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2 Resumé en Français 

La plupart du travail présenté ici a été réalisé par l´auteur dans le contexte du projet COTE 
[JarPic01] du programme de recherche national RNTL (Réseau National des Technologies 
Logicielles). Les membres de ce projet étaient France Télécom R&D, Gemplus, IRISA, LSR-
IMAG et Softeam. Ces travaux seront détaillés par la suite. 

Le travail presenté dans la Section 2.1 du Chapitre 2 a été realisé pendant le séjour de l’auteur 
dans l’équipe dirigée par Gonzalo León Serrano au Departamento de Ingeniería de Sistemas 
Telemáticos (Département de l’Ingénierie de Systèmes Telematiques) de l’Universidad 
Politécnica de Madrid (Université Polytechnique de Madrid), Espagne, avec le support du 
programme national de recherche intitulé: Estancias Temporales de Científicos y Tecnólogos 
Extranjeros en España (Séjours Temporels de Scientifiques et Technologues Étrangers en 
Espagne). Une partie des résultats de ce travail a été publiée dans [PicSanYel96], 
[PicSanSan96]. 

2.1 Chapitre 1 

Dans le premier chapitre, nous introduisons le document au moyen d’une brève description du 
contexte, de la motivation, des objectifs et des contributions de la thèse, ainsi qu’un guide 
pour le reste du document. 

2.2 Chapitre 2 

Dans le deuxième chapitre, nous présentons le cadre conceptuel du travail qui est décrit dans 
le reste du document. 

La première section contient un glossaire qui définit la terminologie qui sera utilisée par la 
suite. Dans le domaine du test de composant, il n’y a toujours pas de base conceptuelle ni 
terminologie couramment acceptées. Bien que les définitions fournies ici soient inspirées par 
la terminologie du test de télécommunications et celle du test de logiciel standard, elles sont 
originales. Une version antérieure de ce glossaire a été fournie comme document de travail au 
consortium qui répond au RFP du OMG sur le profil de test fondé sur UML [OMG03]. 

La deuxième section résume brièvement les travaux précédents qui sont les plus pertinents 
pour cette thèse. 

2.3 Chapitre 3 

Dans le troisième chapitre, nous traitons le problématique de la conception d’un langage de 
description de test basé sur les diagrammes de séquence UML. 

Dans la Section 1, nous étudions la possibilité de bâtir notre langage de description de test 
fonctionel, appelé TeLa, sur UML 1.4 [OMG01] et nous établissons la base sémantique de 
TeLa, en nous inspirant des différents travaux menés sur les langages MSC 2000 [ITU-T99] 
et TTCN-3 [ETSI03a], en particulier les travaux sur la sémantique des MSC. Les diagrammes 
de notre langage de description de test incluent des lignes de vie qui représentent des 
composants du testeur, mais aussi des lignes de vie qui représentent des élements du système 
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sous test (SUT). Cependant, le rôle des lignes de vie du SUT est limité puisque la sémantique 
est donnée par une projection sur les lignes de vie du testeur, conformément à la supposition 
de test « boîte noire ». A notre avis, un langage qui représente explicitement des lignes de vie 
du SUT est plus convivial qu’un langage qui utilise les ports de TTCN-3 ou les gates des 
MSC pour éviter de représenter explicitement ces lignes de vie. 

La Section 2 présente d´autres concepts généraux importants pour la définition d’un langage 
de description de tests fondé sur les scénarios. La Section 3 présente les principales 
constructions nécessaires et qui sont absentes des diagrammes de séquence d’UML 1.4 
[OMG01], ainsi qu’une justification de ces besoins. Finalement, dans la Section 4, nous 
faisons une évaluation des diagrammes de séquence d’UML 2.0 [U2P03], qui ont été définis 
alors que le travail présenté ici avait déjà commencé. 

2.4 Chapitre 4 

Dans le quatrième chapitre, nous présentons en détail le langage TeLa, avec une explication 
informelle de la sémantique non-entrelacée du langage. Dans [PicJarHeu01] nous avons 
présenté une version antérieure de TeLa. 

La première section donne une vue d´ensemble des aspects clés de TeLa. La Section 2 
introduit les différentes constructions des diagrammes de séquence de TeLa, ainsi que les 
structures de scénario à une couche qu’on peut construire avec eux. Une structure de scénario 
à une couche est composée de plusieurs diagrammes de séquence de TeLa connectés entre 
eux par des « références de diagrammes de séquence ». La Section 3 introduit les différentes 
constructions des diagrammes d’activité de TeLa, ainsi que les structures de scénario à deux 
couches qu’on peut construire avec ces constructions et celles des diagrammes de séquence de 
TeLa présentées dans la Section 2. Une structure de scénario à deux couches de TeLa est 
composée d’un diagramme d’activité de Tela dont les noeuds contiennent des diagrammes de 
séquence élémentaires de TeLa. 

L’ensemble des tests qui peuvent être décrits par une structure de scénario à une couche est un 
sous-ensemble de celui des tests qui peuvent être décrits par une structure de scénarios à deux 
couches. Le sous-langage à une couche a été conçu pour faire en sorte que toutes les 
descriptions de test exprimées avec lui définissent des cas de test. Il a été conçu aussi pour 
être plus simple à utiliser que le langage complet, grâce aux opérateurs de choix et de boucle 
localment définies. 

La présentation de TeLa ne vise pas à être la conception complète d’un langage, mais plutôt 
une analyse détaillée des questions soulevées par la définition d’un langage de test fondé sur 
les scénarios. La plupart des constructions, et plus particulièrement les constructions des 
structures de scénario à une couche, ont été proposées en tant que réponses à des besoins 
concrets qui se sont exprimés dans le projet COTE. Le choix de la syntaxe concrète, lui aussi, 
a été fortement influencé par les objectifs et les contraintes du projet COTE. Une des 
principales contraintes était que la syntaxe de TeLa devait rester aussi proche que possible de 
la syntaxe de UML 1.4, telle qu’implantée dans l’outil UML Objecteering. En conséquence, 
nous ne prétendons pas que la syntaxe concrète actuelle pour les opérateurs locaux, tel que 
l’opérateur de boucle et l´opérateur de choix des diagrammes de séquence de TeLa, soit la 
plus adéquate. 

Deux constructions particulièrement intéressantes introduites dans ce chapitre sont la 
construction « verdict explicite » et la construction « alternative par défaut explicite ». Nous 
montrons les propriétés qu’une description de test devrait satisfaire pour que ces constructions 
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soient bien définies. D´autres constructions intéressantes sont celles pour dénoter une valeur 
inconnue dans le paramètre d´un message envoyé par le SUT et celle pour dénoter 
l´affectation d´une telle valeur inconnue à une variable dynamique. 

Un des aspects de TeLa présenté dans ce chapitre qui mérite une attention particulière est le 
traitement des notions de schéma de flôt de contrôle et de l’idée d’un composant actif ou 
passif. Nous interprétons la notion de passivité comme des restrictions sur les linéarisations 
autorisées. Quand on utilise une sémantique non-entrelacée, ces restrictions constituent un 
autre niveau sémantique qui doit être ajouté (optionellement) au dessus de la sémantique de 
base. Le schéma de flôt de contrôle est une propriété de composant, dénotée par une 
annotation sur le modèle de composants qui décrit l’architecture de test. Les principales 
constructions de TeLa dont l’interprétation est affectée par le schéma de flôt de contrôle sont 
le focus bar et la coregion. Par exemple, l’effet d’un focus bar à l’intérieur d’une coregion sur 
une ligne de vie qui représente un composant passif est similaire à celui de la construction 
critical region d’UML 2.0. Nous soutenons que nos définitions modélisent de façon adéquate 
la notion de passivité par rapport à l’interprétation : 
• de la concurrence comme le degré de liberté d´ordonnancement qui reste quand on est 

obligé d’implanter cette concurrence par scheduling et non pas par des files d’exécution, 
• des appels synchrones comme des appels bloquants pour l’émetteur,  
• des focus bars comme des représentations de l’exécution d’une méthode. 

2.5 Chapitre 5 

Dans le cinqième chapitre nous définissons les éléments principaux de la sémantique formelle 
de TeLa. 

La Section 1 présente des éléments d’une sémantique structurelle pour TeLa. Nous 
definissons formellement les fondements d’un modèle de composant qui est sous-jacent à 
notre langage à base de scénarios, en termes de « composants » avec des « ports » qui sont 
reliés par des « connecteurs ». Bien qu’il ne soit pas le propos de ce travail, ce modèle peut 
être vu comme la formalisation d’une partie du modèle de composants d’UML 2.0. Ensuite, 
nous précisons l´idée de la base structurelle (ensemble de lignes de vie) d’un scénario de 
description de test comme une série de vues sur un « snapshot » du modèle de composants, 
afin d’assurer que cette base reflète l’« architecture de test » et la « configuration de test ». Le 
modèle de composants sous-jacent à une description de test joue aussi un rôle important dans 
la généralisation des techniques de synthèse de test dans le contexte de test de composants. 

La hiérarchie du modèle de composants fournit un cadre dans lequel on peut définir la 
composition/décomposition des lignes de vie, ainsi que des propriétés sur des composants qui 
affectent l’interprétation des diagrammes. Les deux propriétés de ce genre introduites dans 
cette thèse sont la sémantique de communication, qui peut être à base de messages ou à base 
d’événements, et le schéma de flôt de contrôle, qui peut être passif ou actif. La hiérarchie de 
composants facilite aussi la définition de propriétés locales telles que la « contrôlabilité 
locale » et peut être utilisée pour guider le choix de l’architecture de déploiement. 

La Section 2 présente des éléments d´une sémantique comportementale pour TeLa, et en 
particulier, des éléments d´une sémantique non-entrelacée. Les sémantiques non-entrelacées 
sont très importantes pour le test distribué. En ce qui concerne la description de tests qui 
impliquent des données non-énumérés, dans le Chapitre 5 nous n´avons formalisé que la 
sémantique entrelacée. Cependant, une description informelle de la sémantique non-entrelacée 
dans le cas des données non-énumerées est donné dans le Chapitre 4. 
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Nous donnons une définition formelle de « verdict local » pour les modèles non entrelacés et 
nous définissons formellement comment les « verdicts globaux » sont obténues à partir de ces 
« verdicts locaux », en incluant le cas du « verdict inconclusif ». La dérivation des verdicts 
locaux et la dérivation de verdicts globaux à partir de ceux-ci a une importance primordiale 
dans le contexte du test distribué. 

Ensuite, nous donnons une définition formelle de « verdict local implicite » et de la propriété 
de « complétude de test » pour les modèles non-entrelacés. La dernière propriété est la bien 
connue « complétude en entrée » du cas entrelacé, avec, en même temps, des conditions pour 
assurer que n’importe quelle exécution qui ne se bloque pas termine avec un verdict global. 
Nous définissons les propriétés qu’un modèle non-entrelacé doit avoir pour que les verdicts 
implicits soient bien définis. Une notion bien définie de verdict implicite assure que les 
descriptions de tests ont un niveau suffisant d’abstraction tout en assurant la propriété de 
complétude de test. 

Pour le cas non-entrelacé, nous affaiblissons les définitions standards de déterminisme et de 
contrôlabilité, ce qui nous amène aux définitions formelles de plusieurs notions de 
déterminisme et de contrôlabilité. Le concept de déterminisme minimal est essentiel pour que 
le verdict implicit de fail soit bien défini. Les différentes notions de contrôlabilité nous 
permettent de définir la hiérarchie de cas de test suivante: « cas de test parallèle », « cas de 
test parallèle cohérent à l’extérieur», « cas de test parallèle cohérent », « cas de test parallèle 
centralisable à l’extériure » et « cas de test centralisable ». 

Dans la Section 3, nous définissons formellement comment une sémantique à base de 
messages peut être définie comme une restriction d’une sémantique à base d’événements pour 
une certaine classe de descriptions de tests (celles qui sont RSC: réalisable avec la  
communication synchrone). Nous montrons comment une sémantique à base de messages 
peut être mélangée à une sémantique à base d’événements composant par composant. Dans 
plusieurs cas, l’utilisation d’une sémantique à base de messages évite d’encombrer les 
descriptions de test avec beaucoup de messages de synchronisation. Ceci est le cas pour la 
répresentation en TeLa de la sortie de l’outil de synthèse de test TGV (fondé sur un modèle 
entrelacé), comme présentée dans le Chapitre 6. Le fait que la sémantique restreinte soit plus 
proche de la sémantique des diagrammes de séquence des versions d’UML antérieurs à UML 
2.0 peut être aussi très utile pour les concepteurs de tests qui sont familiarisés aves ces 
notations. 

2.6 Chapitre 6 

Dans le sixième chapitre, nous étudions l´utilisation de TeLa dans le synthèse de test. Un 
résumé du travail présenté ici a été publié dans [PicJarTra02]. Une application de la méthode 
décrite ici dans le contexte des lignes de produit a été publié dans [NebPicTra]. 

Les premiers travaux sur le développement de la méthode de synthèse de test à partir d´un 
modèle UML avec Umlaut/TGV sont présentés dans [JézGuePen98], [JérJézGue98] et 
[Gue01]. Le premier article propose un cadre pour intégrer la technologie de vérification et 
validation formelles dans le cycle de vie orienté-objet. Le deuxième présente ce cadre plus en 
détail, en décrivant le schéma global pour générer une API de simulation à partir d’un modèle 
UML afin de pouvoir utiliser les outils de vérification et de validation, en particulier, l’outil 
de synthèse de test TGV. Le troisième décrit comment ce schéma a été réalisé dans le 
simulateur Umlaut. 
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Dans cette thèse, nous étendons la méthode de synthèse à partir des modèles UML avec 
Umlaut/TGV, pour arriver à une intégration complète avec UML, premièrement, à travers 
l’utilisation d’objetifs de test et de cas de test basés sur les scénarios et, deuxièment, à travers 
l’échange de modèles XMI avec les AGL UML commerciaux. Nous suggérons aussi 
comment la méthode pour le test système pourrait être généralisée au test de composants. 

Dans le cadre de ce travail, nous avons raffiné et amélioré le simulateur d’Umlaut, tout en 
clarifiant la sémantique qu´il implante et les restrictions que la dérivation de cette sémantique, 
à partir d´un modèle UML, impose sur ce modèle. Pour cela, nous avons bénéficié de 
l’évaluation et du test de la méthode et de l’outil que nous avons entrepris conjointement avec 
les membres du projet COTE qui jouaient le rôle d´utilisateurs, notamment France Télécom 
R&D. Un des objectifs principaux de COTE était d’étudier l’applicabilité de l’approche TGV 
à la synthèse de test dans le domaine UML. 

Ce chapitre vise aussi à documenter la méthode et l´outil originaux, ainsi que ses extensions, 
en montrant clairement les différentes phases et les différents choix de sémantique et 
d’implantation dans chaque phase. Nous avons inclu les notes d´implantation concernant le 
prototype actuel tout au longue du chapitre. Ces notes précisent les endroits où l’implantation 
actuelle est incomplète, ou bien, les endroits où il y a des difficultés à implanter la méthode 
telle qu’elle est présentée. Ainsi, ce document peut aussi servir comme un manuel technique 
pour l’outil. À la fin de chacune des principales sections, on récapitule nos principales 
propositions pour améliorer et étendre la méthode et l’outil déjà étendus dans le projet COTE. 

Dans la Section 1, nous fournissons la définition des termes additionels (par rapport aux 
termes définis dans le Chapitre 2) dont nous aurons besoin dans ce chapitre. Dans cette 
section aussi, nous présentons une vue d’ensemble de la méthode, en la divisant en quatres 
parties principales. La première de ces quatre parties, qui concerne la dérivation d´un modèle 
formel (un système de transitions étiquetées) à partir d´un modèle UML de l´application, est 
présentée dans la Section 2. La partie suivante, qui concerne la derivation d’un modèle formel 
(un système de transitions étiquetées) à partir d’une représentation UML d’un objectif de test 
– dans le langage O-TeLa – , est présentée dans la Section 3. Le cœur de la méthode et de 
l’outil, la synthèse de test sur des modèles formels, est présenté dans la Section 4. La dernière 
partie, qui concerne le mapping entre la représentation en termes du système de transitions 
étiquetées d´entrée-sortie du cas de test produit, et une representation UML de ce même cas 
de test – dans le langage TeLa – , est présentée dans la Section 6.  Nous illustrons la méthode 
décrite dans ce chapitre en faisant référence à un exemple de sistème de contrôle de trafic 
aérien simplifié.  

2.7 Chapitre 7 

Dans le septième chapitre, nous concluons en décrivant les contributions originales de cette 
thèse ainsi que les perspectives. Nous décrivons les contributions dans les domaines des 
langages de description de test fondé sur les scénarios, de la sémantique structurelle de TeLa, 
de la sémantique comportementale de TeLa, de l’utilisation de TeLa pour la synthèse de test 
et aussi des contributions originales dans le cadre conceptuel sur lequel est basé le travail. Les 
perspectives concernent la sémantique de TeLa, la syntaxe de TeLa, le support de TeLa par 
des outils, et les extensions de TeLa. 
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1 Context and motivation 

The testing phase is an extremely important part of any software development. The cost of 
this phase, even in non-critical software projects, commonly represents between a third and a 
half of all development costs. In areas where the cost of failure and outages is very high (this 
can be measured in different terms but the usual measure is hard cash), the costs of testing 
will be much greater than this. 

As pointed out by Beizer [Bei90], there is a common myth according to which if 
programmers were really good, there would be no testing phase. While it is true that more 
rigour in earlier phases should reduce the costs of the testing phase, software testing is 
absolutely unavoidable. Moreover, currently, and for the foreseeable future, automatic code 
generation from a verified specification is only applicable in very limited circumstances. 
Testing is necessary in any engineering discipline and all the more so in a still very young 
discipline such as software engineering where it is particularly difficult to reduce the set of 
parameters to be verified during development, and tested at the end of it, to a reasonably-sized 
set. If the collapse of structures such as bridges and dams was a stimulus for progress in civil 
engineering, a good many more serious software disasters (hopefully not involving loss of 
life) will be needed before software engineering reaches a level of development at which the 
denomination engineering becomes indisputable. 

