
Product Line Derivation with UML 1

Tewfik Ziadi, Jean-Marc Jézéquel, and Frédéric Fondement
IRISA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

{Tewfik.Ziadi, Jean-Marc.Jezequel, frederic.fondement}@irisa.fr

1 This work has been partially supported by the CAFE European project. Eureka Σ! 2023 Programme, ITEA project ip 0004

Abstract

Handling the various derivations of a product can be a
daunting (and costly) task. To tackle this problem, we
propose a method based on the use of a creational design
pattern to uncouple the variations from the selection
process. This makes it possible to automatically derive a
given product from the set of all possible ones, and to
specialize its model accordingly. The contribution of this
paper is to provide a set of patterns for modeling
variability issues of a Product Line Architecture to define
architectural constraints for Product Line expressed in
UML as meta-level OCL constraints and to propose an
approach to automate the derivation process.

1. Introduction

Software Product Line (SPL) captures "commonality" and
“variability” between a set of software products in the
same domain. Commonality designates elements that are
common to all products while variability designates
elements that may vary from a product to another one.
Software Product Line engineering aims at improving
productivity and decrease realization times by gathering
the analysis, design and implementation activities of a
family of systems. It is based on the reuse of assets
instead of working from scratch. A Software Product Line
Architecture also called a reference architecture is a
generic architecture from which the model of each
product can be derived. The role of software product line
architecture is to describe commonalities and variabilities
of the products contained in the Product Line (PL) and, as
such, to provide a common overall structure.
To model SPL with the UML (Unified Modeling
Language) [19], we need mechanisms to specify
variabilities and commonalities, and techniques to derive
products. We also need to manage a set of constraints that
specify variation point dependencies in the PL.
This work focuses on the PL derivation activity and
proposes an approach based on a creational design pattern

to derive product models from a PL architecture modeled
by the UML. The derivation process should preserve PL
coherence, so we have defined and specified a set of PL
constraints as OCL (Object Constraint Language) meta-
model constraints. To illustrate our approach, we use a
Mercure PL.
The paper is organized as follows: Section 2 briefly
presents the Software Product Line Engineering approach
and the Mercure PL. In section 3, we propose some
mechanisms to specify variability in the UML class
diagrams. Section 4 presents PL constraints and their
specification with the OCL, and the section 5 illustrates
the derivation process. Finally section 6 concludes this
work.

2. Background in Product Line Engineering

2.1. The Software Product Line approach
The general process of Product Line Engineering, as
found in the literature [4,5,18], is illustrated in the figure
1. We distinguish two main activities:
Domain Engineering. The domain engineering activity is
twofold:
- Collecting, organizing, and storing past experiences

in building systems in the form of reusable assets (i.e.
reusable work products) in a particular domain,

- providing an adequate means for reusing these assets
when building new systems [4].

The term Developing for reuse is often used to
characterize the Domain Engineering. It can be divided in
three main processes: Domain Analysis, Domain Design,
and Domain Implementation. The domain analysis
consists in capturing information and organizing it as a
model. Some methods, such as FODA (Feature-Oriented
Domain Analysis) [13] propose a set of notations for the
domain modeling using the notion of "features" to refer to
products properties. The domain design consists in
establishing the product line architecture. The domain
implementation consists in implementing the architecture
defined during the domain design as software
components.
Application Engineering. The application engineering
activity consists in building systems based on the results

of Domain Engineering. During application requirements
of a new system, we select the requirements from the
existing domain model, which matches the customer’s
needs. We assemble applications from the existing
reusable components. The term Developing by reuse is
used to characterize the application engineering activity.

