two rules are 
identified in the context of the Mercure PL: a requires 
rule is added between the Engine 1 and the Net Driver 1 
while a mutual-exclusion rule is added to specify that 
GUI 1 do not supports Language Cat 2 (see figure 2.) 

3. Variability in UML class diagrams 

The Unified Modeling Language (UML) [19] is a 
standard language for the object-oriented analysis and 
design. It defines a set of notations to describe different 
aspects of systems. In this section, we present three 
mechanisms that can be used to specify the variability in 
the UML class diagram: Abstraction, Parameterization, 
and Optionality.  
Abstraction: Using an object-oriented analysis and design 
approach, it is natural to model the commonalities 
between the variants of a variation point in an abstract 
class (or interface), and expressing the differences in 
concrete subclasses (each variant implements the 
interface in its own way).  
Parameterization: the UML classes can be defined as 
generic assets with a set of parameters; each product 
binds these parameters in a specific way. UML class 
templates can be used as parameterization classes.  
Optionality: the Product Line model includes all elements 
associated to all products, so in specific products some of 
these elements called “optional” can be omitted. To show 
optionality, we use an ad-hoc stereotype «optional» that 
can be applied to classes, packages, and interfaces.    
 
The UML class diagram in the figure 3 represents the 
Mercure PL model. It basically says that a Mercure 
system is an instance of the MERCURE class, 
aggregating an ENGINE (that encapsulate the work that 
Mercure has to do on a particular processor of the target 
distributed system), a collection of NETDRIVERS, a 
collection of MANAGERS (that represent the range of 
functionalities available), and the GUI that encapsulates 
the user preference variability factor. A GUI has itself a 
collection of supported languages, which are classified 
into two categories.    
A UML class model of a specific derived product of 
Mercure can include an optional number of Engines, 
Network Drivers, Managers, GUIs, and Languages; so 
these features are defined as abstract classes (Abstraction 
variability mechanism) and we specify variants as 
concrete subclasses with the optional stereotype. All 
Mercure products should at least support one mandatory 
language (LANGUAGE1-1), and one GUI (GUI1), so 
these subclasses are defined without the optional 
stereotype.   



  

Figure 3. The Mercure Product Line UML class 
diagram 

Defining variation points as abstract classes and each 
possible variant as subclass with the optional stereotype is 
what we call the “abstraction variability pattern”. 

4. Managing the PL constraints  

[1] considers that constraints are parts of PL architectures. 
Constraints define coherence rules and relationships 
between elements in the architecture. As shown 
previously, FODA composition rules allow us to specify 
relationships between domain features. Using UML, some 
work such as [15] use UML stereotypes to show 
dependencies between classes. 
The Object Constraints Language (OCL) [23] allows us 
to attach constraints to UML models. These constraints 
can be defined at meta-model level as well as model level.  
In the context of Product Lines, we have identified two 
types of constraints: generic constraints applying to any 
PL, and specific constraints associated to a specific 
Product Line and we propose to define them as OCL 
meta-model constraints. 
 
 
 
 

 
4.1 The Generic Constraints  
 
The introduction of variation points, especially the 
optionality (specified by the «optional» stereotype), in the 
PL model allows us to improve genericity but it can 
generate some incoherence. For example, if a non-
optional element depends on an optional one, we risk 
deriving an incomplete product model. So the first type of 
product line constraints defines structural properties of 
any product line model to preserve its coherence. UML 
can be extended by defining a set of stereotypes and a set 
of meta-level constraints that are often related to these 
stereotypes. So the idea for defining generic constraints is 
to associate a set of constraints to the relevant stereotypes, 
this solution was already used in [7] to define design 
pattern occurrences in the UML. These constraints are 
represented as OCL meta-model level constraints and 
they will be evaluated on any product line model, see 
figure 4. 
The generic constraints may be seen as well-formedness 
rules for the UML modeled product lines. 
 

Figure 4. Generic constraints as OCL meta-level 
constraints 

Examples of the generic constraints  
Generic constraints aim to preserve the PL model 
coherence. In the case of the static model represented by 
the UML class diagram, we have defined the dependency 
and the inheritance constraints:   
The dependency constraint. A dependency in the UML 
specify a require relationship between two or more 
elements. It is represented in the UML meta-model [19 p 
2.15] by the meta-class Dependency (see appendix), it 
represents the relationship between a set of suppliers and 
clients. An example of the UML Dependency is the 
"Usage", which appears when a package uses another 
one. If a non-optional element is depending on an 
optional one, there’s incoherence in the model. To specify 
this rule, we add the following constraint as an invariant 
to the Dependency meta-class in the UML meta-model 
[19 p  2.15], where isStereotyped(S) is an auxiliary 
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primitive indicating if an element is stereotyped by a 
string S (see appendix): 
 
 
context Foundation::Core::Dependency 
-- For each Dependency: if the supplier is 
optional the client should be  optional too 
inv: 
  self.supplier→ exists(S:ModelElement | 
          S.isStereotyped (‘optional’)) implies  
  self.client → forAll( C:ModelElement |     
          C.isStereotyped(‘optional’) ) 