An important way of reducing the high cost of testing and therefore, also, the high cost of 
software, is by automating aspects of the testing phase. One approach to doing so is by raising 
the level of abstraction at which the tests are described and automating the generation of 
platform-specific tests from these abstract tests; another is by automatically generating tests of 
an implementation from the specification of that implementation. In both of these techniques, 
the introduction of a more formal approach is of obvious value, and the language in which the 
tests are to be described plays a pivotal role. 

1.1 Software testing 

Testing is generally viewed as one of the set of techniques described by the ubiquitous term 
V&V (Validation and Verification). 

1.1.1 What is verification and validation? 
The usual distinction between validation and verification, apparently due to Boehm [Boe75] 
but adopted by the IEEE in their official definition [IEEE90], is as follows: verification 
attempts to answer the question “is the system being built right?” while validation attempts to 
answer the question “is the right system being built?”. That is, verification concerns the 
internal coherence of the application while validation concerns whether the application fulfils 
the requirements. According to another similar well-known definition, verification is an 
evaluation of whether a software development product complies with the requirements at the 
start of that development phase (or is coherent with the corresponding product of the previous 
phase), whereas validation is an evaluation of whether the final product complies with (user) 
requirements. Though useful and, in the case of the first definition at least, undoubtedly good 
mnemonics, these definitions are less than ideal. In fact, particularly in the case of the first 
definition, it is not obvious that the two definitions are mutually exclusive, see below. 
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1.1.2 What is testing? 
Testing, on the other hand, is usually defined as the activity of looking for errors in the final 
implementation. Though the term “final implementation” is still subject to different 
interpretations, this definition is more useful for our purposes than the above definitions. 
Clearly, for all but the most trivial applications, correctness, that is, the absence of errors, 
cannot be demonstrated through testing. At the risk of being pedantic, we restate that the 
objective of testing is to find errors; it cannot be to show their absence. 

Like many software terms, and indeed a large part of language, the term “testing” has recently 
fallen victim to marketing considerations. In the wake of widely-publicised, hugely-expensive 
software failures, positive perceptions of testing increase among the software-developer 
community and the software-user community at large, and the tendency to use the term 
“testing” as widely as possible, however inappropriate it may be, increases commensurately. 
In this document we will not use the term testing for any checking that is not performed on 
the implementation. 

1.1.3 What are black-box testing and conformance testing? 
By black-box or functional testing we will understand testing of the behaviour of the 
implementation without reference to the internal structure of the application, in particular, 
without reference to its source code. By conformance testing we will understand testing 
designed to check that an implementation conforms to a specification, preferably in terms of a 
well-defined conformance relation. Though testing is universally considered a validation 
activity, according to a strict reading of the above definitions of V&V, it is not obvious 
whether conformance testing is to be classified as verification or validation. 

1.1.4 Abstraction and current software testing trends 
In recent years, the benefits of abstraction and the idea of working at model level has finally 
begun to take root in the software-development community, witness the OMG´s “model-
driven architecture” approach, a better name for which would be model-driven development. 
Graphical analysis and design languages are at the heart of these developments, in particular, 
the OMG-standard modelling language UML [OMG03]. A radical revision of this language, 
UML 2.0, is scheduled for release in mid 2003. Testing technologies used in industry are 
beginning to reflect these developments by taking advantage of analysis and design assets to 
introduce more automation into the testing phase. 

1.2 Component testing 

According to the definition of UML 2.0 [U2P03]1, which represents a relatively well-
developed consensus view, a component, “is a modular part of a system that encapsulates its 
contents and whose manifestation is replaceable within its environment.” The main aspects of 
this definition are thus encapsulation and substitutability. A component is an instantiable 

                                                 
1 As stated above, the UML 2.0 specification has not yet been released. In this document, when we refer to the 
UML 2.0 proposal, we are referring to the latest proposals of the U2 Partners consortium. This does not present 
any difficulties since we are only interested in the superstructure part of the standard and there is only one 
remaining proposal for this superstructure: that of the U2 Partners. 
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entity2. Also according to UML 2.0, “a component specifies a formal contract of the services 
that it provides and those that it requires from other components in the system. The required 
and provided services are defined through ports that are characterised by interfaces.” 

Conformance testing of a component, then, checks that it conforms to its specification in 
terms of services, where any communication with a component must be carried out via its 
ports. This is not just service testing, that is, checking a single provided service in isolation, 
but also checking dependencies and temporal orderings between services provided and 
required by the component and its peers. To emphasise the difference with the standard notion 
of contract that is generally associated to testing individual services, these dependencies and 
orderings that a component participates in and which must be checked were called contractual 
relations in [PicSanYel96]. 

Over the last few years, standard software applications have come to be increasingly 
distributed. This tendency began tentatively as the simple separation of the processing from 
the database and later also from the client, with communication taking place over a LAN or 
WAN, the buzzwords of the time being 2-tier and later 3-tier architectures. This tendency 
accelerated with the use of technologies such as Java+RMI, CORBA [OMG02b], 
DCOM/COM+, and the next buzzwords: n-tier and middleware. The tendency shows all the 
signs of increasing further with the latest wave of technologies (and buzzwords) based on 
distributed component technologies: J2EE, .NET, CCM [OMG02a], Web Services [W3C02], 
MDA, etc. 

1.3 Telecom testing 

Testing in the telecommunications area has certain peculiarities. The applications to be tested 
are frequently distributed and the testing must often be carried out partially, or fully, through 
some mediating system. Most communication is asynchronous and in most cases, control 
aspects are overwhelmingly more important than data aspects. Generally speaking, the 
systems used are reactive, that is, any activity they may have is provoked by their 
environment. Finally, many systems are critical, in the sense that failures can be very 
expensive.  

The socio-economic context is also different in that heterogeneity of the infrastructure has 
been the norm for quite some time. Since the telecom monopolies have been dismantled, 
service heterogeneity and the number of actors sharing parts of the infrastructure has also 
increased markedly. As a consequence, conformance testing and certification is of great 
importance in the telecom field and a large amount of effort has been invested in the 
techniques and tools needed to carry it out. 
This set of circumstances has led to a well-developed and well-established conceptual basis 
for conformance testing in the telecom field, see [ISO/IEC92a]. It has also led to a significant 
degree of formalisation of this conceptual basis, see [Pha94], [ITU-T97]. This formalisation 
has favoured the development of formal approaches to test generation from a specification, 
see, for example, [Tre96], [Jér02]. We will use the term test synthesis for this, to distinguish it 
from the generation of concrete tests from abstract tests. Of particular interest in our view is 
test synthesis from a specification guided by test objectives. Current formalisations of 

                                                 
2 We use slightly different terminology to UML 2.0 in that we use the term “component” for what UML 2.0 calls 
“component instances” and the “components” of UML 2.0 are referred to in our component model as 
“component types”. 
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conformance-testing concepts are based on interleaving models but attention is now turning to 
more general formalisations using non-interleaving or “true concurrency” models, see for 
example [Jar02]. 

The aspect of communicating systems that was referred to in the OSI model as the 
“application layer” has become far more elaborate in modern telecom systems and, just as in 
other areas of software, there is now a marked tendency towards the use of distributed 
component-based applications. This is an indication of the fact that the frontiers between 
telecom software and other types of software are becoming steadily more diffuse and, 
consequently, the distinction between the types of testing applied is also becoming less clear. 

The development of an approach to testing in component-based systems, while building on 
the established bank of knowledge of the software testing field, see, for example, [Bei90], 
[Bin00], could clearly benefit from adopting and adapting the conceptual basis established in 
telecom conformance testing. Similarly, an attempt to formalise the conceptual basis of 
component-based testing should also strive to take advantage of the body of work done in this 
area in the telecom field. 

1.4 Testing languages 

Testing as a software domain has sufficient specificities for specialised languages to have 
been developed in which to write test descriptions. In this particular software domain, 
efficiency is not generally a crucial consideration but interactivity, portability and 
extensibility are sought-after qualities. Many testing programs consist of relatively simple 
operations performed a large number of times (with different data). These factors point to the 
use of interpreted languages and, indeed, scripting languages have often been used as 
software testing languages, e.g. use of Expect [NIS03] for testing applications with a 
command-line interface. 

As mentioned above, the area of conformance testing has seen significant development in the 
telecom field in the last ten years or so. Part of this development has been the design of a 
conformance testing language, TTCN [ISO/IEC92b], currently in its third version. In the first 
version tests are described in a syntax resembling state tables with tree-like decision 
structures. The second version introduced distributed testing constructs and the third version, 
TTCN-3 [ETSI03a], is a fully-fledged programming language aimed at general 
communicating systems. The progression of the TTCN language through these three versions 
mirrors the developments in telecom software mentioned above. The change of name between 
versions two and three from the “Tree and Tabular Combined Notation” to the “Testing and 
Test Control Notation” and the fact that TTCN-3 has an associated graphical syntax GFT 
[ETSI03b] based on MSC [ITU-T99] are also significant developments. 

The software landscape sketched in the previous paragraphs points to the need for a graphical 
component testing language. If such a language is to be widely integrated in software 
development projects, it should be based on the standard modelling language UML. The most 
adequate UML view on which to base such a language, particularly in the telecom domain is 
the sequence-diagram view (recall that TTCN-3 GFT is based on MSC). In our opinion, in 
order to avoid overloading the graphical syntax with large numbers of constructs, thereby 
losing much of the advantage of using a graphical syntax, this language should be situated at a 
higher level of abstraction than TTCN-3. 
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2 Objectives 

This thesis concerns software component testing in general but the methods, techniques and 
tools discussed here are most adequate for systems in which the communication aspect is 
significant and which are not data-intensive. An important feature of this area of testing is the 
lack of adequate language support, particularly UML-integrated language support, as already 
mentioned. In the work reported on here, we address the issues of using a scenario-based test-
description language for component testing of centralised and distributed applications and 
propose such a language, called TeLa (Test Language) [PicJarHeu01]. In designing TeLa we 
were obliged to find solutions to some non-trivial semantic problems. We then apply 
scenario-based test descriptions in the context of test synthesis from UML models.  

We base our test description language on UML for the following reasons: 
• A UML-based language can be smoothly integrated into a UML-based process and UML 

CASE tools. 
• Using a UML-based language allows us to capitalise on the widespread familiarity with 

UML. This then facilitates not only the production of tests, but also the understanding of 
tests written by others, encouraging the use of tests as documentation. 

• Use of UML-based test descriptions in a UML-based development manifests the relation 
between tests and other software development assets. 

Among the UML views, the sequence-diagram view provides the most suitable basis for such 
a language since it is the only UML view in which temporal orderings can be clearly 
represented (in our opinion, collaboration diagrams with message numbering annotations do 
not satisfy this criterion). Sequence diagrams are also considered user-friendly and easy-to-
understand (though, in fact, appearances can be deceptive). 

We also sketch the development of a more generic scenario-based description language 
similar to TeLa to be used to describe test objectives, called O-TeLa. We then apply the test 
objective language O-TeLa and the test description language TeLa to the problem of the 
synthesis of test cases from UML models guided by test objectives. 

The major part of the work presented here has been carried out by the author in the context of 
the COTE project [JarPic01] of the French RNTL national research programme. The 
participants in this project were France Télécom R&D, Gemplus, IRISA, LSR-IMAG and 
Softeam. In the COTE project, TeLa was conceived as the heart of a UML test environment 
involving both synthesis of TeLa test cases from O-TeLa test purposes as well as manual 
production of TeLa test cases. The COTE project also dealt with other aspects of TeLa such 
as its implementation in a UML CASE tool and the production of executable tests on different 
platforms from TeLa test descriptions. However, the author´s part in these latter aspects of the 
use of TeLa being limited, we do not discuss these issues in this thesis. 

The work reported on in Chapter 2, Section 2.1 was carried out during the author´s stay in the 
group led by Gonzalo Léon Serrano at the Departamento de Ingeniería de Sistemas 
Telemáticos (Telematic Systems Engineering Department) of the Universidad Politécnica de 
Madrid (Madrid Technical University), Spain on a national research grant under the 
programme entitled “Estancias Temporales de Científicos y Tecnólogos Extranjeros en 
España” (“Temporary Posts in Spain for Foreign Scientists and Tecnologists”). 

Shortly after the COTE project commenced, the OMG published an RFP (Request For 
Proposals) for a UML Testing Profile. The consortium replying to this proposal published its 
proposals in March 2003 [UTP03]. Some of the author´s earlier work was provided as initial 
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input to this consortium and the author has had a limited participation in the work of this 
consortium. However, the work of the consortium has diverged from that presented here for a 
variety of reasons. In spite of this, significant commonalities remain and the main aspects of 
the two proposals could be made compatible. 
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3 Contributions 

In the area of semantics for scenario-based test descriptions, the original contributions of this 
thesis concern firstly the structural semantics of such descriptions, in terms of an underlying 
component model, and secondly the behavioural semantics of such descriptions, in terms of 
partial-orderings. The formal definition of the key concepts required for a component-based, 
partial-order, test description language to be well-defined played a crucial role in guiding the 
construction of the language defined in this work. This fact notwithstanding, due to the 
complexity of the problem, we have not been able to define the full semantics in a completely 
formal fashion. 

In the area of the definition of scenario-based test description languages, we have defined 
such a language, called TeLa, that includes a simplified easier-to-use sublanguage with its 
locally-defined operators. The contributions also concern the evaluation of the suitability for 
describing tests of existing scenario-based languages, and the testing-specific language 
constructs which must be added w.r.t. these other scenario-based langauges to obtain a test 
description language. 

In the area of test synthesis, the area in which we have chosen to apply the scenario-based 
descriptions developed here, the contributions concern extending and generalising the 
methods and tools used. 

Finally, we also define the conceptual basis of the work, materialised here in the form of a 
small glossary of terms. 
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4 Guide to the rest of the document 

In Chapter 2 we present the conceptual background against which this work has been carried 
out. 

In Chapter 3, we identify the choices made in designing our language and justify them, 
clarifying the semantic elements involved. We do so without losing sight of the objective of 
designing a UML-integrated language. 

In Chapter 4, we present the TeLa language itself, introducing each of the constructs and 
illustrating the chosen syntax. For each construct, we identify the conditions needed for it to 
be well-defined and explain its informal semantics. 

In Chapter 5, we formalise some crucial testing concepts in the semantic domain but we do 
not explicitly give the mapping from the syntax to this domain. These aspects concern the 
component model underlying a test description and the most important elements of the 
behavioural semantics of scenario-based test descriptions. 

In Chapter 6, we present the use of the TeLa language (and the O-TeLa language) in test 
synthesis using Umlaut/TGV. 

In Chapter 7, we conclude by summarising the contributions of this thesis, while pointing out 
the relevance of these contributions, and by describing the research lines and applications 
constituting the possible continuations of this work. 
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In this chapter we present the conceptual background to the work reported on in the rest 
of the document. In the first section, we briefly define the basic concepts we will need 
in the rest of the document. In the next section, we briefly summarise earlier work of 
direct relevance to the work of this thesis.  
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1 Basic Concepts 

In this section we give more precise definitions of the terms used in this document. The 
definitions given in this section are our own. They represent an attempt to marry 
software testing terminology such as that of [Bei90], [IEEE90], [NIS96], [BSI98], OO 
testing terminology such as that of [Bin00] and telecom testing terminology such as that 
of [ISO/IEC92a] and [Tre96],[JarJér02]. An earlier version of some of these definitions 
was provided as initial input to the UTP (UML Testing Profile) consortium replying to 
the OMG´s Testing Profile RFP, see [UTP03]. 

1.1 The testing addressed in this document 

1.1.1 Testing phases 

1.1.1.1 UNIT TESTING 
Testing of software units, that is, the smallest software components which it makes 
sense to test individually. In the case of object-oriented software, the logical units for 
unit testing are usually classes. 

1.1.1.2 INTEGRATION TESTING 
Testing of groups of software components, looking for errors in the interaction between 
these components. The integration can be carried out top-down, testing first the 
components which provide top-level services, or bottom-up, testing first the basic 
components. Clearly, performing the integration bottom-up helps to minimise the 
number of stubs needed. 

1.1.1.3 SYSTEM TESTING 
Testing of the whole software application, integrating all the groups of units tested in 
the integration testing phase. 

1.1.2 Types of testing 

1.1.2.1 COMPONENT TESTING 
Testing of an individual software component. With a hierarchical component model, 
unit testing and system testing can both be viewed as types of component testing. 
Furthermore, part of the integration testing can also be viewed as the testing of 
successively larger components. 

1.1.2.2 PASSIVE TESTING 
Testing in which the tester observes the behaviour of the system under test during 
execution in its real environment and without emitting any stimulation, and emits a 
verdict as a result of comparing the observed behaviour with the expected behaviour. 
Frequently, the passive tester only emits a verdict if incorrect behaviour is observed. 
Passive testing of a software component is normally carried out in situ, that is, using the 
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real implementation of the components whose services the component under test 
requires. In this document, we are not concerned with passive testing. 

1.1.2.3 ACTIVE TESTING 
Testing in which a test controller sends stimuli to the system under test with the aim of 
exercising certain of its execution paths, observes its responses to these stimuli and 
emits a verdict as a result of comparing these responses to the expected ones. In the tests 
discussed in this document, the stimuli are either method invocations or signal 
exchanges. 

1.1.2.4 WHITE-BOX (OR STRUCTURAL) TESTING 
Testing in which knowledge of the internal structure of the system under test is used, 
usually in the form of an abstract representation of the source code. Coverage criteria, 
such as traversal of all the nodes or arcs of a graph, can be defined on these abstract 
representations. In this document, we are not concerned with white-box testing. 

1.1.2.5 BLACK-BOX (OR FUNCTIONAL) TESTING 
Testing in which interaction with the component is carried out exclusively through the 
interfaces defined in its specification and without reference to lower-level descriptions. 