Figure 1. The general process for Product Lines
Engineering

2.2. The Software Variability Management

The main challenge in the context of software product
lines is to model and implement the variability. Even if
the product line approach is a new paradigm, managing
variability in software systems is not a new problem, and
it can be solved by some existing approaches. [14,16]
study how existing techniques can be used for the
variability management. We briefly list some of these
techniques:
Compilation techniques: it is used to derive products at
the compilation time by the inclusion or the exclusion of
code segments during program compilation. For example,
the conditional compilation can be used to manage
variability at the compilation time.
Programming languages properties: Object Oriented
Languages offer some techniques such as inheritance,
overloading, and dynamic binding that can be used to
implement variability. Variation points are defined as
abstract properties in the Product Line and each product
defines these points in a specific way. Variability can also
be implemented using class templates if the variants differ
by a set of parameters.
Design patterns: Design Patterns [8] can be used to model
variability in software product line architectures. Patterns
provide reusable solutions to certain types of problems
and support the reuse of underlying implementations. In

[12], the Abstract Factory pattern is proposed for reifying
variants (we will present in more detail this solution in
section 5). [2] proposes a set of patterns to model
variability in product line architectures based on the
notion of “Discriminants”.
Programming approaches: some recent approaches of
Software Engineering can be used for the variability
management. Aspect-Oriented paradigm [6] is an
engineering principle that aims at reducing systems
complexity: it decomposes problems into a set of
functional components and a set of aspects that crosscut
functional components. Then it composes these
components and aspects to obtain a system
implementation. Some work [9,14,17] say that this
approach can be used to implement variability. Aspects
can be viewed as variation points, and product line
members are specified by the aspects they contain.
Generative Programming [4] is a software engineering
paradigm based on the notion of “generator” for system
families. Viability in Product Line can be managed by
implementing components and generators as generic
artifacts. A specific instantiation can be used to generate
the implementation of a product.

The techniques presented above are generally related to
programming languages. We also find some work
[3,5,15] about the modeling of variability in the UML.
These work mainly are based on the UML extensions
mechanisms such as stereotypes and tagged values. We
will present in the next section mechanisms that we have
used to specify variability in UML class diagrams.

2.3. The Variability in the Mercure PL

As a case study for evaluating our approach, we consider
the Mercure PL, which is a family of SMDS (Switched
Multi-Megabits Data Service) servers whose design and
implementation have been described in [10,11]. It can
abstractly be described as a communication software
delivering, forwarding, and relaying “messages” from and
to a set of network interfaces connected into an
heterogeneous distributed system.
Mercure PL must handle variants for five variation
points: any number of specialized processors (Engines),
network interface boards (NetDriver), levels of
functionality (Manager), user interface (GUI) and support
for languages (Language). To identify variabilities in the
Mercure PL, we specify its domain model using FODA
notations, slightly modified and extended by [4]. We use
a set of feature kinds to specify variability and
commonality:
Mandatory features: to specify features that are common
to all products, we use mandatory features whose
ancestors are also mandatory. Mandatory features are
shown in the FODA diagram by nodes with black circles.

Optional features: it represents features that can be
omitted in some products; it is shown by nodes with an
empty circle.
Or-features: a feature may have one or more sets of direct
or-features. If the parent of a set of or-features is included
in the description of a specific product, then any
nonempty subset from the set of or-features is included.
The nodes of a set of or-features are pointed to by edges
connected by a filled arc.

 Figure 2. The FODA diagram for the Mercure PL

Figure 2. shows a feature diagram of the Mercure PL. The
Mercure consists of Engine, Net Driver, Manager, GUI,
and Language; all these features are mandatory. The
Mercure product may support one or more of Engine
1,..Engine N, we use FODA or-features to represent it. In
the same way, we define all NetDrivers and Managers
dimensions. However all Mercure products should
support one GUI, which is GUI 1, so it is defined
mandatory. Other GUIs are defined as FODA or-features.
We distinguish two categories of languages: Language
Cat1 and Language Cat2, all products should support the
first one and the second one is optional.
The FODA notations allow us to specify dependencies
relationships, called “composition rules”, between
domain features. FODA supports two types of
composition rules: the requires rule that expresses the
presence implication of two features, and the mutually-

exclusive rule that captures the mutual exclusion
constraint on feature combinations. Two rules are
identified in the context of the Mercure PL: a requires
rule is added between the Engine 1 and the Net Driver 1
while a mutual-exclusion rule is added to specify that
GUI 1 do not supports Language Cat 2 (see figure 2.)