 
The inheritance constraint. Optional classes in Product 
Line model can be omitted in some products then, if a 
non-optional class inherits from an optional one, perhaps 
there is incoherence in the product model. However, in 
some cases, in particular when the product line model 
includes the multiple inheritance, it can be correct.  But it 
is more advisable to generate a warning if the static model 
includes a non-optional class which inherits from an 
optional one. The inheritance is represented in the UML 
by the meta-class Generalization [19 p 2.14] (see 
appendix). The inheritance constraint is added as an 
invariant to the Generalization meta-class: 
 
context Foundation::Core::Generalization 
-- For each generalization: if the parent is  
optional the child should be optional too 
inv: 
  self.parent.isStereotyped (‘optional’) implies    
  self.child.isStereotyped(‘optional’) 

 
Applying this to the Mercure PL model, LANGUAGE2-1 
and LANGUAGE2-2 classes appear to be defined as 
optional because their parent (LANGUAGE_CAT2) is 
optional and there is not a multiple inheritance. 
 
4.2 The Specific Constraints  
 
A fundamental characteristic of product lines is that not 
all elements are compatible. That is, the selection of one 
element may disable (or enable) the selection of others. 
The set of constraints that define variation points 
dependencies in the specific product line are called 
“Specific Constraints“. As generic constraints, we 
propose to specify specific constraints as OCL meta-level 
constraints. The aim of these constraints is to add 
dependency relationships between model elements, they 
are associated to a specific product line and will be 
evaluated on all products, derived from this PL, see figure 
5.  
The specific constraints are parts of the PL model 
definition. 

Examples of specific constraints  
A PL class diagram is defined to be as generic as possible 
and it should include elements related to all products. We 
have defined the presence and the mutual exclusion 
constraint as examples of specific constraints and we 

propose to define them as Model meta-class invariants [19  
p 2.189]. A Model is a namespace that contains a set of 
ModelElement whose names designate a unique element 
within the namespace.  
 

 
Figure 5. Specific constraints for PL model as 

OCL meta-level constraints 

The presence constraint. This constraint is close to the 
requires rule in FODA, it expresses in a specific PL 
model that the presence of an optional class requires the 
presence of another optional class. To specify a require 
relationship between ENGINE1 and NETDRIVER2 
classes in the class diagram of the Mercure PL, we add 
the following OCL meta-model constraint as a Model 
meta-class invariant, where the presenceClass(C) is an 
auxiliary operation  indicating if a specific class called C 
is present in the namespace (see appendix): 
 
context Model_Management::Model 
--The presence in the model of the class called 
‘ENGINE1’ requires the presence in the same 
model of the class called ‘NETDRIVER2’ 
inv: 
 self.presenceClass(‘ENGINE1’) implies   
 self.presenceClass(‘NETDRIVER2’) 

 
The mutual exclusion constraint. This constraint 
expresses in a specific PL model that two optional classes 
cannot be present in the same product. As shown 
previously, GUI1 does not support LANGUGE_CAT2, 
so the mutual exclusion constraint between their 
associated UML classes is added as an invariant to the 
Model meta-class: 
 
context Model_Management::Model 
-- A class called GUI1 and a class called  
LANGUGE_CAT2 cannot be present in the same model 
inv: 
(self.presenceClass(‘GUI1’) implies not 
self.presenceClass(‘LANGUGE_CAT2’))and 
(self.presenceClass(‘LANGUGE_CAT2’) implies not 
self.presenceClass(‘GUI1’)) 
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In the UML class diagram  (see figure 3.), we use 
graphical shorthands to show the above constraints. 
 
5. From the Product Line to Products  
 
Once we have analyzed the Product Line and produced 
the corresponding UML Model, enriched with 
constraints, we still need to handle the various derivations 
of products.  The PL derivation consists in generating 
from the PL model the UML class diagram of each 
product. As shown previously, the PL model is defined by 
a set of variation points and to derive a specific product 
model, some decisions (or choices) associated to these 
variation points are needed. For example, each Mercure 
product model should choice among the presence or non-
presence of all optional classes. So another challenge in 
the context of PL engineering is to specify a “decision 
model”.  
A decision model represents the set of relevant decisions 
and their impacts that are needed to identify one single 
product of the product line [5]. In this section, we propose 
to use the design pattern abstract factory as a model 
decision and we propose an algorithm for the product 
model derivation. 
To illustrate the derivation process, we have defined three 
products of the Mercure PL:  
FullMercure: it is the product that includes all optional 
elements. Thus, all combinations can be dynamically 
bound. 
CustomMercure: it is a restricted product that supports 
only two different network drivers (NETDRIVER1 and 
NETDRIVER2), two languages (LANGUAGE 1-1, 
which is mandatory and LANGUAGE 2-1) and two GUIs 
(GUI1, GUI2).  
MiniMercure: is a lightest product that supports only 
ENGINE1, GUI1, LANGUAGE 1-1, MANAGER1, and 
NETDRIVER1. 
 