The language we define in this document is adapted to the black-box testing context. 
Description of grey-box tests, in which communications between elements of the 
system under test (SUT) may be observable (via software probes, for example), would 
require modifications of the test language developed here. For example, it would be 
useful to have a notation allowing the test designer to specify assertions on the values of 
parameters of intra-SUT messages. The definitions of component under test, system 
under test, test case etc. are also tailored to the black-box testing context and may well 
need to be modified in a different context. 

1.1.2.6 CONFORMANCE TESTING 
Testing that an implementation conforms to a specification; conformance testing 
therefore supposes a priori that the specification is correct. Evidently, in conformance 
testing, the specification serves as the oracle, where this is the name generally given to 
the functionality of deciding whether the test results are as expected. Conformance 
testing is normally black-box testing. 

1.2 The different actors in a test case 

1.2.1 The system under test 

1.2.1.1 THE COMPONENT UNDER TEST (CUT) 
The component which is the subject of testing is referred to as the component under test 
(CUT). We will use the terms CUT implementation and CUT specification where there 
is a need to distinguish these two levels.  
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1.2.1.2 THE SYSTEM UNDER TEST (SUT) 
It may be impractical, or even impossible, to test the CUT without the presence of other 
software components whose implementation has not been derived for the purpose of 
testing. An example of when this situation may arise is in integration testing, notably if 
performed by testing successively larger units. Another example is when the CUT is 
embedded in other software which is costly or difficult to emulate, or for which neither 
source code nor specification is available, so that, in consequence, it must be tested in 
situ. 

Thus, the test may involve components communicating with the CUT, and with other 
similar components, through interfaces/ports that are not accessible to the test software. 
The CUT together with the set of components whose communications are not all to be 
observed and controlled as part of the test is denoted the system under test (SUT). In 
this document we do not consider the grey-box testing case where some such 
communications can be observed but none of them can be controlled, e.g. using 
software probes. We will use the terms SUT implementation and SUT specification 
where there is a need to distinguish these two levels.  

In order to maintain a precise notion of what is being tested, the situation where the 
SUT contains components other than the CUT clearly requires the hypothesis that the 
implementations of these other components are completely correct. The fact that they 
have already been tested may be enough for us to make this hypothesis. Notice that only 
two characteristics distinguish the CUT from the other components of the SUT: the 
intention of the designer to test the former and the correctness hypothesis for the latter. 
Though these two characteristics may be important in the test design, their only impact 
on the test execution is in the interpretation of a pass or fail verdict. 

With regard to the black-box aspect of testing, in a black-box test, all interaction with 
the SUT is carried out exclusively through the interfaces defined in its specification and 
without reference to lower-level descriptions. This can still be the case even if the 
implementation under test is that of a CUT properly contained in the SUT 
implementation. Thus, in spite of the fact that an SUT-CUT distinction constitutes a 
hypothesis about the internal structure of the SUT, the latter is still the black-box of the 
testing. Similarly, with regard to the conformance testing, the specification which is 
assumed correct is that of the entire SUT, not just that of the CUT. 

In most cases, the services required by the SUT of other software components are 
emulated by the tester, e.g. using stubs, see below. In such cases the CUT coincides 
with the SUT. 

1.2.2 The test software 

1.2.2.1 THE TESTER 
We will refer to all the software in the test set-up which is not part of the SUT as the 
tester. From the SUT point of view, during the test, the tester plays the role of the SUT 
environment. The purpose of this software is to stimulate the SUT implementation, 
observe its responses and deliver a corresponding test verdict. We will use the terms 
tester specification and tester implementation where there is a need to distinguish these 
two levels. The tester may be divided into separate components at different hierarchical 
levels. At any hierarchical level, the component containing the functionality for 
delivering the test verdict will be called the judge. This component may, or may not, be 
the same component as the one which initiates the test. 



16 CONCEPTUAL  BACKGROUND 

As already stated, if the test involves using components whose implementations have 
not been derived for the purpose of testing but whose communications can all be 
observed, such components are considered to be part of the tester by virtue of the black-
box testing supposition. 

1.2.2.2 STUBS 
A stub is usually defined as a skeletal or special-purpose implementation of a software 
module, used to develop or test a component that calls or is otherwise dependent on it1. 
In the testing context, stubs are purpose-built for testing and their outputs are therefore 
controlled (even if this may be at compile time rather than at execution time). Their 
inputs can also all be observed; however, if we choose not to implement the necessary 
code to do so, such stubs are then part of the SUT. Though such situations may arise in 
performing integration testing by testing components of greater and greater size, in the 
cases of interest here, stubs are part of the tester. 

A typical situation in which the term stub may be used is when the component structure 
of the SUT environment part of a model of the entire application is used as the 
component structure of the tester, see the definition of the test architecture below. 
Another example is when special-purpose test modules are used to deal with each SUT 
invocation to its environment. This latter case is of particular interest since it may be 
possible to automatically generate such pure server stubs from the description of the test 
case in which they are involved. 

1.3 Structuring concepts 

1.3.1 Structure of the SUT 

1.3.1.1 THE SUT COMPONENT INTERFACE 
The SUT component interface groups interface instances of two kinds, where the types 
of these interfaces are defined in the test context: 
• The instances of interfaces offered by the SUT to its environment (where we include 

any UML signals the SUT can receive from its environment). Between them, the 
interfaces contain all those SUT operations that may be invoked by the tester in the 
course of execution of the tests (including the set of signals that may be sent by the 
tester to the SUT). 

• The instances of interfaces required by the SUT of its environment (where we 
include any UML signals the SUT can send to its environment). Between them, the 
interfaces contain all those tester operations that may be invoked by the SUT in the 
course of execution of the tests (including the set of signals that may be sent by the 
SUT to the tester). 

We assume that the SUT component interface is usually structured in terms of ports, 
each with its multiplicity. If an SUT component model is available, e.g. as part of a 
specification of the entire application, the ports of the SUT interface are those ports of 

                                                 
1 Note that this is the meaning of the term stub in testing and software development; in the context of 
RPCs, DCE, RMI, CORBA etc. it is used to mean a server proxy. 
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the component model which channel communications between the SUT and its 
environment. A port may contain a provided and a required part. 

1.3.2 Structure of the tester 

1.3.2.1 THE TEST CONTEXT AND TEST ENVIRONMENT 
The test context is defined to be the collection of components and classes from which 
the tester is built. A test context may be shared by different test cases. The test 
environment is defined to be the execution environment of the test case or test cases. 

1.3.2.2 THE TESTER COMPONENT INTERFACE 
The tester component interface groups interface instances of two kinds, where the types 
of these interfaces are defined in the test context: 
• The instances of interfaces offered by the tester to the SUT (including signals). 

Between them, the interfaces contain all those tester operations that may be invoked 
by the SUT in the course of the test. 

• The instances of interfaces required by the tester of the SUT (including signals). 
Between them, the interfaces contain all those SUT operations that may be invoked 
by the tester in the course of the test. 

We assume that the tester component interface is usually structured in terms of ports, 
each with its multiplicity. The tester component interface is defined as part of the test 
architecture. 

1.3.2.3 THE TEST ARCHITECTURE AND TEST CONFIGURATION 
The test architecture comprises the following four elements (see Chapter 5, Section 1 
for more detail concerning the component model): 
• the tester component type and its internal structure, defined using the elements of 

the test context; the “tester component interface” defined above comprises the set of 
ports of the tester components which are visible to the environment of the whole 
tester component (the unique instance of the tester component type), 

• the SUT component type as a base-level component type; in the absence of an SUT 
component model, the “SUT component interface” defined above comprises the set 
of ports of the whole SUT component (the unique instance of the SUT component 
type), 

• the connections, denoting client-server dependencies and therefore logical channels 
for method invocations, between the ports of the tester component interface and 
those of the SUT component interface, 

• the communication architecture to be used for the connections between tester 
components and between the tester component interface and the SUT component 
interface. 

The test architecture refers to the static (though it may include multiplicity information) 
structural information concerning the tester and its connections to the SUT. We will 
assume it is described using a component diagram, preferably based on a hierarchical 
component model defined in terms of ports and connectors between ports. It may also 
be annotated with information concerning the communication architecture, the control 
flow scheme etc., inside each component. A test architecture may be shared by different 
test cases. 
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There is a minimum of two levels of hierarchy in the test architecture in that there must 
be a single component, the whole tester component, which includes all the others (in 
order to be able to represent the tester as a single lifeline in our sequence diagrams, if 
required2). Similarly, in the test architecture, the SUT is considered to be a (non-
standard) base-level component, whose ports are those of the “SUT component 
interface”. In the simple object model case, the internal structure of the tester comprises 
only standard base-level components (objects); we suppose (contrary to systems such as 
CORBA) that any pure client must be encapsulated in an object. 

The choice of test architecture will affect the process by which the global verdict is 
arrived at, and the mechanisms needed to verify the orderings specified in the test case. 
However, the level of abstraction of our test description language is such that this 
process and mechanisms are not included in test descriptions. 

In the case where the SUT specification is part of a model of an entire application, the 
basis of the test architecture is defined by the component structure of the application, 
more precisely, by the part comprising the SUT environment and the SUT component 
interface. Such a test architecture will be called a default test architecture, w.r.t. the 
application specification. The functionality of coordinating the test may need to be 
completed and that of performing the task of the judge will need to be added, possibly 
inside a new component. In the case where the SUT specification is the entire model of 
the application (system testing), the components of the default architecture correspond 
to the external actors. This is the case treated in the application of Chapter 6. 

Among the other possible test architectures, one of particular interest involves using a 
centralised tester in which one subcomponent makes all the invocations to the SUT and 
contains the judge functionality, while separate stub subcomponents deal with each of 
the invocations made by the SUT to its environment. 

The test configuration is defined by the test architecture together with the dynamic 
information of the current state of the test components: currently existing links between 
objects and values of attributes (which includes current knowledge of SUT component 
IDs etc.). The initial configuration is the test configuration at the start of the test case. 

1.3.3 Structure of the data exchanged between tester and SUT 

1.3.3.1 DATA PARTITION 
For large or infinite input data domains, it is clearly unrealistic to test each possible 
value. The most common way of reducing the number of values to be tested is to divide 
the input data domains into equivalence classes, under the hypothesis that the SUT 
behaviour does not depend on the particular member of an equivalence class that is used 
(the uniformity hypothesis). Commonly, also, a representative is chosen for each 
equivalence class. The set of equivalences classes for the input data, with or without 
representative values, is known as the data partition. In a given tester input, the data 
may be constrained, possibly by an accumulated set of constraints, in which case, the 
required equivalence classes partition the subset of the data which satisfies the 
constraints. Note that each tester output may require a different data partition. 

                                                 
2 In particular, this possibility will be needed to represent the output of a test synthesis tool based on an 
interleaving model, such as TGV, see Chapter 5 
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There are many different techniques for generating the data partition from the 
specification or design model, in black box testing, and from the source code, in white 
box testing. These techniques therefore constitute the basis of the uniformity hypothesis. 
They are referred to as test data generation techniques. 

1.4 Behavioural concepts 

1.4.1 Dynamic creation 
Both the tester and the SUT may create new components in their respective domains. 
However, the tester (respectively SUT) cannot create SUT components, (respectively 
tester components). Notwithstanding this restriction, the SUT (respectively tester) can 
implement creation methods which can be invoked by the tester (respectively SUT), 
assuming that the corresponding operation is offered in the interface of one of its 
components. We will require variables and constants taking values in the set of 
components in our test description language in order to model the communication of the 
identity of any dynamically-created SUT components or their ports, particularly 
knowledge of the creation of dynamically-created SUT components / ports to the tester. 

1.4.2 General formulation of behavioural concepts 
In Chapter 6, we give more specific formulations for the concepts of this section, and of 
some additional concepts, for the case where the underlying semantics is based on 
labelled transition systems and the case where the underlying semantics is based on 
partial orders. 

1.4.2.1 ACTIONS 
An action is a basic behavioural unit. When discussing UML representations, we will 
generally identify these actions with UML-actions. 

1.4.2.2 CONTROLLABLE AND OBSERVABLE ACTIONS 
The actions of the tester can be divided into controllable actions and observable actions. 
Controllable actions are actions describing tester outputs or tester internal actions; 
observable actions are actions describing tester inputs. Note that in this document, we 
do not use the term observable actions in the sense of actions that are not internal, as in, 
for example [Mil89]. We will also refer to transitions labelled by a controllable, resp. 
observable action, as controllable transitions, resp. observable transitions. Similarly for 
controllable events and observable events. 

1.4.2.3 TEST VERDICTS 
A (test) verdict is one of the following possible outcomes for a test case: pass, fail, 
inconclusive and error, see [ISO/IEC92a]. The first three verdicts concern the observed 
behaviour of the SUT implementation and the last verdict concerns correct execution of 
the test software. 

In the enumerated data case, the meaning of the inconclusive verdict is w.r.t. a test 
objective. It is assigned when the behaviour of the implementation under test, while 
correct according to its specification, does not permit the test objective to be verified. In 



20 CONCEPTUAL  BACKGROUND 

the non-enumerated data case, the inconclusive verdict can also be assigned when the 
data values do not permit correct execution of the test but the exact origin of the 
problem (which data item received from the SUT) is not clear.  

As stated above, the judge is the component responsible for assigning the global verdict. 
In some cases, the verdict may be derived in function of a set of local (test) verdicts, 
where a local verdict is a verdict derived by an individual test component in function of 
the behaviour it has observed. In such cases, the overall verdict derived by the judge is 
referred to as the global (test) verdict. 

1.4.2.4 TEST RESULT 
The test result is the behaviour actually performed in a test execution together with the 
verdict for that test execution. The behaviour actually performed in a test execution is 
the set of actions together with their parameter values either executed by the tester 
(controllable actions) or executed by the SUT and observed by the tester (observable 
actions), plus the ordering, and possibly timing, relations between them. 

Note that we do not simply define the test result as the output of the SUT. In the 
presence of distribution and concurrency, such a definition is not sufficient, even if we 
view the input as the whole sequence of controllable actions and the output as the whole 
sequence of observable actions. This is since, due to the effects of concurrency, the SUT 
may exhibit observable non-determinism, i.e. it will not necessarily produce the same 
sequence of outputs for the same sequence of inputs. Moreover, orderings between 
controllable actions and observable actions are among the orderings we wish to check.  

1.4.2.5  (CONFORMANCE) TEST CASE 
A test case (meaning in this document a platform-independent test case, or abstract test 
case in the terminology of [ISO/IEC92a]) is a specification of an interaction between 
the tester and the SUT in which the tester stimulates the SUT via the “SUT component 
interface”, observes its responses at this interface, and assigns a verdict to the result of 
this interaction. The verdict is assigned in function of whether the test result is 
consistent with the SUT specification as defined by some conformance relation. 

A test case is designed to exercise a particular execution or verify compliance with a 
specific requirement. The initial and final states of the tester in a test case correspond to 
the SUT being in well-defined and stable states according to its specification. A verdict 
must be associated to each final tester state. A fail or inconclusive verdict is obtained as 
early as possible from which it follows that, in the enumerated data case, a fail verdict 
or inconclusive verdict is always obtained immediately after the reception of a message 
from the SUT at the tester. In the non-enumerated data case, an inconclusive verdict can 
also be obtained immediately after the evaluation of a tester assertion or guard. 
A test case may contain the specification of communications between different tester 
components (tester coordination messages) as well as between the SUT and the tester. It 
may also involve the creation of new objects or the destruction of existing objects by 
each of the two parties (tester & SUT) in their respective domains. 

The generation of an executable test case for a particular platform from an abstract test 
case is normally a relatively easy task. An executable test case may contain extra 
messages, which are not in the alphabet of the specification, between those of the 
abstract test case. For example, if the test is implemented on a distributed platform, each 
such platform has its own internal messages. 
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2 Precursory work 

In this section we discuss the methods, tools and techniques which have influenced the 
development of TeLa. We also discuss tool support for the testing process, the prime 
motivation for the definition of specific testing languages. We only discuss tools for test 
synthesis and test generation (defined below), since the work on TeLa was developed in 
the context of the COTE project [JarPic01] where both these types of tools were used. 
Of the two, we concentrate on the former, see Chapter 6. 

Other types of tool support for the test process not discussed here are tools for test 
execution, some well known examples being the TETworks framework [OG03], the 
Expect tool [NIS03] the JUnit framework [BecGam98], [Goe01] and tools for test 
planning support, such as the tool based on the algorithm for minimising the stubs 
necessary in integration testing presented in [LeTJerJez00]. 

2.1 An approach to component testing 

In this section we discuss component testing in the context of the component-based 
development methodology we developed in the OTELSO project (Eureka 1001), 
reported on in [PicSanYel96] and [PicSanSan96]. 

2.1.1 The OTELSO project 
The goal of the OTELSO project was to define a methodology and implement a 
development environment for the specification, prototyping, implementation and testing 
of telecommunications applications on a standardised distributed-processing platform. 
In order to achieve this goal, the following tasks were undertaken: 
• The study of the use of the formal techniques, notably SDL and LOTOS, alongside 

the use of object-based techniques and interface definition languages, notably 
CORBA IDL. 

• The development of methodology guides and support tools for the testing and 
monitoring of distributed systems using graphical notations, notably MSC. 

• The semi-automatic implementation on standardised distributed-processing 
platforms, notably CORBA (see [OMG02b] for the latest version of CORBA), via 
incremental prototyping techniques. 

• The definition and implementation of a case study for demonstrating the 
development environment and the methodology: a distributed ATM system 
involving multiple banking consortia, banks and cashpoints located on a CORBA 
network. 

The author was responsible for the part of this project concerned with testing, and 
therefore for the testing methods and tools developed in this project, as well as for the 
major part of the testing aspects of the OTELSO development methodology. We 
developed techniques for testing substitutable entities, or components, taking inspiration 
more from the Open Distributed Processing (ODP) framework [ISO95], rather than 
from the OMG´s rather limited Object Management Architecture (OMA) of the time.  