3. Variability in UML class diagrams

The Unified Modeling Language (UML) [19] is a
standard language for the object-oriented analysis and
design. It defines a set of notations to describe different
aspects of systems. In this section, we present three
mechanisms that can be used to specify the variability in
the UML class diagram: Abstraction, Parameterization,
and Optionality.
Abstraction: Using an object-oriented analysis and design
approach, it is natural to model the commonalities
between the variants of a variation point in an abstract
class (or interface), and expressing the differences in
concrete subclasses (each variant implements the
interface in its own way).
Parameterization: the UML classes can be defined as
generic assets with a set of parameters; each product
binds these parameters in a specific way. UML class
templates can be used as parameterization classes.
Optionality: the Product Line model includes all elements
associated to all products, so in specific products some of
these elements called “optional” can be omitted. To show
optionality, we use an ad-hoc stereotype «optional» that
can be applied to classes, packages, and interfaces.

The UML class diagram in the figure 3 represents the
Mercure PL model. It basically says that a Mercure
system is an instance of the MERCURE class,
aggregating an ENGINE (that encapsulate the work that
Mercure has to do on a particular processor of the target
distributed system), a collection of NETDRIVERS, a
collection of MANAGERS (that represent the range of
functionalities available), and the GUI that encapsulates
the user preference variability factor. A GUI has itself a
collection of supported languages, which are classified
into two categories.
A UML class model of a specific derived product of
Mercure can include an optional number of Engines,
Network Drivers, Managers, GUIs, and Languages; so
these features are defined as abstract classes (Abstraction
variability mechanism) and we specify variants as
concrete subclasses with the optional stereotype. All
Mercure products should at least support one mandatory
language (LANGUAGE1-1), and one GUI (GUI1), so
these subclasses are defined without the optional
stereotype.

Figure 3. The Mercure Product Line UML class
diagram

Defining variation points as abstract classes and each
possible variant as subclass with the optional stereotype is
what we call the “abstraction variability pattern”.

4. Managing the PL constraints

[1] considers that constraints are parts of PL architectures.
Constraints define coherence rules and relationships
between elements in the architecture. As shown
previously, FODA composition rules allow us to specify
relationships between domain features. Using UML, some
work such as [15] use UML stereotypes to show
dependencies between classes.
The Object Constraints Language (OCL) [23] allows us
to attach constraints to UML models. These constraints
can be defined at meta-model level as well as model level.
In the context of Product Lines, we have identified two
types of constraints: generic constraints applying to any
PL, and specific constraints associated to a specific
Product Line and we propose to define them as OCL
meta-model constraints.

4.1 The Generic Constraints

The introduction of variation points, especially the
optionality (specified by the «optional» stereotype), in the
PL model allows us to improve genericity but it can
generate some incoherence. For example, if a non-
optional element depends on an optional one, we risk
deriving an incomplete product model. So the first type of
product line constraints defines structural properties of
any product line model to preserve its coherence. UML
can be extended by defining a set of stereotypes and a set
of meta-level constraints that are often related to these
stereotypes. So the idea for defining generic constraints is
to associate a set of constraints to the relevant stereotypes,
this solution was already used in [7] to define design
pattern occurrences in the UML. These constraints are
represented as OCL meta-model level constraints and
they will be evaluated on any product line model, see
figure 4.
The generic constraints may be seen as well-formedness
rules for the UML modeled product lines.