5.1. The decision model in a Product Line  
 
In [12], the creational design pattern abstract factory [8] 
is used to refine the several variation points. This process 
is easily customizable by defining an interface for 
creating variants of Mercure’s five variation points 
(Engines, Net Drivers, Managers, GUIs and Languages). 
Obtaining an actual variant of the Mercure PL then 
consists in implementing the relevant concrete factory. 
The idea is originally used to simplify the Software 
Configuration Management by reifying the variant of an 
object-oriented software system into language-level 
objects. Our aim in this section is to use this idea as a 
design of the PL decision model.  
The decision model of the Mercure PL is illustrated in the 
figure 6. Each concrete factory is related to one product in 

the Mercure PL, and each creational operation in the 
different concrete factories corresponds to a variation 
point. We use stereotypes to restrict the returned type of 
creational operations to the possible one. For example, 
the product model corresponding to the concrete factory 
CustomMercure includes only GUI1, and GUI2 classes as 
GUI variants. So we add two stereotypes <<GUI1>> and 
<<GUI2>> to the operation new_gui().  

Mercure_Factory

FulleMercure

CustomMercure

MinMercure

+make()
+new_gui():GUI
+new_language():Language
+new_network_manager():Manager
+new_netdriver():Net Driver
+new_engine():Engine

make()
+new_gui():GUI
+new_language():Language
+new_manager():Manager
+new_netdriver():Net Driver
+new_engine():Engine

make()
+<<GUI1>><<GUI2>>new_gui():GUI
+<<Language 2-1>>new_language():Language
+<<Manager1>>new_network_manager():Manager
+<<NetDriver1>><<NetDriver2>>new_netdriver():Net Driver
+<<Engine1>>new_engine():Engine

make()
+<<GUI1>>new_gui():GUI
+<<Language 1-1>>new_laguage():Language
+<<Manager1>>new_network_manager():Manager
+<<NetDriver1>>new_netdriver():Net Driver
+<<Engine1>>new_engine():Engine

 
 
Figure 6. The Abstract Factory as a model 
decision for the Mercure PL 
 
5.2. Product model derivation 
 
At this stage, we have precisely defined the Product Line, 
now we have to tackle with the automation of the 
derivation process exploiting the abstraction variability 
pattern and the decision model. The description of the 
transformation algorithm used to derive product models is 
illustrated in the figure 7. The transformation algorithm is 
decomposed in three steps: variants selection, model 
specialization, and the model optimization. 
 
1. The variants selection:  Variation points are defined 

by return types of concrete factory operations. The 
selected variants are defined by their significant 
stereotypes (as names of variants). When the 
operation does not define stereotypes (such as in the 
FullMercure concrete factory operations), all sub 
classes of its return type is selected, 

2. the model specialization: it removes all optional 
classes from the model, which have not been selected 
in 1. However,  optional ancestors of selected 
variants are not removed, 



3. the model optimization: it deletes unused factories 
and optimize the model (i.e when there is only one 
concrete class inheriting from an abstract one). 

 
The product line model should satisfy generic constraints 
before the derivation and the product model derived 
should satisfy specific constraints. The generic constraints 
represent the pre-conditions of the transformation 
operation and the specific constraints represent the post -
conditions:  
    
DeriveProductLine(aConcreteFactory:Class, 
PL_model:Model) 
 pre : -- check Generic Constraints on PL_model 
 post :-- check Specific Constraints on the 
product model obtained 

 
The figure 8 illustrates the CustomMercure product 
model that we have obtained after derivation of the 
Mercure PL.  
 

 

Figure 7. Deriving a product line UML model 
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Figure 8. The CustomMercure Product UML 
model 
 
6. Conclusion 
 
We have proposed an approach based on the UML to 
model and to derive Product Line models. This approach 
especially focuses on static models represented by the 
UML class diagrams. To achieve this, we propose the use 
of the UMLAUT framework [22] combined to the Model 
transformation Language (MTL). 
UMLAUT is a framework for building tools dedicated to 
the manipulation of models described using the UML. A 
specific use is to apply a model transformation to an 
UML model, automating the derivation process then 
consists in writing the relevant model transformation. 
This transformation retrieves the useful model elements 
thanks to the selected concrete factory and then builds a 
specialized UML model corresponding to the selected 
Product. The challenge of such model manipulation is to 
be able to transform the model accessing its meta-level 
and ensuring the integrity of the derived model 
accordingly to the introduced specific constraints. A new 
version of the UMLAUT framework is currently under 
construction in the Triskell2 team based on the MTL 
language, which is an extension of OCL with the 
MOF(Meta-Object Facility) architecture and side effect 
features, so it permits us to describe the process at the 
meta-level and to check OCL constraints (the generic 
                                                 