Like the project definition, the proposals developed in the OTELSO project were very 
ambitious and, consequently, some of them were not implemented. This is particularly 
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true with respect to the manipulation of scenarios. For example, only very rudimentary 
event-ordering testing was actually implemented. However, due to the evolution of 
component and scenario technologies, many of these proposals are now more realistic 
than they were at the time the OTELSO work was carried out. In this sense, the methods 
and techniques discussed are more relevant now than when they were originally 
proposed, and an adaptation of these methods and techniques to a UML 2.0 context 
would, in our opinion, be of interest. 

2.1.2 Component contracts in OTELSO 
The OTELSO project relied heavily on the notion of contract, a notion which is 
fundamental to component-based development. The classic text in this field by the 
researcher who coined the phrase “design by contract” is [Mey88], [Mey97]. The usual 
notion of contract comprises invariants and pre- and post- conditions for the operations. 
The contracts of OTELSO contained both a provided and a required part and were used 
at different hierarchical levels as part of the development methodology. 

The existence of contracts involving assertions can be used for testing purposes in 
several ways. They can be used in the testing phase for white-box/grey-box passive and 
active testing at both the integration and system level. They can also be used for non-
regression testing of a component if its implementation changes and non-regression 
testing of its clients if it is used in a new context. These types of testing are the 
cornerstone of so-called self-testable, reusable components. 

Contracts can also be used as the basis for black-box contractual conformance testing. 
In OTELSO, we investigated and implemented this type of testing for CORBA objects, 
by adapting the ADL language [SanHay94] and the corresponding ADLT tool to 
CORBA testing. Our proposal incorporated the possibility of either using stubs or of 
performing in situ testing, that is, using the real implementation of the components 
whose services the component under test requires, and monitoring their communications 
using software probes (implemented using the Orbix filter mechanism). In the former 
case, the stubs were actually situated in the same CORBA server as the tester program. 

2.1.3 Contract scenarios in OTELSO 
However, particularly in the telecom context, testing based on pre- and post- conditions 
of operations is not sufficient. Even for testing a single interface or port (we will refer to 
this as service testing), we need to be able to check invocation orderings and we would 
therefore like this to be part of the contract. For this reason, the methodology we 
developed in OTELSO allowed the addition of contract scenarios, described using the 
MSC´93 language, to the component contracts that we associated to ports3. We then 
investigated the derivation of event-ordering tests from these contract scenarios. 

The scenarios were used to specify prohibited, optional and obligatory behaviour. We 
proposed to use the first as properties in passive testing, and the last two as test purposes 
or abstract test cases in active testing. As our testing architecture was built on top of a 
CORBA monitoring system using probes and a centralised monitor, also developed in 
OTELSO, we were obliged to address the problem of causal delivery of messages to the 
monitor in a distributed system. As each component of the architecture had a single 
                                                 
3 In [PicSanYel96] and [PicSanSan96], we used the term interfaces rather than ports, for what were really 
interface occurrences. 
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port, we used a simple numbering scheme at each probe, together with a maximum 
message-delay supposition. 

2.1.4 Contractual relations scenarios in OTELSO 
However, again, particularly in the telecom context, contract-based testing derived from 
assertions and scenarios proved not to be sufficient. As our development methodology 
was based on a hierarchical component model, we used this model to extend the notion 
of contract further. As well as the contracts associated to the ports of a component, we 
associated a single contract to the component itself and included in this contract more 
scenarios, again specifying prohibited, optional and obligatory behaviour. 
These additional scenarios were of two types: internal and external. The internal 
scenarios specified the communications between the ports of a component and its 
immediate subcomponents, and between these different subcomponents. The external 
scenarios were the projection of the internal scenarios of the parent component onto the 
messages involving that component. We referred to both types of scenario as 
contractual relation scenarios. Evidently, the external and the internal scenarios had to 
be coherent. 

2.1.5 Scenarios in the OTELSO development process 
In OTELSO, both assertions and MSCs were used throughout the development process, 
not just in the testing phase, and the development methodology considered two types of 
projection of scenarios. The projection of the internal contractual relation scenarios onto 
the messages involving an individual subcomponent to give the external contractual 
relation scenarios of that subcomponent, and the projection of the internal contractual 
relation scenarios onto an individual port of a subcomponent to give the contract 
scenarios of that subcomponent. The external contractual relation scenarios, in turn, 
form the basis of the internal contractual relation scenarios of the next level down in the 
component hierarchy. In the proposed top-down development, at each stage, the 
scenarios could be extended and completed. 

As already mentioned, we proposed to use the contract scenarios and assertions of port 
contracts to derive service tests. Similarly, we proposed to use the external contractual 
relation scenarios of a component contract to derive component tests. The service tests 
derived from assertions were considered to be both part of the service tests and part of 
the component tests. We also began investigating how to incorporate the specification 
and execution of the assertion-based tests as part of the event-ordering based tests. 
Finally, the component hierarchy gave us a means of performing integration testing by 
testing successively larger components. 

For more recent work on the use of MSCs in the development process see [Kru00], 
[MauRenWil01], [Bro02]. 

2.2 Formal approaches to conformance testing 

As stated in Chapter 1, the testing phase absorbs a very large proportion of development 
costs. Automation of the tasks carried out in this phase holds out the prospect of 
significantly reducing these costs. Formalisation greatly facilitates automation, and in 
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the case of conformance testing, is essential in order to ensure that tests are correct, that 
is, they never reject a conformant implementation. 

A formal definition of the notion of conformance relation is primordial in a formal 
approach to conformance testing. In conformance testing based on transition systems, a 
conformance relation is a test preorder, see [deNicHen84], [Abr87], in which 
observation is limited to the (externally visible) traces of the specification. 

The models that have proved to be most applicable in testing distinguish the externally 
visible actions of the specification which are inputs from those which are outputs. We 
refer to such models as input-output models. Examples can be found in the Input-Output 
State Machines of [Pha94], the I/O Automata of [Lyn88], the Input-Output Transition 
Systems of [Tre96] and the Input-Output Labelled Transition Systems of [JerJar02] and 
of Chapter 6 of this document. These models also contain a third type of actions, the 
internal actions, which are susceptible to be hidden or abstracted away from, in order to 
show only the externally-visible behaviour. In many cases, there is no need to 
distinguish between different kinds of internal action so that the third subset often 
contains a single element, as in process algebra models. 

To the inputs, resp. outputs, of the specification, correspond outputs, resp. inputs, of the 
tester. The input actions of the tester represent actions for which the tester environment, 
i.e. the SUT, has the initiative while the internal and output actions represent actions for 
which the tester itself has the initiative. The former kind of actions are termed 
observable actions while the latter are termed controllable actions. 

We are interested in conformance relations on input-ouput models. The conformance 
relation used in [JarJer02], [Jer02] and in [Tre96] is the ioco relation. This relation 
supposes that the absence of visible activity (quiescence) – resulting from deadlocks, 
livelocks or waiting for input – is observable. Quiescence is considered to be a 
particular type of output though, in practice, tests detect this “output” by using timers. 
The ioco relation states that an implementation conforms to a specification if it cannot 
produce outputs which are unexpected w.r.t. the specification, after executing a trace of 
observable actions which is allowed by the specification (taking into account 
quiescence). 

2.2.1 Formal approaches to test synthesis 
In the 1980s, methods for synthesizing test cases from specifications based on Mealy 
machines were developed. A survey can be found in [LeeYan96]. However, these 
methods make rather restrictive hypotheses on the specification, and even more so on 
the implementation. In addition, due to the fact that the label on a Mealy machine 
transition contains both an input and an output, a Mealy machine is not the most 
suitable basis for modelling systems involving asynchronous communication, where, for 
example, a single input may lead to multiple outputs. Neither is it easy to map from 
specification languages such as SDL to Mealy machines. 

For these reasons, in the 1990s, methods for synthesizing test cases from specifications 
based on input-output models were developed. For a survey of transition-system based 
methods, see [BriTre00]. These methods have begun to have some real application in 
industry. The methods most of interest in the context of this thesis are those that 
synthesize test cases from specifications guided by test objectives, using model-
checking technology. In these methods, the synthesis is decoupled from the execution. 
Among these methods, in Chapter 6 we use one implemented in the TGV [JarJer02], 
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[Jer02] tool whose algorithms work on-the-fly. The use of on-the-fly algorithms means 
that arbitrarily large specifications can be treated. However, it also means that the 
synthesized test case is not necessarily minimal. More details of this kind of test 
synthesis can be found in Chapter 6. 

Another approach developed in the 1990s is to synthesize tests from algebraic data type 
specifications, see [Gau95][LeGArn96].  

2.3 Scenario languages in testing methods and tools 

2.3.1 Scenario languages 
The origins of using scenario languages to describe communicating entities lie in 
formalisms such as Lamport´s causality diagrams [Lam79]. Currently, the most well-
known scenario langauge is the MSC language [ITU-T99], standardised by the ITU, 
which has gone through several versions over the last ten years. We will refer to the last 
three versions as MSC´93, MSC´96 and MSC´2000. For more details concerning the 
design of the current version, see [Ren99] and [Eng01]. 

For a survey of recent work on the use of MSCs and scenario languages, see [Pel02] and 
[HélJar01]. 

The object-oriented analysis and design language OMT [RumBlaPle91] also contained 
a rudimentary scenario language based on an early versions of the MSC notation and, 
seemingly, on the notions of [Lam86]. This language was imported into UML, the 
successor to OMT, where it was further developed [OMG01], [OMG03]. 

The idea of harmonising MSCs and UML sequence diagrams has been mooted for many 
years. More recently, this harmonisation began to take more concrete form, see 
[RudGraGra99] for example. The latest MSC standard has had significant influence on 
the sequence diagrams of the upcoming UML 2.0 standard, see [Hau01], [U2P03]. 
However, additional operators which risk seriously perturbing the semantics have been 
added to UML 2.0 w.r.t. MSC, see Chapter 3, Section 4. 

2.3.2 Scenario languages in testing 

2.3.2.1 SCENARIO LANGUAGES TO DESCRIBE PROPERTIES 
The use of MSCs as properties on SDL models was already proposed in [Ek93], 
[AlgLejHug93]. An example of the use of MSCs as property descriptions in feature 
interaction detection, according to the detection framework of [ComPic94], can be 
found in [ComPicRen95]. 

2.3.2.2 SCENARIO LANGUAGES TO DESCRIBE TEST OBJECTIVES 
A similar use of MSCs to describe test objectives was first proposed in [GraHofNah93], 
[Gra94], [Nah94], where these test objectives were used to guide the synthesise of test 
cases from an SDL model. The MSCs used were those of the MSC´93 standard which 
are much simpler than the MSCs of the current standard, involving no loops, 
alternatives or parallelism; they correspond roughly to the “basic MSCs” of the current 
standard. 
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2.3.2.3 SCENARIO LANGUAGES TO DESCRIBE/VISUALISE TEST CASES 
The use of MSC´93 to describe test cases was also proposed in [Gra94], [Nah94], 
[GraHogNus95] and using the extended MSC´93 language of the Geode tool in 
[CavLeeMac97]. The use of timed versions of MSC´96 to describe test cases was 
proposed in, for example, [GraWal98], [Ren97] and [ObeKer99]. An extension of 
MSC´96 known as Hyper-MSCs for describing test cases was proposed in 
[EkkSchGra00b]. The use of MSC´96 to visualise test cases was proposed in 
[GraWal98]. The use of MSC´2000 to describe test cases is proposed in 
[SchRudGra00]. 

These efforts led to the development of a scenario-based graphical syntax for TTCN-3 
[ETSI03b], a presentation of which can be found in [BakRudSch01]. A real-time 
extension to TTCN-3 is presented in [DaiGraNeu02] and further developed in 
[DaiGraNeu03]. 

The use of UML sequence diagrams to describe test cases was proposed in 
[EkkSchGra00]. An early version of TeLa, the test language based on UML 1.4 
sequence diagrams presented in this thesis, was proposed in [PicJarHeu01]. More 
recently, a UML Testing Profile [UTP03], defining a testing framework based on UML 
2.0 and making extensive use of UML 2.0 sequence diagrams was developed. A 
presentation of this profile is given in [SchDaiGra03]. 

2.3.3 Test generation, languages and tools 

2.3.3.1 SCENARIO LANGUAGES IN TEST GENERATION 
By test generation we understand the generation of a concrete test for a particular 
platform from a more abstract, platform-independent test. Evidently, the work on 
scenario-based test description has been accompanied by work on generation of 
concrete tests, e.g. in TTCN, from such test descriptions. Recently, there has been some 
work on generation of distributed tests from MSC-based test descriptions, e.g. 
[GrabKocSch99], [BakBriJer02], [DeuTob02]. 

Test generation from scenarios, particularly distributed test generation, is sufficiently 
non-trivial for some authors, such as [DeuTob02], to call these test descriptions test 
purposes. We prefer to reserve this term, and the term test objective, for descriptions 
allowing a greater degree of abstraction, even allowing for them to be selection criteria 
that contain only internal actions of the SUT specification, as is possible with the TGV 
tool. 

2.3.3.2 TEST GENERATION TOOLS 
If a test description language has a sufficiently high level of abstraction, it needs an 
associated test generation tool. As there are many such languages, there are many such 
test generation tools. We therefore only give some examples of tools performing test 
generation from a scenario-based test language. 

Both the Autolink [SchEkGra98] and the Test Composer [GroJerKer99] tool can be 
used for test generation from MSCs, as well as for test synthesis. These tools are 
compared in [SchEbnGrab00]. The rather rudimentary (marketing jargon aside) tool 
Rational Quality Architect generating tests from UML sequence diagrams is presented 
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in [Rat01]. The ptk tool4 for generating distributed tests from MSCs is presented in 
[BakBriJer02]. 

2.3.4 Test synthesis, languages and tools 

2.3.4.1 SCENARIO LANGUAGES IN TEST SYNTHESIS 
By test synthesis we understand the generation of a test case from a specification guided 
by a test objective. To our knowledge, the earliest work on test synthesis using scenario-
based test objectives is that of [GraHofNah93], [Gra94] and [Nah94], as stated above. 
However, this synthesis from SDL specifications was not based on a formal notion of 
conformance. Since then, a more formal approach to test synthesis using scenario-based 
test objectives has been developed for SDL specifications, see [SchEbnGrab00], for 
example. 

In [PicJarTra02] and in Chapter 6 of this document, we present a method for test 
synthesis from UML specifications based on the ioco theory of TGV [Jer02]. However, 
this involves a rather unnatural translation between non-interleaving models and 
interleaving models. The first steps towards developing a complete non-interleaving test 
synthesis method are presented in [Jar02] 

2.3.4.2 TEST SYNTHESIS TOOLS 
Early examples of test synthesis tools are TorX [Tre96], TGV [FerJarJer96], 
SAMSTAG [GraSchHog97], TVEDA [GroRis97], the first two being based on the ioco 
theory discussed above. Slightly more recent, commercial tools derived from these early 
examples and using scenario-based test objectives are Autolink [SchEkGra98] and Test 
Composer [GroJerKer99]; see [SchEbnGrab00] for a comparison of the two. A more 
recent version of TGV is presented in [JarJer02]. The work presented in Chapter 6 of 
this thesis lays the foundation for extending the TGV tool firstly, in order to be able to 
use as input scenario-based test objectives / test descriptions, and secondly, to 
component testing. A comparison of the algorithms used by the synthesis tools TorX, 
TGV and Autolink can be found in [Gog01]. 

                                                 
4 with its patented, though perhaps not novel, algorithms! 
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In this chapter we discuss using scenarios as a basis for a test description language and, 
in particular, basing such a language on UML sequence diagrams. In Section 1, we 
discuss the use of UML as a basis for a test description language, which we call TeLa 
(Test Language) and establish a semantic basis. In Section 2, we introduce other general 
concepts of importance for defining a scenario-based test description language. In 
Section 3, we give an overview of, and a brief justification for, the main constructs we 
need to add to our test language with respect to UML 1.4 sequence diagrams. Finally, in 
Section 4, we give a brief assessment of UML 2.0 sequence diagrams, which have been 
defined since the work reported on here began. 
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1 Using UML for a Test Description Language 

In this section, we discuss the issues involved in using UML as a basis for our test 
description language, which we call TeLa [PicJarHeu01].  First we deal with general 
considerations concerning the most suitable UML diagrams on which to base the 
language; in doing so, we briefly situate our approach w.r.t. other similar initiatives.  

We start with the goal of using pre-UML 2.0 sequence diagrams [OMG01] [OMG03] as 
the basis for our test descriptions. We will refer systematically to UML 1.4 since, apart 
from a few minor corrections, the only difference between UML 1.4 and UML 1.5 is the 
addition of the action semantics. It is immediately apparent that these diagrams suffer 
from some serious ambiguities and that the first task towards accomplishing such a goal 
is to clarify their meaning. Thus, we are first lead to define the basics of the semantics 
of our test descriptions. 

We examine the main difficulties in giving semantics to UML diagrams in general, and 
to UML 1.4 sequence diagrams in particular. We discuss the possible solutions to these 
problems and choose one such solution. We also indicate why we will interpret 
diagrams directly rather than passing via the UML 1.4 metamodel. We then examine the 
further difficulties which arise in giving semantics to UML sequence diagrams when 
these are to be viewed as test descriptions. Again we discuss possible solutions and 
choose one such solution.  In each case where we choose a solution, we justify our 
choice with respect to the other possible solutions. 

We then show how we can recover a semantics which is closer to UML 1.4 sequence 
diagrams as a specialisation of our chosen semantics and discuss the use of this feature. 

1.1 Motivation for approach taken 

Recall that we are interested in black-box testing and among the properties we wish to 
test are those concerned with correct ordering of the messages interchanged between the 
SUT and the tester, the latter playing the role of the SUT's environment. Among the 
different views used in UML modelling, interactions are clearly the most suited to 
describing message orderings and therefore the most adequate on which to base our test 
description language. Sequence diagrams are also considered to be especially user-
friendly (as are related formalisms such as MSCs). 