Figure 4. Generic constraints as OCL meta-level
constraints

Examples of the generic constraints
Generic constraints aim to preserve the PL model
coherence. In the case of the static model represented by
the UML class diagram, we have defined the dependency
and the inheritance constraints:
The dependency constraint. A dependency in the UML
specify a require relationship between two or more
elements. It is represented in the UML meta-model [19 p
2.15] by the meta-class Dependency (see appendix), it
represents the relationship between a set of suppliers and
clients. An example of the UML Dependency is the
"Usage", which appears when a package uses another
one. If a non-optional element is depending on an
optional one, there’s incoherence in the model. To specify
this rule, we add the following constraint as an invariant
to the Dependency meta-class in the UML meta-model
[19 p 2.15], where isStereotyped(S) is an auxiliary

Instance of

PL1 Model

Evaluated on Defined on

Extended
M2for PL

Generic constraints

PL2 Model
PLn Model

UML meta-model level (M2) UML model level (M1)

………….
{ Exclusion
constraint}

{ Presence
constraint}

………….

<<optional>>

<<optional>>

<<optional>>

<<optional>>

<<optional>>

………….

………….

Mercure
Engine

Net Driver

Manager

GUI

<<optional>>
 Engine 1

<<optional>>
Net Driver 2

Message

language
LanguageCat 1

Language Cat 2

Language 1-2

Language 1-1

Language 2-1

Language 2-2

1

Observe

1..*
1

1

1
1

1 1..*

1..2

1..*

Use

1..*

1..*

1..*
1..*

bufffers

1 1..*
Use

available

<<optional>>
 Engine N

<<optional>>
Net Driver N

<<optional>>
Manager 1

<<optional>>
Manager N

 GUI N

<<optional>>
 GUI 1

primitive indicating if an element is stereotyped by a
string S (see appendix):

context Foundation::Core::Dependency
-- For each Dependency: if the supplier is
optional the client should be optional too
inv:
 self.supplier→ exists(S:ModelElement |
 S.isStereotyped (‘optional’)) implies
 self.client → forAll(C:ModelElement |
 C.isStereotyped(‘optional’))

The inheritance constraint. Optional classes in Product
Line model can be omitted in some products then, if a
non-optional class inherits from an optional one, perhaps
there is incoherence in the product model. However, in
some cases, in particular when the product line model
includes the multiple inheritance, it can be correct. But it
is more advisable to generate a warning if the static model
includes a non-optional class which inherits from an
optional one. The inheritance is represented in the UML
by the meta-class Generalization [19 p 2.14] (see
appendix). The inheritance constraint is added as an
invariant to the Generalization meta-class:

context Foundation::Core::Generalization
-- For each generalization: if the parent is
optional the child should be optional too
inv:
 self.parent.isStereotyped (‘optional’) implies
 self.child.isStereotyped(‘optional’)

Applying this to the Mercure PL model, LANGUAGE2-1
and LANGUAGE2-2 classes appear to be defined as
optional because their parent (LANGUAGE_CAT2) is
optional and there is not a multiple inheritance.

4.2 The Specific Constraints

A fundamental characteristic of product lines is that not
all elements are compatible. That is, the selection of one
element may disable (or enable) the selection of others.
The set of constraints that define variation points
dependencies in the specific product line are called
“Specific Constraints“. As generic constraints, we
propose to specify specific constraints as OCL meta-level
constraints. The aim of these constraints is to add
dependency relationships between model elements, they
are associated to a specific product line and will be
evaluated on all products, derived from this PL, see figure
5.
The specific constraints are parts of the PL model
definition.

Examples of specific constraints
A PL class diagram is defined to be as generic as possible
and it should include elements related to all products. We
have defined the presence and the mutual exclusion
constraint as examples of specific constraints and we

propose to define them as Model meta-class invariants [19
p 2.189]. A Model is a namespace that contains a set of
ModelElement whose names designate a unique element
within the namespace.