2 http://www.irisa.fr/triskell/ 

DeriveProductLine 
 
Input: PL_model: Model 
       aConcreteFactory: Class 
Output : Product_model: Model 
 
--Variants selection 
 
 Initiate selectedVariantsList to empty; 
for each factory operation in    
  aConcreteFactory do 
  initiate definedVariantsList to   
    significant stereotypes of the operation; 
  if definiedVariantsList is empty 
    then selectedVariantsList.add(all sub 
classes of the returned type of the operation); 
    else  
selectedVariantsList.add(definedVariantsList) ;
  endif 
done 
 
-- Model specialization 
 
for each optional class C in PL_model do  
 if (the class name of C not in     
 selectedVariantsList) and ( names of all sub  
 classes of C not in selectedVariantsList)  
 then 
  delete the class C from the PL_model; 
 endif 
done 
 
-- Model optimization 
 
delete all other factories; 
optimize inheritance; 
Product_model := PL_model; 



constrains at first sight and specific constraints once the 
product model is derived). We present in appendix a 
detailed description of the derivation process as example 
of the MTL procedure.  
As future work, we want to implement a UML profile for 
Product Line (including behavior aspects as proposed in 
[21]). This UML profile defines a set of stereotypes and a 
set of generic constraints to ensure any PL correctness. 
The user PL specification includes a set of models 
enriched by specific constraints, which may guide the 
derivation process. The derivation consists in applying a 
transformation algorithm written in MTL.  
The abstract factory derivation approach was described 
here for a specific PL, which is the Mercure project. We 
think that it’s possible to generalize this solution for 
others product lines that use the same abstraction 
variability pattern.  
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Appendix 
 
A.1: OCL Auxiliary operations 
 
context  
 ModelElement::isStreotyped(S : String):Boolean 
  post :result =  
   self.stereotype →exists(s |                 
       s.name = S) 
 
 
context  
  Namespace::presenceClass(C :String): Boolean    
  post :result = 
   (self.oclIsKindOf(Class) and self.name = C))    
     or  
   (self.presenceClass(C)) 
 
 
context Class::AllSubClasses() : Set(Class) 
  post: result = 
  self.specialization.child → iterate(c:Class; 
acc: Set(Class) = Set{} | acc → 
including(c)→union(c.AllSubClasses())) 
 
context Namespace::AllClasses() : Set(Class) 
 post : result = 
 self.ownedElement → select(me: ModelElement| 
  me.oclIsKindOf(Class)) → union 
(self.ownedElement. AllClasses()) 
 
A.2: A detailed description of the derivation algorithm 
 
--Based on OCL extended with side effect 
features  
 
ProductLineDerivation(aConcreteFactory:Class, 
pl:Model)  
BEGIN 
 
--Variant selection 
 
Set(String) definedVariants 
Set(String) selectedVariants 
for op in  
aConcreteFactory.feature→select( f: Feature  
  | f.oclIsKindOf(Operation)        
and f.name.startsWith(‘new_’) )  
do 
 Class opsReturnType := 
  ( op.parameter→select( p:Parameter | p.kind =   
                     #return) ).type 
 definedVariants:= op.stereotype.name →  
     intersection( 
             opsReturnType.AllSubClasses().name) 
 if definedVariants →isEmpty()  
 then selectedVariants :=selectedVariant →   
      union(opsReturnType.AllSubClasses().name) 
 else selectedVariants :=selectedVariant →   
      union(op.stereotype.name) 
 endif 
done 
 
--Model specialization 
 
for C:Class in  pl.AllClasses()  
do  
 if (C.isStereotyped(‘optional’)) and  
  (selectedVariant→exludes(C.name)) and   
  selectedVariant→   
       exludesAll(C.AllSubClasses().name) 
 then 
   deleteElement(C, pl) 
 endif 
done 

 
-- Model optimization 
 
aConcreteFactory.generalization.parent.specializ
ation.child→ 
excluding(aConcreteFactory)→collect(cf : Class|  
    deleteElement(cf, pl)) 
   
optimizeInheritance( pl) 
 
END   
 
A.3: The Dependency and the generalization meta-classes in 
the UML meta-model 

 

 

Generalization GeneralizableElement

Classifier

child generalization
* 1 

parent specialization
1 *

 

ModelElement Dependency

UsagePermission 

Abstraction

supplier supplierDependency 1..* * 

client clientDependency 
* 1..*