With simplicity and user-friendliness in mind, for our test language TeLa, we use only 
the sequence diagram, class diagram and component diagram views of UML with the 
overwhelming emphasis on the sequence diagrams. In contrast, the Test Profile defined 
by the consortium responding to the OMG RFP [UTP03] allows any UML diagram to 
be used in test descriptions and, in particular, proposes the use of state diagrams. 

As explained below, in order to obtain a sufficiently-expressive test description 
language based on UML sequence diagrams their semantics must be clarified and their 
expressive power must be increased. In modifying UML 1.4 sequence diagrams, we do 
not attempt to maintain an equivalence between sequence diagrams, on the one hand, 
and collaboration diagrams with superimposed interactions (or “communication 
diagrams”, as their UML 2.0 equivalents are currently called), on the other. One reason 
for this is that such an equivalence inevitably involves the use of a sequence numbering 
system. Even assuming an adequate system can be devised to take into account guards, 
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loops, branching and explicitly-specified concurrency on a lifeline, the user-
unfriendliness of such a system is inescapable. 

The ETSI standardisation of TTCN-3 [ETSI03a] testifies to the current interest in MSC-
like syntaxes for test languages. The latest version of the test language TTCN 
[ISO/IEC92b], which aims at a broader class of systems than its predecessors, comes 
equipped with a graphical syntax [ETSI03b] based on the MSC language [ITU-T99], 
[Ren99]. However, there are significant differences between the MSC/TTCN3 GFT and 
UML sequence diagrams. Moreover, in our opinion, an MSC-style graphical syntax is 
more suited to use in a language with a higher-level of abstraction than TTCN-3. In 
TeLa we allow numerous aspects which must be specified explicitly in TTCN-3 to 
remain implicit. Even if it were possible to introduce all the low-level detail of TTCN-3 
into an MSC-style graphical language, the result would be almost unreadable and would 
lose the user-friendliness which such graphical languages are claimed to possess. In 
fact, in TTCN-3, the graphical language is incomplete and must be complemented by a 
significant amount of textual language. 

We thus strive to maintain a certain coherence with GFT, while at the same time trying 
to remain as close as possible to the UML standard. In this respect, our approach could 
be considered to be more UML-integrated than that of [EkkSchGra00], for example. 
Having said that, it should be noted that the version of the UML standard which is under 
development is significantly different to the previous versions. For this reason, we have 
also kept an eye on the compatibility of our test description language with the draft 
versions of UML 2.0. 

In spite of the desire to remain close to the UML standard, the range of behaviour we 
wish to treat makes the introduction of some new constructs inevitable, even w.r.t. UML 
2.0. Where feasible, rather than extending the UML syntax, we propose adaptations of 
existing UML syntactic elements. We do not currently derive a mapping to the UML 
metamodel for each of the adaptations and extensions introduced, as this was not 
possible for the UML 1.4 metamodel and the work was carried out before any 
relatively-mature version of the UML 2.0 metamodel was available.  

One of our original aims in starting this work was to define a UML Testing Profile. 
However, as it became clear that the UML 1.4 metamodel was not a suitable basis for 
our test description language, this goal was largely abandoned. After the start of work 
reported on here, a proposal was made at the OMG to standardise a UML testing profile 
based on the draft UML 2.0 proposals. The proposal of the consortium replying to the 
UML Testing Profile RFP has recently been made available [UTP03]. The author of the 
present document was able to contribute in a limited manner to this standardisation 
work, through the association of the IRISA laboratory with the French object-
technology company Softeam, which is a member of this consortium. However, though 
much of the UML Testing Profile work is complementary to the work presented here, 
the scope is different. The UML Testing Profile addresses a wider range of issues but, 
due to time constraints, addresses them in less depth. Furthermore, the profile has a 
lower-level of abstraction than TeLa. 

1.2 Semantics in the UML standard 

We, of course, attempt to base the semantics of our test descriptions on the official 
UML semantics of sequence diagrams. However, the semantics of UML diagrams is 
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only informally sketched in the UML standard. Furthermore there are some consistency 
problems of a general nature even with this informal semantics. 

Two routes to semantics are given informally in the UML 1.4 standard; a “1-stage” 
route and a “2-stage” route. By the 1-stage route we refer to the outline of the semantics 
of the actual diagrams (the concrete syntax) given in the UML Notation Guide 
document, §3 of the standard. By the 2-stage route we refer to the mapping to the 
metamodel given in the UML Notation Guide document together with the outline of the 
semantics of this metamodel (the abstract syntax) given in the UML Semantics 
document, §2 of the standard. The first problem is that these two routes to semantics are 
not necessarily consistent. 

Another problem concerns the fact that the concrete syntax and the mapping to the 
metamodel would seem to have received less attention than the development of the 
metamodel itself. While it is generally recognised to be good practice to develop the 
abstract syntax of a language before developing the concrete syntax, the peculiarities of 
graphical languages such as UML mean that for such languages, the definition of the 
abstract syntax cannot be completely decoupled from that of the concrete syntax. The 
most important peculiarity in this respect is the constraints on the concrete syntax 
arising from the desire to use established graphical idioms, this being a consideration of 
prime importance for the usability of the language. 

If the metamodel is defined without taking the concrete syntax into account sufficiently, 
this can lead to the situation in which some of the intended metamodels are impossible 
to describe using any concrete syntax which respects the established constraints. A case 
in point is the difficulty in defining a consistent mapping to the UML 1.4 metamodel for 
UML 1.4 interactions involving multiple threads. We should not lose sight of the fact 
that the mapping to the metamodel plays an important role in defining the semantics of 
the graphics and cannot be demoted to the status of an afterthought. 

Another problem with the UML documentation is the ambiguities created by 
incomprehensible text, a problem apparently arising simply from a difficient proof-
reading process. Past UML documents have contained phrases that would be serious 
contenders for the Plain English Campaign’s “Golden Bull Award”1 or the Campaign’s 
more recent “Foot in Mouth Award”2. It is to be hoped that the upcoming UML 2.0 
standard contains fewer candidates. Hopefully, also, all such phrases have been 
eliminated from this thesis! 

1.3 UML 1.4 sequence-diagram semantics 

The starting point for the semantics of TeLa is UML 1.4 sequence diagrams. The 
origins of these diagrams lie in early versions of the MSC notation and in Lamport´s 
causality graphs [Lam78] (themselves perhaps influenced by Hasse diagrams). 

The semantics of these sequence diagrams is described using two relations, predecessor 
and activator, in a manner similar to the two relations of [Lam86]. In the case of 
procedural sequence diagrams, the mapping to a metamodel instance is relatively 
simple. The predecessor describes the ordering relation between outgoing invocations 

                                                 
1 http://www.plainenglish.co.uk/goldenbull.html 
2 http://www.plainenglish.co.uk/footinmouth.html 
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on an instance and the activator describes the causality relation between an incoming 
invocation and consequent outgoing invocations made by the invoked method. 

However, it is difficult to see how this scheme can be generalised to give a realistic 
semantics beyond procedural diagrams. The attempt to do so results in contradictory 
prescriptions of how to deduce activator and predecessor relations from the concrete 
graphical syntax. Parts of the standard seem to take the point of view that, in the 
presence of asynchronous messages, only the predecessor relation is to be used, while 
other parts clearly state that the semantics defined in terms of activator and predecessor 
is general. As an example of the second point of view, we cite the following quote from 
the UML Semantics document: 

“Thus, the predecessor’s relationship imposes a partial ordering on the messages 
within a procedure, whereas the activator relationship imposes a tree on the 
activation of operations.” 

We now investigate in more detail the main problems with the semantics of UML 1.4 
sequence diagrams and discuss possible solutions. 

1.3.1 Semantics in terms of two relations between messages 
In this section we discuss the difficulties inherent in the UML 1.4 approach to sequence 
diagram semantics in terms of two relations : predecessor and activator. 

1.3.1.1 PREDECESSOR RELATING MESSAGES “WITHIN A PROCEDURE” 
The predecessors of a message are defined in the UML Semantics document as “the set 
of messages that must be completed before the current message may be executed”. 
Assuming that “the messages within a procedure” of the quote in the first part of this 
section are those that are emitted during that procedure, it is difficult to see how the 
ordering of asynchronous messages on the sender can be defined in terms of message 
completion. After all, in the general case, how can the sender know when an 
asynchronous invocation has “completed” so that the next message can be sent? 

1.3.1.2 ASSUMPTION THAT CAUSAL FLOWS ARE DESCRIBED COMPLETELY 
If the activator relation is the only way to relate messages emitted by different instances, 
sequence diagrams are not suitable for describing ordering properties in incomplete 
causal flows. This is true even for diagrams which do not involve any asynchronous 
messages. 

The fact that the greater part of the ordering relations between messages is lost if all 
activation relations are not shown drastically limits the use of sequence diagrams at 
different levels of abstraction. This aspect is crucial for using sequence digrams in the 
software development process (for modelling use-cases etc.). 

As regards testing, the obligation to show complete causal flows is a serious 
impediment to treating part of the application as a black box in a sequence diagram. 
This aspect is essential for a functional test language based on sequence diagrams which 
does not include an MSC gate type construct, see Section 1.4.2.1. The lack of 
abstraction which this obligation implies is also of crucial importance for representing 
test objectives, see Chapter 6, Section 3. 
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1.3.1.3 ORDERING SIGNALS W.R.T. OTHER MESSAGES 
In UML, signals are distinguished from asynchronous invocations (asynchronous call 
actions are distinguished from send actions); unlike asynchronous invocations, they do 
not activate procedures and so the arrows representing them in sequence diagrams 
cannot have focus bars attached to the arrowhead end (or, equivalently, they cannot lead 
to another layer of nesting in the sequence numbering). They therefore terminate causal 
chains and can only be related to other messages (including those sent or received on 
the same lifeline as the signal) through a backward causal connection (i.e. a connection 
passing via activator relations). This is a severe restriction. 

1.3.1.4 ORDERING ASYNCHRONOUS INVOCATIONS W.R.T. OTHER MESSAGES 
It is not clear from the standard whether the use of focus bars (or, equivalently, nested 
sequence numbers) is allowed or desirable in the presence of asynchronous messages 
and/or active objects. 

If focus bars are not used, according to the explanation of the mapping to the 
metamodel, no activator relations can be deduced between different instances. Thus, if 
the predecessor relation only relates messages “within a procedure” and the activator 
relation is the only way to relate messages emitted by different instances, without focus 
bars, invocations made by different instances are not related in any way! 

In the literature, many examples of UML sequence diagrams involving only 
asynchronous messages and with no focus bars can be found, e.g. [ETSI01]. The 
interpretation seems to involve a total ordering on all the messages or a total ordering on 
the messages emitted or received on each lifeline. However, this interpretation is not 
usually made explicit and in fact, there is little to support it in the UML documentation 
apart from the ambiguous Fig. 3-56 of the standard. Furthermore, it still leaves open the 
question of how to interpret diagrams involving both synchronous invocations with 
focus bars and asynchronous invocations / signals without. 

Even if focus bars are used, messages emitted spontaneously by active objects are not 
activated by another message and so the arrows representing them in sequence diagrams 
cannot be emitted inside a focus bar. They therefore initiate causal chains and can only 
be related to other messages (including those sent or received on the same lifeline as the 
spontaneously-emitted message) through a forward causal connection (i.e. a connection 
passing via activator relations). This is a severe restriction. 

1.3.1.5 “SPLIT PERSONALITY” OF SEQUENCE NUMBERING ON ARROWS 
The subnotation of the UML 1.4 sequence numbering system defined by the thread 
names and the explicit predecessors is apparently designed with the idea of relating 
messages emitted by different instances via the predecessor relation, contradicting other 
parts of the UML documentation, such as the quote given at the start of this section. In 
fact, this subnotation would seem to be designed for a semantics in which the 
predecessor relation is the only relation between messages. This impression is borne out 
by the example of Fig. 3-71 of [OMG01]. 

The rest of the sequence numbering notation is based on the two-relation semantics. The 
problem with this second subnotation, even in diagrams which do not involve 
asynchronous communication, is that it is only workable for complete causal flows, see 
above. 



36 CONCEPTUAL  BACKGROUND 

Given the fact that the sequence numbering notation is a hybrid of two notations with 
contradictory semantics, it is not surprising that a number of interpretations of it can be 
found in the literature, where, for example, it is used for denoting concurrency, 
branching or a mixture of both. 

As an additional point, the sequence numbering system is particularly user-unfriendly 
and would probably be even more so if it were adapted to properly take into account 
guards, loops, branching and explicitly-specified concurrency on a lifeline (coregions) 
in sequence diagrams. 

1.3.2 Semantics in terms of partial orders of messages 
Formalisations such as that of [Kna99] do not attempt to address the difficulties 
discussed in the previous section and therefore do not help us in defining our test 
description language; like many analyses of UML sequence diagrams, they are of little 
use outside of the procedural diagram case. In looking for a solution, one option would 
be to explore the correspondence between the message flow graphs of [LadLeu95], with 
their precedence and communication relations, and UML sequence diagrams, with their 
precedence and activator relations. The simplest solution, however, is simply to remove 
the activator relation from the semantics. 

We therefore suppose we have a semantics using only the predecessor relation between 
messages, i.e. in terms of partial orders of messages. Of course, we must allow 
predecessor relations between messages other than those sent in the same thread of a 
procedure.  

The removal of the problematic activator relation solves most of the problems 
mentioned in the previous section at a stroke. However, the question immediately arises 
as to what is to be the role of the focus bar in the absence of an activator relation? This 
question is addressed in more detail in Chapter 4. Here we merely state that it serves to 
order messages if it falls inside the scope of an operator for explicitly specifying 
concurrency on a lifeline and, for synchronous invocations, to relate invocation to reply 
as well as to indicate that the caller is blocked / “waiting” while the call is treated, 
where appropriate. 

The next question for our predecessor-only semantics is how are predecessor relations 
between messages to be inferred or, in UML terms, what is the mapping to the UML 1.4 
metamodel? For a semantics defined in terms of predecessor alone, we can define three 
principle options for inferring predecessor relations from lifelines: 

• Minimalist interpretation: lifelines imply no ordering, only a context and a direction 
in which predecessor relations between messages received and messages emitted 
can be imposed explicitly. A means to explicitly order certain messages emitted on 
the same lifeline may also be required. This interpretation leads to the simplest 
partially-ordered message semantics. Moreover, with this interpretation we can 
retain a notion of “message completion” in the definition of the default predecessor 
relations on a lifeline since, for these relations, the notion is a local one. 

• Maximalist interpretation: lifelines imply an ordering of all messages emitted or 
received. A means to explicitly break this ordering in certain cases may be required. 
This is the most intuitive and user-friendly interpretation and is close to that of the 
interworkings of [MauWijWin93], though with differences such as the inclusion of 
synchronous invocations (in the object sense) and corresponding focus bars. 
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• Causal interpretation: lifelines imply an ordering of all messages emitted but not 
those received; predecessor relations between message received on a lifeline and 
messages emitted on that lifeline can be imposed explicitly, as for the minimalist 
interpretation. A means to explicitly order certain messages received on a lifeline, as 
well as to explicitly break the ordering for certain messages sent on a lifeline, may 
be required. This interpretation is related to the enforced order of  [AluHolPel96], 
see also [MusPel99] except that we are ordering messages rather than events. 

User-friendliness considerations point to the use of the maximalist interpretation which 
is the most intuitive. Furthermore, it suffers from fewer problems concerning the 
compatibility of orderings imposed on messages by different instances (though see 
Section 1.4.3.2). 

1.3.3 Relation with the UML 1.4 metamodel 
As discussed in Section 3, we need a language with branching and loops. Of course, on 
the introduction of branching and non-trivial loops, the simple metamodel for UML 1.4 
interactions is insufficient. The introduction of loops would require the capacity to 
explicitly represent infinite-length partial orders. The introduction of loops and 
branching would require the capacity to explicitly represent infinite numbers of partial 
orders. Another problem with the interactions part of the UML 1.4 metamodel concerns 
that fact that stimuli can only be ordered through messages. 

If we wished to define our semantics passing via the UML 1.4 metamodel, we would 
clearly need to extend this metamodel to avoid these problems. However, the interest of 
doing so is limited since the interactions part of the UML 2.0 metamodel is significantly 
different and does not suffer from these evident defects. However, the problem with 
using this latter metamodel is that it is not yet finalised (and no draft was available at 
the start of this work). We therefore do not pass via a metamodel to obtain our 
semantics; the semantics could be defined at a later date in terms of the UML 2.0 
metamodel when this latter metamodel becomes stable. 

1.4 UML 1.4 sequence diagrams for test descriptions 

We now study the specific difficulties in using UML sequence diagrams as the basis of 
a test description language and discuss possible solutions. Our starting point is UML 1.4 
sequence diagrams with the corrected semantics as proposed in the preceding section. 

1.4.1 Problems with “partial-order of messages” semantics 
In the previous section we have shown how many of the problems with the UML 1.4 
semantics defined in terms of two different relations between messages can be solved 
by simply removing one of those relations. Having done so, we have then chosen the 
most intuitive way of inferring such relations from sequence diagrams which we have 
called the maximalist interpretation. 

In UML 1.4 sequence diagrams, in order to show messages being sent to, or received 
from, the SUT, it must be represented explicitly by one or more lifelines. However, a 
sequence diagram which is a black-box test description is to be interpreted as a 
specification of the test software. Clearly, this software only implements the behaviour 
of the tester components, and, for each communication with the SUT, only the send/call 
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or receive actions performed by these test components. Obviously, it does not 
implement the corresponding receive and send/call actions performed by the SUT, even 
though these actions are explicitly represented in the diagrams.  

For a test description, we must eventually obtain a semantics in terms of tester events 
only. Deriving this from a semantics as a partial-order of messages will not be easy, in 
particular, the derivation will require treating messages that involve the SUT differently 
to messages between tester components. Thus, a semantics of UML 1.4 sequence 
diagrams in terms of ordering of messages does not seem very suitable for a test 
description language which requires a semantics in terms of only tester events. 