Figure 5. Specific constraints for PL model as

OCL meta-level constraints

The presence constraint. This constraint is close to the
requires rule in FODA, it expresses in a specific PL
model that the presence of an optional class requires the
presence of another optional class. To specify a require
relationship between ENGINE1 and NETDRIVER2
classes in the class diagram of the Mercure PL, we add
the following OCL meta-model constraint as a Model
meta-class invariant, where the presenceClass(C) is an
auxiliary operation indicating if a specific class called C
is present in the namespace (see appendix):

context Model_Management::Model
--The presence in the model of the class called
‘ENGINE1’ requires the presence in the same
model of the class called ‘NETDRIVER2’
inv:
 self.presenceClass(‘ENGINE1’) implies
 self.presenceClass(‘NETDRIVER2’)

The mutual exclusion constraint. This constraint
expresses in a specific PL model that two optional classes
cannot be present in the same product. As shown
previously, GUI1 does not support LANGUGE_CAT2,
so the mutual exclusion constraint between their
associated UML classes is added as an invariant to the
Model meta-class:

context Model_Management::Model
-- A class called GUI1 and a class called
LANGUGE_CAT2 cannot be present in the same model
inv:
(self.presenceClass(‘GUI1’) implies not
self.presenceClass(‘LANGUGE_CAT2’))and
(self.presenceClass(‘LANGUGE_CAT2’) implies not
self.presenceClass(‘GUI1’))

Associated to

Derived from

Instance of

Product 1 model

Evaluated on

Defined on

Extended
M2 for PL

UML meta model level (M2) UML model level (M1)

Specific constraints

Product 2 model
Product N model

PL model

In the UML class diagram (see figure 3.), we use
graphical shorthands to show the above constraints.

5. From the Product Line to Products

Once we have analyzed the Product Line and produced
the corresponding UML Model, enriched with
constraints, we still need to handle the various derivations
of products. The PL derivation consists in generating
from the PL model the UML class diagram of each
product. As shown previously, the PL model is defined by
a set of variation points and to derive a specific product
model, some decisions (or choices) associated to these
variation points are needed. For example, each Mercure
product model should choice among the presence or non-
presence of all optional classes. So another challenge in
the context of PL engineering is to specify a “decision
model”.
A decision model represents the set of relevant decisions
and their impacts that are needed to identify one single
product of the product line [5]. In this section, we propose
to use the design pattern abstract factory as a model
decision and we propose an algorithm for the product
model derivation.
To illustrate the derivation process, we have defined three
products of the Mercure PL:
FullMercure: it is the product that includes all optional
elements. Thus, all combinations can be dynamically
bound.
CustomMercure: it is a restricted product that supports
only two different network drivers (NETDRIVER1 and
NETDRIVER2), two languages (LANGUAGE 1-1,
which is mandatory and LANGUAGE 2-1) and two GUIs
(GUI1, GUI2).
MiniMercure: is a lightest product that supports only
ENGINE1, GUI1, LANGUAGE 1-1, MANAGER1, and
NETDRIVER1.

5.1. The decision model in a Product Line

In [12], the creational design pattern abstract factory [8]
is used to refine the several variation points. This process
is easily customizable by defining an interface for
creating variants of Mercure’s five variation points
(Engines, Net Drivers, Managers, GUIs and Languages).
Obtaining an actual variant of the Mercure PL then
consists in implementing the relevant concrete factory.
The idea is originally used to simplify the Software
Configuration Management by reifying the variant of an
object-oriented software system into language-level
objects. Our aim in this section is to use this idea as a
design of the PL decision model.
The decision model of the Mercure PL is illustrated in the
figure 6. Each concrete factory is related to one product in

the Mercure PL, and each creational operation in the
different concrete factories corresponds to a variation
point. We use stereotypes to restrict the returned type of
creational operations to the possible one. For example,
the product model corresponding to the concrete factory
CustomMercure includes only GUI1, and GUI2 classes as
GUI variants. So we add two stereotypes <<GUI1>> and
<<GUI2>> to the operation new_gui().

Mercure_Factory

FulleMercure

CustomMercure

MinMercure

+make()
+new_gui():GUI
+new_language():Language
+new_network_manager():Manager
+new_netdriver():Net Driver
+new_engine():Engine

make()
+new_gui():GUI
+new_language():Language
+new_manager():Manager
+new_netdriver():Net Driver
+new_engine():Engine

make()
+<<GUI1>><<GUI2>>new_gui():GUI
+<<Language 2-1>>new_language():Language
+<<Manager1>>new_network_manager():Manager
+<<NetDriver1>><<NetDriver2>>new_netdriver():Net Driver
+<<Engine1>>new_engine():Engine

make()
+<<GUI1>>new_gui():GUI
+<<Language 1-1>>new_laguage():Language
+<<Manager1>>new_network_manager():Manager
+<<NetDriver1>>new_netdriver():Net Driver
+<<Engine1>>new_engine():Engine

Figure 6. The Abstract Factory as a model
decision for the Mercure PL

5.2. Product model derivation

At this stage, we have precisely defined the Product Line,
now we have to tackle with the automation of the
derivation process exploiting the abstraction variability
pattern and the decision model. The description of the
transformation algorithm used to derive product models is
illustrated in the figure 7. The transformation algorithm is
decomposed in three steps: variants selection, model
specialization, and the model optimization.

1. The variants selection: Variation points are defined

by return types of concrete factory operations. The
selected variants are defined by their significant
stereotypes (as names of variants). When the
operation does not define stereotypes (such as in the
FullMercure concrete factory operations), all sub
classes of its return type is selected,

2. the model specialization: it removes all optional
classes from the model, which have not been selected
in 1. However, optional ancestors of selected
variants are not removed,

3. the model optimization: it deletes unused factories
and optimize the model (i.e when there is only one
concrete class inheriting from an abstract one).

The product line model should satisfy generic constraints
before the derivation and the product model derived
should satisfy specific constraints. The generic constraints
represent the pre-conditions of the transformation
operation and the specific constraints represent the post -
conditions:

DeriveProductLine(aConcreteFactory:Class,
PL_model:Model)
 pre : -- check Generic Constraints on PL_model
 post :-- check Specific Constraints on the
product model obtained

The figure 8 illustrates the CustomMercure product
model that we have obtained after derivation of the
Mercure PL.

Figure 7. Deriving a product line UML model

Mercure

Engine 1

Net Driver

Manager 1

GUI

Net Driver 1

Message

GUI 1

language
Language 1-1

Language 2-1

1

Observe

1..*

1

1

1
1

1 1..*

1..2

1..*

Use

1..*

1..*

1..*
1..*

bufffers

1 1..*
Use

available

Net Driver 2

 GUI 2
Optimize
inheritance

Figure 8. The CustomMercure Product UML
model

6. Conclusion

We have proposed an approach based on the UML to
model and to derive Product Line models. This approach
especially focuses on static models represented by the
UML class diagrams. To achieve this, we propose the use
of the UMLAUT framework [22] combined to the Model
transformation Language (MTL).
UMLAUT is a framework for building tools dedicated to
the manipulation of models described using the UML. A
specific use is to apply a model transformation to an
UML model, automating the derivation process then
consists in writing the relevant model transformation.
This transformation retrieves the useful model elements
thanks to the selected concrete factory and then builds a
specialized UML model corresponding to the selected
Product. The challenge of such model manipulation is to
be able to transform the model accessing its meta-level
and ensuring the integrity of the derived model
accordingly to the introduced specific constraints. A new
version of the UMLAUT framework is currently under
construction in the Triskell2 team based on the MTL
language, which is an extension of OCL with the
MOF(Meta-Object Facility) architecture and side effect
features, so it permits us to describe the process at the
meta-level and to check OCL constraints (the generic