1.4.2 Semantics in terms of events 
Three possible ways of achieving a semantics in terms of only tester events are as given 
below. For comparison, we point out that [ObeKer99] present three types of MSCs 
describing tests: one with tester lifelines and PCO lifelines, another with a single SUT 
lifeline and PCO lifelines and a third with a single SUT lifeline communicating with its 
environment. 

1.4.2.1 “MSC-ORIENTED” SOLUTION 
Communications with the SUT are modelled as communications between tester 
components and the tester environment, the connection to this environment being 
represented using MSC-style gates. An MSC-style event-based semantics is then used 
so that only tester events are specified. Concerning inter-tester communications, these 
could be specified either explicitly or by using gates. We consider the first solution 
clearer and more user-friendly. Non-local causality relations imposed by the SUT 
behaviour can be added either via MSC-style general orderings between different tester 
components, which pass via order gates and the tester environment, or by explicitly 
specifying the tester coordination messages needed to observe them.  

1.4.2.2 “TTCN-3 –ORIENTED” SOLUTION 
Communications with the SUT are modelled as communications between tester 
components and their TTCN-3 [BakRudSch01] GFT-style tester ports (a normal port is 
modelled as a lifeline which is entirely covered by an MSC coregion, “any” port is 
modelled as an MSC found message). An MSC-style event-based semantics is then used 
so that, again, only tester events are specified. Concerning inter-tester communications, 
these could be specified either explicitly or by using connecting ports (and possibly 
connectors [GraGraRud01]) as in GFT. We consider the first solution clearer and more 
user-friendly. Non-local causality relations imposed by the SUT behaviour can be added 
via MSC-style general orderings between the ports of different tester components or by 
explicitly specifying the tester coordination messages needed to observe them.  

1.4.2.3 “UML-ORIENTED” SOLUTION 
Communications with the SUT are modelled explicitly using SUT lifelines but the 
semantics is derived in two stages: 
• In the first stage, the semantics of the diagram (in terms of either events or 

messages) is derived independently of its use as a test description, that is, without 
paying attention to which lifelines correspond to parts of the tester and which to 
parts of the SUT,  
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• In the second stage, the semantics in terms of tester events is derived by projection 
of the first stage semantics onto the tester components, that is, by reduction of the 
semantics w.r.t. SUT events. 

Thus, though the specification is closed by representing SUT entities explicitly using 
lifelines, in the final semantics these lifelines only serve to impose extra orderings 
between the lifelines representing tester entities. As a consequence, different diagrams 
may have the same semantics, depending on whether or not we explicitly specify the 
tester coordination messages needed to observe the causal relations imposed by the SUT 
behaviour. 

1.4.3 Semantics via projection onto tester lifelines 

1.4.3.1 A TWO-STAGE EVENT-ORIENTED SEMANTICS 
For TeLa, we choose the third of the possibilities discussed above for several reasons. 
Firstly, as already stated, the work reported on in this thesis was done in the context of 
the COTE project in which the aim was to implement minimal extensions to the syntax 
used in existing UML 1.4 tools, in particular, the Objecteering tool. The introduction of 
gates or ports would have been difficult to accomplish satisfactorily with only minimal 
changes to this syntax. However, there are other, less opportunistic reasons.  

A more fundamental reason is that the introduction of an MSC-style gate or a GFT-style 
port construct introduces greater expressive power but complicates the semantics of 
TeLa, see [Hél01], for example. On the other hand, the absence of a port or gate 
construct means that diagrams involving a large number of lifelines cannot be split into 
several diagrams, and makes it difficult to reuse parts of diagrams in other diagrams. 
However, we introduce the notion of lifeline decomposition, see Chapter 4, Section 2.8, 
to help in these cases. With regard to the “TTCN-3 solution”, we take the view that the 
architectural information concerning tester ports is best presented in a component 
diagram, rather than in the sequence diagrams. Further, explicit communications 
between a component and its ports seems to indicate a communication architecture in 
which queues are associated to ports. We do not want to fix our communication 
architecture in this way. Again, we prefer to separate this information, specifying it as 
part of the test architecture. 

Finally, we cite two pragmatic reasons which concern the user-friendliness and level of 
abstraction of a language using lifelines to represent SUT instances as opposed to a 
language using gates: 
• It more clearly represents the relation of the interactions between the SUT and the 

tester described in the test case, to the interactions between the SUT and its 
environment described in the SUT specification, notably in the use-case scenarios. 

• It more clearly shows the connections between the behaviour of different tester 
components. In particular, it is generally simpler and more intuitive to represent 
ordering relations established via message exchange with the SUT by specifying the 
message exchange which establishes them, rather than by specifying the ordering 
relations explicitly, or the synchronisations between tester components necessary to 
observe them. 

We note in passing that in the absence of a gate or port construct, the importance of the 
TTCN-3 and UML 2.0 suspension region construct is reduced. 
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1.4.3.2 A TWO-STAGE EVENT-BASED SEMANTICS 
We adopt a two-stage semantics derivation in which the second stage is a projection of 
the first and in which the second stage is defined in terms of tester events only. Greater 
compatibility with UML 1.4 and the UML 1.4 metamodel would be achieved by 
retaining the solution in terms of partial orders of messages, described in the last 
section, for the first stage of this derivation. However, an event-based semantics enables 
more accurate modelling of a larger range of systems than a message-based semantics. 
In particular, it is more suitable for modelling systems which may involve asynchronous 
communication and which may be distributed. Some of the communication patterns 
arising in this context are difficult or impossible to model with a message-based 
semantics. 

A case in point is the difficulty of using an operator for explicitly specifying 
concurrency on a lifeline, in the style of the MSC coregion, with a message-based 
semantics. This operator is of particular importance in distributed-system modelling due 
to the inherent concurrency of such systems. The problem arises from the fact that the 
ordering is applied to entities that involve two lifelines, i.e. messages, while the 
cancellation of the default ordering is implemented through an operator whose scope 
covers a region of a single lifeline. This gives rise to problems in giving meaning to 
messages (or chains of messages) that are unordered at emission but ordered at 
reception or vice versa. That is, in the presence of applications of such an explicit 
concurrency operator, different lifelines may impose contradictory ordering 
requirements on the same messages. An example of this problem is given in Fig. 3-1, 
where we use the MSC notation for coregions. 

m2

BA

m1

 

Figure 3-1: Contradictory ordering requirements on messages in a message-based semantics. 

Moreover, if our second-stage semantics is to be event based, it would seem reasonable 
for our first-stage semantics to be also event-based. We therefore choose to use a two-
stage semantics, in which: 
• the first stage is defined in terms of SUT and tester events 
• the second stage is a projection (via πsemantics) of this first-stage semantics onto the 

lifelines representing the tester and is defined solely in terms of tester events.  
For reasons of homogeneity, we also wish to use the same semantic domain at both 
stages, in which case, the projection operation is algorithmically akin to the hiding of 
internal events and subsequent τ-reduction of [Jér02] [JarJér02], see Fig. 3-2. 
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Figure 3-2: A two-stage semantics. 
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Though the choice of an event-based semantics constitutes another step away from the 
official semantics of UML 1.4 sequence diagrams, it turns out that it constitutes a step 
towards the semantics of UML 2.0 sequence diagrams, which is also to be event-based. 

1.4.3.3 A TWO-STAGE SEMANTICS  AND A TWO-STAGE SYNTAX? 
We stated in Section 1.4.2.1 that we consider the solution of using a gate construct 
represents a more low-level view of a test case and our solution a more high-level user-
friendly one. Following up on this remark, it would be of interest to investigate whether 
the projection of the two-stage semantics could be transposed to the syntactic domain. 
The syntactic projection could then be a part of the process of deriving the test software 
from TeLa expressions. 

That is, suppose we have defined a mapping of TeLa to our semantic domain and the 
projection, πsemantics, in our semantic domain. Suppose we then define an extended 
language, say ν-TeLa, which includes a gate construct, together with a semantic 
mapping of this extended language to our semantic domain. Can we now define a 
projection, πsyntax, taking TeLa expressions which include SUT lifelines to ν-TeLa 
expressions which do not, in such as way as to make the diagram of Fig. 3-3 commute?: 

πsyntax

TeLa
expression
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expression

TeLa expression
stage 1 semantics

TeLa expression
stage 2 semantics

πsemantics

interpretation

interpretation

 

Figure 3-3: Two-stage syntax and two-stage semantics? 

The ν-TeLa expressions produced should be close to TTCN-3 and could be produced as 
part of a translation to TTCN-3. 

Since the formalisms that ν-TeLa should be strongly related to, namely the UML 2.0 
and the UML Testing Profile are not yet finalised, the definition of the extended 
language is outside the objectives of this thesis. Though it certainly constitutes an 
interesting possibility for developing the work presented here, we will not discuss it 
further, apart from giving a few words of caution. 

The notion of projection of HMSCs used in [Hél03] is more general than that used here 
in that it defines the projection onto subsets of events instead of sets of instances. An 
HMSC represents a family of partial orders generated from a finite set of motifs, the 
component bMSCs. [Hél03] studies the question of when the projection of such a 
family of partial orders can be decomposed as the sequential and parallel composition of 
a finite set of motifs. It turns out that projection can generate two types of causal motifs, 
namely unbounded crossings and crowns, which are not so decomposable. [Hél03] 
gives algorithms for deciding if a projection is likely to generate either of these motifs. 

1.4.4 Choice of semantics via projection onto tester lifelines 
We have argued for a language in which SUT lifelines can appear explicitly, and for a 
two-stage event-based semantics in which the second stage is obtained by a projection 
of the first stage, remaining within the semantic domain, onto a subset of the possible 
events, namely those occurring on tester components. There are several possible choices 
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for such a semantics. Which of them is the most suitable depends on the requirements. 
The natural topology of sequence diagrams, together with the idea of time flow on 
lifelines and messages, points to a partial-order, and therefore non-interleaving, 
semantics as the more natural choice, thus conserving the inherent concurrency. 
However, an interleaving semantics is clearly also possible. 

Among our requirements is the need to generalise the controllability notion of 
centralised tests [Jér02] to the distributed case. The concept of controllability concerns 
the choices made by the tester and therefore means that the notion of choice is of some 
importance in the semantics. 

In discussing the possible semantics, we consider the different semantics defined for a 
language with a similar syntax, namely MSCs. 

1.4.4.1 INTERLEAVING SEMANTICS 
In the interleaving setting, concurrency is not distinguishable from a diamond structure 
of sequential choices. Among the possible interleaving semantics it is clearly important 
to consider the official MSC’96 semantics [ITU-T98], in which MSCs are mapped to 
process algebra expressions, which are themselves given an operational semantics via 
deduction rules. A set-of-traces semantics can easily be derived from this process 
algebra semantics. As regards the system–behaviour axis of the classification of 
[SasNieWin96], the semantics of [ITU-T98] is perhaps more adequately classified as a 
system model, in which the structure is represented via process algebra expressions. 

To ensure that the process algebra expressions are deterministic, uses of the MSC alt 
construct are mapped to uses of a delayed-choice operator rather than to uses of the 
usual process-algebra choice operator. The delayed-choice operator was introduced in 
[BaeMau94], where the authors argue that it is the most natural semantics for the MSC 
alternative construct. In their view, the fact that two branches of an MSC alternative can 
have a prefix with a common trace is a quirk of the MSC language and the interpretation 
of this situation as a non-deterministic choice is certainly not what the designer intends. 
Rather than prohibiting diagrams with an apparently non-deterministic interpretation, 
therefore, the official semantics determinises their semantics. According to the 
classification of [SasNieWin96], the official MSC semantics is therefore an 
interleaving, linear-time, system semantics. 

The semantics chosen for UML 2.0 sequence diagrams is likely to be similar to the 
MSC semantics, though defined in terms of sets of traces and therefore a non-
interleaving, linear-time, behavioural semantics according to the classification of 
[SasNieWin96]. 

1.4.4.2 NON-INTERLEAVING SEMANTICS 
In non-interleaving setting, choice is distinguished from concurrency. The analogue of 
the interleaving-setting set-of-traces semantics, i.e. languages, is a semantics in terms of 
pomsets (partially-ordered multisets [Pra86]) i.e. concurrent languages. An example of 
this type of semantics for MSCs can be found in [KatLam98]. A similar semantics for 
MSCs in terms of partially-ordered families but passing via process algebra expressions 
can be found in [Hey98]. The pomset semantics of [KatLam98] is deterministic, in fact, 
a non-interleaving, linear-time, behavioural semantics according to the classification of 
[SasNieWin96]. The semantics of [Hey98] may or may not be deterministic and can be 
classified as a linear-time or branching-time, non-interleaving, semantics, which is 
behavioural, if we ignore the fact that it passes via process algebra expressions. 
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In branching-time, concurrent-language semantics, choice points must be inferred 
whereas in event structure models [Win87], they are clearly manifest in the form of 
conflicts. In terms of pomsets, if we have determinism3, a conflict occurs when the 
composition of a pomset of the semantics with either of two actions gives another 
pomset of the semantics but composing it with both of them does not. If we do not have 
determinism, a conflict occurs when the two sets of maximal pomsets that can be 
obtained by extending the result of composing a given pomset with two actions are 
different. [HélJarCai02] propose an event structure semantics for MSCs. In the same 
way that [BaeMau94] argue that the flexibility in positioning choice points is a quirk of 
the MSC language to be abstracted away from, [HélJarCai02] argue that, in the partial-
order setting, preserving non-deterministic choice points can be useful. 

Ignoring complexity questions and supposing that all our semantic structures are well-
behaved, a partial-order families type of semantics can be obtained from the event-
structure semantics of [HélJarCai02] by extracting the set of configurations or prefixes 
of maximal partial-orders. A linear-time semantics can be obtained by determinising the 
event structure. Similarly, a set-of-traces semantics can be obtained from an event-
structure semantics as the set of linearisations. Again ignoring complexity questions, 
instead of the corresponding language, we could use the automata that recognises it. 

1.4.4.3 MINIMAL DETERMINISM FOR WELL-DEFINED FAIL VERDICTS 
Thus, an event-structure semantics is the most distinguishing of these semantics and as 
already made clear, we will be interested in the event structure which is the result of 
projecting an event structure semantics such as that of [HélJarCai02] onto the tester 
lifelines. 

In the usual case, we require the projected event structure to be deterministic, that is, no 
events in concurrency or in minimal conflict can have identical labels, in order to ensure 
that verdicts are well-defined. This guarantees, trivially, that all non-determinism is 
resolved before verdict assignment, i.e. in terms of a semantics in the style of the 
official MSC semantics, that a delayed-choice cannot occur on verdict assignment.  

However, it is of interest to know what is the most general possible semantics for test 
descriptions and therefore to explore to what extent the determinism condition can be 
relaxed. This may be of interest in a higher-level specification where indefinite choices, 
i.e. choices in which the criteria for making the choice are not fully specified, may be 
used.  

It is difficult to see any utility in allowing concurrent events labelled by the same action. 
We therefore reduce the set of models we wish to use to event structures in which no 
two events have this property. In the absence of a parallel operator, it is not difficult to 
give syntactic criterion for this property: in TeLa sequence diagram terms, it 
corresponds to prohibiting the occurrence of two events labelled with the same action 
inside a coregion. 

First, we consider the semantics before projection, under the assumption that concurrent 
events labelled by the same action are not allowed. If such a semantics conserves SUT 
choice points (e.g. allowing the situation where two SUT lifeline events labelled with 
the same action are enabled events for two different alternatives of a choice) it is clearly 

                                                 
3 In the usual sense for pomsets, not the “denotational determinism” of [Ren96] since all concurrent 
languages are denotationally deterministic. 
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too distinguishing, since the tester only has access to the information available at the 
“SUT component interface”. As a reflection of this limitation, with the semantics 
defined via a projection onto tester components, a minimal conflict between events 
labelled by the same SUT action is projected onto one between two events labelled by 
(possibly different) observable actions, i.e. proper tester receptions. That is, SUT non-
determinism either doesn´t affect the projected semantics or leads to non-determinism 
between events labelled by observable actions. 

We now consider the semantics after projection, again under the assumption that 
concurrent events labelled by the same action are not allowed. In such a test description, 
we can distinguish two types of non-deterministic choices: choices (minimal conflicts) 
between events labelled by the same observable action and choices (minimal conflicts) 
between events labelled by the same controllable action. Clearly, the existence of the 
former prevents us from viewing observable actions as actions over which the tester has 
no control, that is, actions for which the SUT behaviour completely dictates the tester 
behaviour. 

We define minimal determinism (min-det) as follows: a minimal deterministic test 
description is one in which: 
• no two concurrent events are labelled with the same action 
• no two events in minimal conflict are labelled with the same observable action 
It is defined in terms of the projected semantics since, as mentioned above, the 
projection itself can introduce non-determinism between events labelled by observable 
actions. 

The main interest in making this definition is that non-determinism between events 
labelled by controllable actions is included in the property of “controllability”, i.e. 
minimal determinism + controllability ⇒ determinism. Moreover, to ensure fail verdicts 
are well-defined and that we have a basis to discuss the notion of correctness of test 
cases, we only need to impose minimal determinism together with one additional 
constraint. That constraint is that any remaining non-determinism, due to a choice 
between events labelled by the same controllable action, is either resolved on a 
controllable action or leads to successful termination (implicit pass verdict) or the same 
explicit verdict on both branches. In terms of the semantics before projection, this says 
that all such non-determinism that is resolved is resolved by the tester, not by the SUT. 

Note that minimal determinism together with this latter condition concerning the 
resolution of non-deterministic choices does not guarantee that all non-determinism is 
resolved before verdict assignment, i.e. it does not guarantee that a delayed-choice 
cannot occur on verdict assignment. Whether it does or not, depends on the use of 
verdicts in the language. It does guarantee, however, that in any delayed-choice between 
verdicts, none of the verdicts is a fail verdict, since we assume that a fail verdict can 
only be obtained on an event labelled by an observable action. 