2 http://www.irisa.fr/triskell/

DeriveProductLine

Input: PL_model: Model
 aConcreteFactory: Class
Output : Product_model: Model

--Variants selection

 Initiate selectedVariantsList to empty;
for each factory operation in
 aConcreteFactory do
 initiate definedVariantsList to
 significant stereotypes of the operation;
 if definiedVariantsList is empty
 then selectedVariantsList.add(all sub
classes of the returned type of the operation);
 else
selectedVariantsList.add(definedVariantsList) ;
 endif
done

-- Model specialization

for each optional class C in PL_model do
 if (the class name of C not in
 selectedVariantsList) and (names of all sub
 classes of C not in selectedVariantsList)
 then
 delete the class C from the PL_model;
 endif
done

-- Model optimization

delete all other factories;
optimize inheritance;
Product_model := PL_model;

constrains at first sight and specific constraints once the
product model is derived). We present in appendix a
detailed description of the derivation process as example
of the MTL procedure.
As future work, we want to implement a UML profile for
Product Line (including behavior aspects as proposed in
[21]). This UML profile defines a set of stereotypes and a
set of generic constraints to ensure any PL correctness.
The user PL specification includes a set of models
enriched by specific constraints, which may guide the
derivation process. The derivation consists in applying a
transformation algorithm written in MTL.
The abstract factory derivation approach was described
here for a specific PL, which is the Mercure project. We
think that it’s possible to generalize this solution for
others product lines that use the same abstraction
variability pattern.

7. References

1. Bass, L., Clements, P., and Kazman, R. Software
Architecture in practices, Addison-Wesley, 1998.

2. B. Keepence, M. Mannion, “Using Patterns to Model
Variability in Product Families”, IEEE Software,
16(4): pages 102-108, 1999.

3. C. Atkinson, J. Bayer, and D. Muthig, “Component-
based product line lopment. the KobrA approach”, In
Proc. of the 1st Software Product Lines Conference
(SPLC1), pages 289–309,2000.

4. Czarnecki K., Eisenecker U.W., Generative
Programming: Methods, Tools, and Applications,
Addison-wesley, 2000.

5. ESAPS project deliverables. http://www.esi.es/esaps/
6. G. Kiczales, et al, “Aspect-Oriented Programming”,

In ECOOP’97 –Object Oriented Programming 11th
European Conference, 1997.

7. G. Sunyé, A. Le~Guennec, and J.M. Jézéquel,
“Precise modeling of design patterns”, In LNCS,
editor, Proceedings of UML 2000, volume 1939 of
LNCS, pages 482--496, 2000.

8. Gamma, E., Helm, R., Johnson, R., and Vlissides, J..
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, 1995

9. J. Bayer, “Toward engineering product line using
concerns”, GCSE 2000, Young Workshop, 2000.

10. Jézéquel, J.-M.. Object Oriented Software
Engineering with Eiffe,. Addison-Wesley. ISBN 1-
201-63381-7, 1996

11. J-M. Jézéquel, “Object-orented design of real-time
telecom systems”, In IEEE International Symposium
on Object-oriented Real-time distributed Computing,
ISORC’98, Kyoto, Japan (April 1998).

12. J-M. Jézéquel, “Reifying Variants in Configuration
Management”, ACM Transaction on Software
Engineering and Methodology, pages 526-538, 1998.

13. Kang.k. et al Feature-Oriented Domain Analysis
Feasibility Study, SEI Technical Report CMU/SEI-
90-TR-21, November 1990.

14. M. Anastapoulos, C. Gacek,, “Implementing Product
Line Variability”, Technical report IESE report N°:
089.00/E, Franhofer IESE publication, 2000.

15. M. Clauß, “Modeling variability with UML”, In
GCSE 2001 Young researchers Workshop. 2001

16. M. Svahnberg, J. Bosch, “Issues Concerning
Variability in Software Product lines”, in F. van der
Linden, editor, Software Architecture for Product
Families International Workshop IW-SAPF-3, LNCS
1951, pp. 146-157, Springer 2000.

17. M.L. Griss, “Implementing Product-line Features by
Composing Component Aspects”, in Proceedings of
the First Software Product Line Conference, P.
Donohoe, pp. 271-288, 2000.

18. Northrop.L., A Framework for Software Product Line
Practice–Version 3.0.,
http://www.sei.cmu.edu/pLdP/framework.html#frame
work_toc, Software Engineering Institute (SEI), 2002.

19. OMG. UML specification. Version 1.4, 2001.
20. Pierre America and Steffen Thiel and Stefan and

Martin Mergel, Introduction to Domain Analysis,
ESAPS project, 2001 web = http://www.esi.es/esaps/.

21. T. Ziadi, L. Hélouët, J-M. Jézéquel, “Modeling
Behaviors in Product Lines”, International Workshop
in Engineering Requirement for Product Line
(REPL'02), Essen, 2002.

22. W.-M. Ho, J-M. Jézéquel, A. Le Guennec, and F.
Pennaneac’h, “UMLAUT: an extensible UML
transformation framework”, In Proc. Automated
Software Engineering, ASE’99, Florida, October
1999.

23. Warmer, J., and Kleppe, A.. The Object Constraint
Language – Precise Modeling with UML, Object
Technology Series. Addison-Wesley, 1998

Appendix

A.1: OCL Auxiliary operations

context
 ModelElement::isStreotyped(S : String):Boolean
 post :result =
 self.stereotype →exists(s |
 s.name = S)

context
 Namespace::presenceClass(C :String): Boolean
 post :result =
 (self.oclIsKindOf(Class) and self.name = C))
 or
 (self.presenceClass(C))

context Class::AllSubClasses() : Set(Class)
 post: result =
 self.specialization.child → iterate(c:Class;
acc: Set(Class) = Set{} | acc →
including(c)→union(c.AllSubClasses()))

context Namespace::AllClasses() : Set(Class)
 post : result =
 self.ownedElement → select(me: ModelElement|
 me.oclIsKindOf(Class)) → union
(self.ownedElement. AllClasses())

A.2: A detailed description of the derivation algorithm

--Based on OCL extended with side effect
features

ProductLineDerivation(aConcreteFactory:Class,
pl:Model)
BEGIN

--Variant selection

Set(String) definedVariants
Set(String) selectedVariants
for op in
aConcreteFactory.feature→select(f: Feature
 | f.oclIsKindOf(Operation)
and f.name.startsWith(‘new_’))
do
 Class opsReturnType :=
 (op.parameter→select(p:Parameter | p.kind =
 #return)).type
 definedVariants:= op.stereotype.name →
 intersection(
 opsReturnType.AllSubClasses().name)
 if definedVariants →isEmpty()
 then selectedVariants :=selectedVariant →
 union(opsReturnType.AllSubClasses().name)
 else selectedVariants :=selectedVariant →
 union(op.stereotype.name)
 endif
done

--Model specialization

for C:Class in pl.AllClasses()
do
 if (C.isStereotyped(‘optional’)) and
 (selectedVariant→exludes(C.name)) and
 selectedVariant→
 exludesAll(C.AllSubClasses().name)
 then
 deleteElement(C, pl)
 endif
done

-- Model optimization

aConcreteFactory.generalization.parent.specializ
ation.child→
excluding(aConcreteFactory)→collect(cf : Class|
 deleteElement(cf, pl))

optimizeInheritance(pl)

END

A.3: The Dependency and the generalization meta-classes in
the UML meta-model

Generalization GeneralizableElement

Classifier

child generalization
* 1

parent specialization
1 *

ModelElement Dependency

UsagePermission

Abstraction

supplier supplierDependency 1..* *

client clientDependency
* 1..*