1.4.4.4 A SPECTRUM OF POSSIBLE SEMANTICS 
For any of these semantics, as for the partially-ordered message semantics discussed in 
Section 1.3.2, there are different ways in which ordering relations between events could 
be inferred on lifelines. The three main possibilities discussed in the previous section 
when dealing with a partially-ordered message semantics all have their counterparts. 
Out of these three, we again choose the maximalist interpretation for the same reasons 
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as we chose it for the partially-ordered messages semantics in the last section, though 
we note the utility of the causal semantics discussed in [AluHolPel96] and [MusPel99]. 

In the presence of data, the above semantics have to be extended to cope with guards 
etc. This is particularly difficult in the partial-order case where dynamic variables must 
be scoped “architecturally”, that is, with respect to components of the test architecture. 
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Figure 3-4: Part of the spectrum of possible semantics. 

Fig. 3-4 shows the relation between some of the models used to discuss the semantics, 
from an event structure representation (ES repn.), through a minimally deterministic 
event structure representation (min-det ES repn.), a deterministic event structure 
representation (det ES repn.) to a set-of-traces representation. Recall that we are 
ignoring complexity questions and supposing that all our semantic structures are as 
well-behaved as necessary. The projection functions πmin-det and πdet and πtr include the 
removal of any non-determinism w.r.t. observable actions introduced by the projection, 
see next section. 

The structures on the lower line are the projections of the structures described on the 
upper line onto the tester. On the upper line, the joint SUT-deterministic event-structure 
representation can be viewed as the determinisation of the joint event-structure 
representation w.r.t. SUT actions and actions on tester concurrent events (together with 
the additional condition discussed earlier). Similarly, on the lower line, the tester 
minimally deterministic event-structure representation is the determinisation of the 
tester event-structure representation w.r.t. proper observable actions and actions on 
tester concurrent events (together with the additional condition discussed earlier). 

The area of a suitable formal semantics for MSC 2000, the well-established scenario 
language similar to TeLa, is widely-recognised to be still open. Furthermore, it is not 
the objective of this thesis to study this complex issue in depth. Apart from the 
restrictions we have justified so far in this section, therefore, we will take rather a hand-
waving approach to semantics and, in particular, will not explore in detail the numerous 
decidability questions associated with the use of a scenario language such as TeLa. We 
will not choose any particular semantics but will instead discuss the constructs of TeLa 
in the context of the above spectrum of tester semantics from minimally-determinised 
event structures through determinised event structures to traces or automata recognising 
these traces. 

1.4.5 Projection and non-local causality / non-determinism 
The projection operation inevitably introduces non-local causality relations. How these 
relations are realised, e.g. addition of a global controller, via coordination messages etc. 
will depend on the implementation and in particular, whether or not the implementation 
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is distributed. The projection operation may also create non-local choices4, and even 
non-determinism, between proper receptions. The term proper here refers to the fact that 
the sender is an SUT component. In a proper tester-emission action, the receiver is an 
SUT component. A proper tester action is either a proper tester emission or a proper 
tester reception. 

The non-determinism created by the projection will need to be removed or syntactically 
prohibited. The non-local choices created by the projection operation will need to be 
resolved in some way before implementation. We allow non-local choices in our test 
descriptions without specifying how they are to be resolved. However, when making 
implicit verdicts explicit, non-local choices between proper receptions oblige us to add 
non-local causality relations, see Chapter 5, Section 2.3.3.2. Again, how these relations 
are realised will depend on the implementation. 

Implementing non-local causality relations by explicitly specifying the tester 
coordination messages needed to realise them may create MSC race conditions – as they 
are described in [AluHolPel96] – that are not immediately apparent in the original test 
description. These race conditions are between receptions of coordination messages and 
receptions of messages from the SUT. One way of dealing with this problem, proposed 
in [GraKocSch99], is to suppose that the latency of the tester coordination messages is 
less than that of other messages, thus conditioning to a certain extent the execution of 
the test cases. In fact, also needed is the supposition that the time between the sending 
of a coordination message and its immediate predecessor event is also much smaller 
than the latency of non-coordination messages. 

If the diagram is to be interpreted using the partial order of messages semantics, the 
race-condition problem does not arise. In fact, this interpretation may obviate the need 
for many, or all, of the coordination messages, depending also on the number of 
lifelines used to represent the SUT. This may also be true if the partial order of 
messages semantics is used for one or several components of the diagram, rather than 
for the whole diagram, see Chapter 5, Section 3.5. Use of this semantics for the whole 
tester, for example, is equivalent to supposing that the latency of tester coordination 
messages is not only less than that of other messages but is also significantly less than 
the time between any two events on a lifeline. 

It should be pointed out that a projection from the semantics of the tester onto individual 
tester components is a different issue to the projection of a TeLa expression onto the 
tester lifelines. The former might be done in the context of deriving an operational 
semantics by synthesizing a set of communicating automata. In the context of a 
hierarchical component model, synthesis should be parameterisable in terms of which 
lifelines are grouped into a single automata. 

                                                 
4 A non-local choice is a choice between actions which are not located on the same lifeline. 
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2 Other issues for our scenario-based test language 

2.1 Level of abstraction of TeLa 

When using a scenario language such as MSCs or UML sequence diagrams, it is 
important to be clear about the level of abstraction, in order not to confuse a scenario-
based specification language with an execution-trace display language. Viewing a 
specification language in implementation-level terms can lead to misunderstandings. 
Having said that, there should, of course, be a clear relation between the traces of the 
specification and an execution trace.  

For example, thinking in terms of the display of execution traces leads to difficulty in 
understanding the utility of a choice in which the conditions for choosing each branch 
are not specified, since there are not many circumstances in which one would want to 
really implement a non-deterministic choice. From a specification-language view, 
however, this construct is such a simply a choice described at a level of abstraction 
where the conditions for choosing each branch are not relevant. Such a construct is very 
useful at specification-level, particularly for the specification of concurrent systems. It 
may be used in order to leave the details of the choice to a later stage of software 
development or because it is the environment of the (part of the) system being specified 
that is to make the choice and the conditions on which it does this are unknown to the 
(part of the) system being specified. This type of choice is sometimes called non-
deterministic. However, this term being confusing, we use the term “indefinite choice”, 
reserving the term “non-deterministic choice” for a choice between identical actions. 

Thinking in terms of the display of execution traces also leads to viewing an operator 
for explicitly specifying concurrency on a lifeline, such as the MSC coregion, as a 
specification of multi-threading, that is, of implementation-level parallelism. The 
specification-language view of an explicit concurrency operator, however, is that it 
merely specifies that the ordering of the elements in its scope is not constrained, a 
useful construct at specification level. An implementation may be conformant to this 
specification by implementing any one particular ordering of the possible orderings. It 
may not have to implement all of them. 

The sequence-numbering system of UML 1.4 is also oriented towards execution-trace 
display. For example, how is it supposed to cope with guards? In the presence of all but 
the most trivial guards, one can only know the actual sequencing of messages at 
execution time. 

By defining our semantics in terms of partial orders of events, we place our test 
description language TeLa firmly at the specification level. However, at the same time, 
we recognise that there is a legitimate demand for some lower-level information in a 
scenario language used in the object or component setting. In particular, the notion of 
control flow scheme, to which it is difficult to give any meaning outside of a trace-
langauge setting, is of some importance in UML 1.4 but is lost in our partially-ordered 
event semantics. We therefore attempt to recover this semantic aspect as an extra 
semantic layer imposing restrictions on allowed linearisations. We do not formalise this 
extra semantic layer completely but outline the main characteristics in Chapter 4, 
particularly when discussing the focus bar construct. 
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Defining a test description language also requires taking a position on other abstraction 
issues. We allow several constructs to be used in such a way as to leave some of the 
information necessary for their implementation implicit. For example, test non-local 
choices, implicit verdicts and certain internal actions and guards all need some implicit 
synchronizations mechanisms in order to be implemented. Not specifying these 
synchronization mechanisms allows them to depend on the execution platform. That is, 
these mechanisms are considered to be part of the information that is added in deriving 
an executable test case for a specific platform from an abstract test case. Similarly, we 
do not explicitly specify the exact mechanisms by which a global verdict is derived 
from a local verdict, we merely attempt to ensure that this derivation is unambiguously 
defined semantically. 

2.2 The internal structure of the tester and the SUT in TeLa 

In this section we first present the requirements for the representation of the structure of 
the two entities involved in the test descriptions, the tester and the SUT. We then see 
how these requirements can be achieved using UML. 

2.2.1 Components in TeLa 

2.2.1.1 TESTER LIFELINES 
The tester may be composed of several entities in a TeLa test description, even in the 
case where a centralised implementation is to be derived. This tester internal structure is 
a part of what has been defined as the test architecture. In TeLa, we require that the 
tester lifelines represent components from a hierarchical component model. The reason 
for a hierarchical component model is to define: 
• a framework for lifeline composition and decomposition, 
• a framework on which to specify component properties that influence the 

interpretation of TeLa test descriptions, notably the chosen control flow scheme 
information and the chosen communication semantics (messages or event), 

• a flexible framework on which to define local versions of global properties such as 
controllability, 

• a flexible framework on which to base deployment. 

2.2.1.2 BASE-LEVEL COMPONENTS 
We assume that a subset of the set of components of this hierarchy are base-level 
components. Components that are not base-level components can be decomposed in 
TeLa sequence diagrams, that is, they can be represented via multiple lifelines in 
another TeLa sequence diagram. 

In an object-oriented system, the component structure is usually defined with the base-
level components being the objects. In such cases, each object has a single port so we 
can unify the port identifier and the object identifier. We do not use tester lifelines 
representing ports, unless these are also base-level components, due to the problems this 
entails for defining the value of variables on lifelines and internal actions on lifelines. 
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2.2.1.3 SIMPLE OBJECT MODEL 
A simple object model is treated as a three-level component hierarchy involving a single 
top-level component and below it, two second-level components, the SUT and the 
tester. In the simple object case, we assume that the ports on the SUT and tester 
components are in 1-1 correspondence with the ports on the base-level components they 
contain, so that the second-level port identifiers can be unified with the base-level port 
identifiers, themselves unified with the object identifiers. 

2.2.1.4 SUT LIFELINES 
In Section 1.4.3.1, we explain why we have adopted a language in which SUT lifelines 
figure explicitly rather than adopting other solutions such as using a construct similar to 
the MSC gate. However, we have not addressed the question of the relation between 
representing the SUT via multiple lifelines and the SUT internal structure. In black-box 
testing, the tester only has access to those aspects of the internal structure and state of 
the SUT which can be obtained through the “SUT component interface”, but exactly 
what these aspects are needs closer examination. 

Communication with the SUT inevitably requires some knowledge of port identifiers. 
The SUT may therefore be shown in TeLa sequence diagrams using multiple lifelines 
representing SUT ports. The SUT actions of the TeLa diagram are then represented on 
the corresponding lifeline. Knowledge of port identifiers may be available to the tester 
in the initial configuration or may be acquired by the tester during the course of the test. 
It is statically represented in the structure of the so-called “SUT component interface”. 
In the simple object model, port identifiers coincide with object identifiers so, in a 
sense, knowledge of SUT ports gives information about SUT internal structure.  

If the component structure of the SUT is available as part of its specification, we may 
instead represent the SUT actions of the TeLa diagram as being located on lifelines 
which themselves represent components of this component structure, rather than 
representing SUT ports. This is particularly useful for test descriptions which are 
derived from sequence diagrams of the design model of the application. As long as the 
orderings in the projected semantics are the same, any of these representations can be 
used. Whichever representation is chosen, any ordering involving SUT actions must be 
the same. 

It is important to note that messages transporting invocations between different SUT 
entities cannot appear in TeLa descriptions, since they are not observable by the tester 
in black-box testing. Notwithstanding this restriction, as already stated, we allow 
synchronization messages carrying no data between SUT lifelines. These messages 
serve the function of the MSC general orderings between instances. In spite of the fact 
that these messages carry no data values, they are allowed to have parameters 
containing dynamic variable names. The meaning of this is that they vehicle knowledge 
about data values. This is done to ensure that the intended value for a dynamic variable 
used on a tester instance can be a value which has been passed to it from another tester 
instance via the SUT. 

In Chapter 5, Section 1, we sketch a possible formalisation of the above requirements. 
We only formalise the part of a component model needed to more precisely describe 
these requirements. In the following section, we look at the relation between these 
requirements and the modelling capabilities of UML. 
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2.2.2 Accomplishing TeLa requirements with UML 
We now study the compatibility of this view of the tester and the SUT with UML 
interactions.  

In UML 1.4, lifelines represent objects in object-level interaction diagrams and 
collaboration roles in specification-level interaction diagrams. Collaboration roles can 
represent any type of classifier playing a role, in particular, components or interfaces. In 
UML 1.4, a collaboration role cannot be defined without also defining at least one “base 
classifier” for it5. To achieve this, it is sufficient to explicitly define a component or 
interface for each collaboration role represented by a lifeline. 
UML 2.0 introduces the notion of StructuredClassifiers, classifiers having “internal 
structure”, that is, being composed of “parts” linked via instances of Connectors. A 
classifier with internal structure is said to own its parts. Parts are instances of Properties, 
Property being a subtype of ConnectableElement, this being a subtype of 
NamedElement. Connector is a subtype of Association. The notion of internal structure 
is more flexible (and more well-defined, see [HenBar99]) than the UML composition 
relation. However, the exact relation of the two in a language that contains both, such as 
UML 2.0, is still problematic. 

UML 2.0 also introduces the notion of Ports. A port is a feature of a classifier that 
specifies a distinct interaction point between that classifier and its environment or 
between the classifier and its internal parts. A port encapsulates a set of provided 
interfaces and/or a set of required interfaces of its classifier. We wish to use the 
concepts of internal structure, properties, connectors and ports to define a hierarchical 
component model. We can achieve hierarchy if a part of a component can be typed by 
another component.  

Component is a subtype of Class, this being a subtype of EncapsulatedClassifier, itself a 
subtype of StructuredClassifier. Thus a component may optionally have internal 
structure. However, in the most recent version of UML 2.0 specification, it is not clear 
that a Component is a ConnectableElement. If this is not the case, the parts of a 
component cannot themselves be components and we cannot define a hierarchical 
component model. 

A collaboration is a StructuredClassifier, and also a BehavioredClassifier, in which the 
cooperating entities of the collaboration are the parts. Not only the parts of a 
collaboration but also the connector instances of that collaboration are referred to as 
“roles”. In the case of a collaboration, the type of a part or connector specifies the 
properties required of an instance in order for it to play the corresponding role (in 
consequence, the parts of a collaboration/interaction are often typed by interfaces), 
hence the name Properties. 

An interaction is a description of the behaviour of its enclosing classifier, focusing on 
the passing of information between the ConnectableElements of the Classifier via 
Messages. In a similar manner to UML 1.4, the parts of a collaboration, or an 
interaction, can be played by instances of components or interfaces; role playing is 

                                                 
5 This unnecessary and limiting restriction seems to have arisen from a confusion between typing a 
collaboration role and binding it in an occurrence of the corresponding collaboration. In UML 2.0, a role 
is typed (as a “part”) by a classifier explicitly representing its properties so that the restriction has been 
removed. 
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modelled as the binding of roles to classifiers in a collaboration, or an interaction, 
occurrence. 

In the presence of a component model, the TeLa view can be seen to be compatible with 
UML by viewing the lifelines as roles played by instances of components or ports. In 
the absence of a component model, lifelines must be viewed as roles played by either 
objects or by one of the two de facto components: the SUT and the tester. Therefore, in 
an interaction occurrence – which for TeLa means in an application of a test description 
– the following is true of the roles of the interaction: 

• In the case of the tester: 
• In the simple object model case, either the roles are bound to objects of classes 

of the test context or there is only one role which is bound to the implicitly-
defined component, the tester. 

• Otherwise, the roles are bound to instances of components of the test context in 
accordance with the test architecture component diagram (in UML 1.4, the 
components of this diagram must also be the base classifiers of the roles). The 
largest such component is the whole tester. 

• In the case of the SUT: 
• In the simple object model case, either the roles are bound to the objects/port 

instances of the “SUT component interface” or there is only one role which is 
bound to the implicitly-defined component, the whole SUT. 

• Otherwise, the roles are bound to the port instances of the SUT component 
(those of the “SUT component interface”) in accordance with test architecture 
component diagram. However, the SUT specification may contain a component 
diagram showing SUT components that are subcomponents of the whole SUT 
component owning the ports of the “SUT component interface”. If such an SUT 
component model exists, the roles may instead be bound to the components of 
this model (the largest of which is the whole SUT). 

As already stated, we are interested in test descriptions in the context of a hierarchical 
component model. As a consequence, a component may be represented by a single 
lifeline in one diagram and by several lifelines, one for each of its subcomponents, in 
another. 

2.3 Guards in TeLa 

In UML 1.4, guards apply to tester emissions. In MSCs, they also apply to internal 
actions. Contrary to UML 1.4 and MSC, TeLa semantics is given by projection onto 
tester lifelines. This raises the question of whether, in TeLa, guards can apply to proper 
tester receptions. 

The well-definedness of the implicit alternative, see below, on parallel test cases (see 
Chapter 4, Sections 2.10.5.1 & 3.4.4.1 for a definition) relies on the fact that the guards 
used in TeLa activity diagrams (activity diagrams are used to link TeLa sequence 
diagrams in the way that HMSCs link basic MSCs) have no effect on tester receptions 
in their scope. Nor do they have any effect on SUT emissions in their scope. On the 
other hand, guards that are part of the label of messages sent from the SUT to the tester 
are interpreted as guards on the corresponding tester receptions. However, guards on 
tester receptions are not treated in the same way to those on tester emissions. 
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Guards on tester receptions are specific to the particular observable action to which they 
are associated. Contrary to the situation for events labelled by controllable actions, for 
events labelled by observable actions, the mutual exclusion of guards and the implicit 
verdict if guards are not verified, only concern observable actions with the same name, 
not all observable actions. Similarly, the anonymous variables, see Chapter 4, Section 
2.1.1.1, that may be used in controllable action guards are context-dependent and would 
be ambiguous if not clearly referring to a particular controllable action. 

Note that TeLa guarded receptions are not associated with input queue management in 
the sense that if the guard does not evaluate to true, the message is not consumed and 
remains at the head of the input queue. This implicit queue management is not easily 
incorporated into a scenario language (e.g. in the MSC standard, it is stated that 
message input denotes message consumption rather than message reception). In TeLa, 
any such queue management must be modelled explicitly via internal actions. Guards 
other than those which are part of the label of a message sent from the SUT to the tester 
have no effect on receptions, in spite of the projection semantics. 

2.3.1 Guards in MSCs and UML 2.0 
By comparison, it is a static requirement in MSCs that guards containing dynamic 
variables are associated to a single “ready instance” and the intended value of the 
dynamic variables is that held by the owning instance. Guards which do not contain 
dynamic variables may be associated to several instances but at least one of these must 
be a “ready instance”. In this case, the message sending is guarded but other instances 
may also be guarded by the same guard (whatever that means!). 

These rules have been taken over by UML 2.0 sequence diagrams. We observe that it is 
difficult to see how they can be reconciled with lifeline decomposition, which, 
nevertheless, is allowed in both MSC and UML 2.0 sequence diagrams. For this reason, 
rules in TeLa are more general but inevitably more complex, see Chapter 4. 

As for TeLa, any attempt to introduce SUT instances and a TeLa-style two-stage 
semantics in MSCs or UML 2.0 would inevitably mean that guards covering SUT 
instances would have to be disallowed or treated differently.  

2.4 Verdicts in TeLa 

According to our definition of a test case in Chapter 2, Section 1.4.2.5, it specifies the 
stimulation of the SUT via the SUT joint interface, the observation of its responses at 
this interface, and the assignment of a verdict by the tester. How is verdict assignment 
to be described in TeLa? 

The behaviour leading to a pass verdict and that leading to a fail verdict are in some 
sense complements of each other. In active testing, the behaviour leading to a pass 
verdict is, in general, the more specific of the two. Since less-specific behaviour is more 
difficult to specify in a scenario-based notation and would require the introduction of 
notations such as wildcards on language elements other than message parameter values, 
in active testing the behaviour leading to a pass verdict is generally more easily 
specified than the behaviour leading to a fail verdict. Another reason why the 
description of the behaviour leading to a pass verdict is more easily specified is that it is 
directly related to the behaviour described in the SUT specification which we suppose is 
described in an extensional manner. 
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Thus, a pass verdict can be easily dealt with in an intuitive manner by simply leaving it 
implicit on reaching the end of a description of correct behaviour, that is on executing a 
maximal partial order (pass is a universal property, whereas fail is an existential 
property) 

Now we must address the problem of incorporating the description of incorrect 
behaviour leading to a fail verdict in our test descriptions. It is not obvious when the 
semantics of such a complement behaviour can be defined satisfactorily in the non-
enumerated data, partial-order context, particularly due to the presence of possible non-
determinism, indefinite tester choices etc. 

A scenario-based description of both correct behaviour and its complement in the same 
diagram is particularly difficult given the range of expression using multiple test 
components, MSC-like alternatives, coregions etc. Therefore, though incorrect 
behaviour leading to a fail verdict must be explicitly treated in the test software 
implementation, the clarity and tractability of scenario-based test descriptions can be 
considerably increased by making such behaviour implicit in these descriptions. 
Furthermore, for the level of abstraction at which we wish to situate our test 
descriptions, we view implicit fail or inconclusive verdicts as more appropriate. The 
behaviour leading to an implicit verdict will then be made explicit in a lower-level 
description derived from such a test description, most likely in the form of an exception 
mechanism. The TTCN-3 approach using so-called “defaults” can be considered to be 
such a lower-level approach. 

Similarly, we will also want to leave the way verdicts are propagated through the tester 
to the judge component implicit in TeLa test descriptions 

2.4.1 Implicit verdicts in TeLa 
In general, TeLa test descriptions describe only the correct behaviour, leaving the 
behaviour which leads to fail verdicts, and in the non-enumerated data case, 
inconclusive verdicts, implicit. That is, every test description includes an implicit 
“otherwise fail” and an implicit “on reaching the end, pass”; in the non-enumerated data 
case, it may also include an “otherwise inconclusive”. 

With regard to the semantics, it is clear that the complement behaviour which leads to 
an implicit verdict is difficult to define in a non-interleaving semantics. However, it is 
perhaps less obvious that it is not trivial to define in an interleaving semantics either; it 
is not simply a matter of using the language complement. 

According to the definition of a test case of Chapter 2, Section 1.4.2.5, a fail verdict can 
only be assigned following the reception of a message from the SUT at the tester. An 
inconclusive verdict can be assigned following either the reception of a message from 
the SUT at the tester or following the evaluation of an assertion or guard by the tester. 

A (local) fail verdict is implicit if, at any time, a tester receive event which is not one of 
the possible receive events described by the test description takes place. This includes, 
for example, a receive event of the correct type by the correct component with incorrect 
parameter values.  The implicit fail verdict is well-defined if the test description is well-
formed, that is, if it is minimally deterministic and satisfies the condition concerning the 
resolution of remaining non-determinism, see Section 1.4.4.3. 

In the non-enumerated data case, a (local) inconclusive verdict is implicit if, at any time, 
one of the concurrent tester guards does not evaluate to true or, in the case of 
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alternatives, if none of the guards on the different alternatives evaluates to true. For the 
implicit inconclusive verdict to be well-defined, the test description must not only be 
well-formed, it must also be essentially controllable, see Chapter 4, Sections 2.10.5.1 & 
3.4.4.1, thus defining a parallel test case. Test descriptions which are not essentially 
controllable are not considered test cases but test descriptions which need refining into 
one or several test cases, analogous to the test graphs of [Jér02] [JarJér02]. 

Implicit fail verdicts also figure in the dataless MSCs used as test descriptions in 
[ObeKer99] but the conditions under which these verdicts are valid are not really 
explored. 

2.4.2 Explicit default alternative in MSC 
In MSCs, the “otherwise” alternative denotes an alternative guarded by the conjunction 
of the negation of the guards associated to the other alternatives (where an unguarded 
alternative is considered to have the guard true). It is not clear in the MSC standard if 
guarded non-local choices, where the guards involve dynamic variables, are allowed. If 
they are allowed, the conjunction of the negation of guards has to take into account that 
the same variable may have different values in different clauses of the conjunction 
(since different clauses may come from different instances). If they are not allowed, it 
would result in MSCs which are clearly isomorphic but not all legal. An example is 
given in Fig. 3-5 where the l.h.s would be legal but the r.h.s. would not. 

alt

BA

m1
alt

m2

BA

m1
x

m2
y

x := true y := true

 

Figure 3-5: Isomorphic MSCs demonstrating the problem with restricting guarded non-local choices. 

The MSC default alternative is not adopted as-is in TeLa since it does not distinguish 
between the effect of guards on observable and controllable actions. 

2.4.3 Explicit verdict and explicit default alternative in TeLa 
TeLa includes the possibility of specifying explicit verdicts on proper tester emission or 
proper tester reception events (that is emission to, resp. reception from, the SUT). In 
addition, the choice construct in TeLa includes the possibility of adding an explicit 
default alternative, for a restricted class of TeLa test descriptions. The question arises as 
to the relation between these two constructs, as well as that between these constructs 
and the TeLa implicit verdict. 

The explicit default alternative is a global notion. For this reason, it can only be used on 
a restricted class of well-formed test descriptions, namely those that are essentially 
controllable and therefore define parallel test cases. These concepts are defined in 
Chapter 4, Sections 2.10.5.1 and 3.4.4.1. This restriction is to ensure that each choice 
has one of two types of default alternative. One type of default alternative is between 
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proper receptions, denoting a reception which is not among those of the choice, and one 
type is between proper emissions, denoting the situation where none of the guards of the 
alternatives of the choice are verified. See Chapter 4, Sections 2.10.3.1 & 3.4.4.2 for 
more details. 

As already stated, the implicit fail verdict is a local notion of verdict that applies to any 
well-formed test description. As regards the explicit verdicts, the explicit fail verdict can 
only be placed on proper receptions, while the explicit inconclusive verdict can be 
placed on both proper tester receptions and, in the non-enumerated data case, on proper 
tester emissions.  

The use of the explicit inconclusive verdict on a proper tester reception does not annul 
the existence of the implicit fail verdict applying to the same proper tester reception and 
can be used on any well-formed test description. On the other hand, since a fail verdict 
is implicit for any unspecified reception, the use of the explicit fail verdict on a proper 
tester reception involves joint use of the explicit default alternative since, otherwise, it is 
redundant. As the latter construct can only be used on a restricted class of test 
description, those that define parallel test cases, the same is true for this type of explicit 
fail verdict. 

Similarly, since an inconclusive verdict is implicit on tester emissions (in parallel test 
cases) use of the explicit inconclusive verdict on a proper tester emission involves 
simultaneous use of the explicit default alternative since, otherwise, it is redundant. 
Thus, like the implicit inconclusive verdict, this type of explicit inconclusive verdict can 
only be used on a restricted class of test descriptions, those that define parallel test 
cases.  

2.5 Message order as a special case of event order in TeLa 

Procedural sequence diagrams describe traditional, centralised OO applications 
involving single flow of control and traditional method calls. Though the full range of 
sequence diagrams of the UML standard including asynchronous invocations etc. 
describes a wider range of applications, the message-based semantics which the UML 
1.4 standard attempts to define is more appropriate to a centralised single-flow-of-
control view of applications.  

We capitalise on this idea by noting that the partially-ordered message semantics could 
even be used as a characterisation of this centralised aspect in object- or component-
based systems. Though we have chosen the more general partial order of events 
viewpoint, we would like to be able to derive the partial order of messages viewpoint as 
a special case of the partial order of events viewpoint, in the way that centralised 
applications can be viewed as a special case of distributed applications. This builds on 
the work of [AluHolPel96] and [RobKheGro97] who study when an MSC can be 
considered to be an overspecification w.r.t. a given communication model. Along with 
[EngMauRen02], the authors also consider interpreting MSCs on architectures 
involving several communication models. 

Normally, the messages treated according to a message-based semantics would not 
include messages between two components annotated as active, unless some type of 
rendez-vous communication is implied. 
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2.5.1 Uses of a partially-ordered message semantics 
In many cases, the partial-order of event semantics is too loose and a partial-order of 
message semantics is sufficient. The mechanisms discussed here make it easy to restrict 
the semantics in such cases without having to explicitly clutter the diagrams with the 
coordination messages and local orderings necessary to explicitly implement the 
message semantics in the event semantics. 

The purpose of defining the partially-ordered message semantics inside the partially-
ordered event semantics is to enable us to easily choose between the two semantics and 
even to mix them. Again, being able to denote that a part of a diagram has the former 
semantics enables us to describe such mixing without having to explicitly clutter the 
diagrams with coordination messages. 

The fact that sequence diagrams represent generalised interaction frameworks, as 
defined in Chapter 5, derived from a hierarchical component model provides us with the 
context in which to define the parts of the test description which are to use the partially-
ordered message semantics. In a language where components cannot be decomposed 
such as TTCN-3 GFT, this context is lacking. For simplicity, here we will suppose that 
this information is provided as an annotation on the diagram describing the initial 
component snapshot, again as defined in Chapter 5, though the limitation on this 
semantic mixing that this method supposes may be significant in very dynamic test 
descriptions. 

A restricted-semantics annotation on a component can also be considered as an 
implementation directive, indicating the advisability of implementing such a component 
in a centralised manner. 

Finally, incorporating the partially-ordered message semantics inside the partially-
ordered event semantics provides a bridge between UML 1.4 sequence diagrams and 
TeLa sequence diagrams / UML 2.0 sequence diagrams for developers already 
experienced in the former. 

2.6 Data in TeLa 

In the non-enumerated data case, we suppose that each base-level component has a data 
environment comprising values of the variables of the test description and that message 
receptions and assignments have an effect on this data environment. We do not define a 
complete TeLa data language but merely impose restrictions on what can be considered 
a suitable data language for TeLa. 

One of the most important aspects to using data variables is that, though dynamic 
variables are global in scope, architecturally speaking, they are local. Though each such 
variable is owned by a base-level component, this component being the only one that 
can assign values to it, the value of a given variable held by one lifeline may be 
different to that held by another lifeline. 

When using dynamic variables, the variable name may be prefixed by a base-level 
component in order to identify the intended value. If the variable is not so prefixed, 
assumptions are made about the intended value, often involving the assumption that 
several components share a common view of this value. The value of a variable held on 
a lifeline which does not represent a supercomponent of the owning component of that 
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variable is the value received in the last message in which that variable appeared in a 
parameter expression. 

In addition, we allow the specification of assertions and guards that are to be evaluated 
by components which are not base-level components, even if this may involve implicit 
synchronizations of the subcomponents. In the presence of lifeline decomposition, 
identification of the component which is to evaluate a guard or assertion may require 
prefixing it with the component name. 

More details concerning the use of dynamic variables in TeLa can be found in Chapter 
4. 

2.7 Time in TeLa 

Timing notions are of great importance in testing though in some cases, e.g. timer on no 
response, they can be left implicit in an abstract test case description. For introducing 
timing notions in TeLa, we favour the use of time constraints, similar to those of UML 
1.4 (but more well-defined!) rather than the use of explicit timer operations, similar to 
those of MSCs. A time constraint is a higher-level concept which can be implemented at 
a lower level using a timer. However, little work has been done on the use of these time 
constraints in TeLa and we therefore leave the introduction of such constructs for future 
work. 
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3 Extending UML 1.4 sequence diagrams 

In this section we give a brief overview of, and justification for, the main modifications 
and additional constructs introduced in TeLa – w.r.t. UML 1.4 sequence diagrams – 
many of them being inspired by similar constructs in MSCs. In introducing them, we 
point out any corresponding constructs in the sequence diagrams of recent drafts of 
UML 2.0. 

3.1 Sequential composition 

We require a means of connecting sequence diagrams in order to represent a single test 
case using several diagrams, each diagram except the initial one being the continuation 
of the previous one. The sequential composition operator then enables compact 
representations of test cases involving branching, see below, via a notion of alternative 
diagram continuations. 

The basic type of sequential composition we require is weak sequential composition, 
which does not imply any synchronisation between components on passing from one 
diagram to the next. Weak sequential composition is necessary for compositionality, 
that is, in order for the behaviour to be independent of exactly how we cut the 
representation into diagrams. 

However, we also require a type of strong sequential composition, which does imply 
such a synchronisation, in order to describe a series of test cases chained together. This 
is since at the end of each test case a global verdict must be reached which implies a 
synchronization. In order to describe the sequential execution of separate test cases we 
must therefore have a means of denoting the synchronization which must take place at 
the end of every test case. 

Note that the synchronization via projection onto tester lifelines means that our strong 
sequential composition is not truly global but applies to tester components only. No 
implicit synchronization between tester components and SUT components is implied; 
all tester-SUT communication must be explicitly described. Note also that it is a 
specification-language construct, the purpose of which is to facilitate descriptions at 
higher levels of abstraction; the synchronization so defined may be realised in different 
ways at the implementation level. 

No similar constructs exist in UML 1.4. The UML 2.0 “seq” interactionOperator, 
inspired by the MSC inline operator of the same name, also implements weak sequential 
composition. The UML 2.0 “strict” operator could be used to implement strong 
sequential composition, except for the fact that it implies a synchronization between all 
lifelines, rather than just tester lifelines. Moreover, the operands of the strict operator 
would have to be the entire diagrams, making this operator rather cumbersome to use. 

3.2 Internal actions 

We need an internal action construct, inspired by the MSC construct of the same name, 
in order to specify events such as assignments and assertion evaluations on tester 
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lifelines. To facilitate lifeline decomposition we allow assertion internal actions to cross 
several instances. See Chapter 4 for more details. 

No similar construct exists in UML 1.4. In UML 2.0, an “action occurrence” apparently 
figures in the graphical syntax, e.g. Fig. 8-137. The only explanation given in the text 
syntax is the following statement under the ExecutionOcurrence construct: 
“ExecutionOccurrences that refer to atomic actions such as reading attributes of a Signal 
(conveyed by the message), the Action symbol may be associated with the reception 
EventOccurrence with a line in order to emphasize that the whole action is associated 
with only one EventOccurrence (and start and finish associations refer the very same 
occurrence).” Needless to say that the circumstances in which this construct can be used 
are not at all clear from this text. Even its use in the case addressed, reception of a 
signal, is confused. 

3.3 Synchronization messages (or virtual messages) 

We introduce the notion of synchronization messages as a way of imposing ordering 
between different instances which does not involve a method invocation. This is a 
specification-language construct, the purpose of which is to facilitate descriptions at 
higher levels of abstraction; the orderings so defined may be realised in different ways 
at the implementation level. 

In spite of the black-box testing context, we allow synchronisation messages between 
SUT lifelines simply as a way of increasing the readability of diagrams. Since the 
semantics of a test description is in terms of tester events only, as a test description, a 
diagram with intra-SUT synchronisation messages can always be transformed into an 
equivalent diagram in which there are no intra-SUT synchronization messages. The 
transformation will generally involve adding intra-tester synchronization messages. 

We allow synchronization messages to carry knowledge of dynamic variable values (or 
constraints on values, in the symbolic case) between lifelines. This is denoted by using 
the dynamic variable name as a parameter of the synchronization message. 

Currently, we consider that synchronization messages are similar to MSC general 
orderings and do not contribute events to the semantics. This means that they are not 
transitive. This policy could be reviewed. 

No similar construct exists in UML 1.4. The “general ordering” construct of UML 2.0, 
inspired by the MSC construct of the same name, when applied between events on 
different lifelines, is similar to the TeLa synchronisation message construct. However, 
unlike TeLa synchronization messages, it does not allow the transfer of knowledge 
about dynamic variable values between lifelines. 

3.4 Explicit concurrency 

The use of the maximalist interpretation means that we need a construct to explicitly 
specify concurrency. To break the default ordering on lifelines, we introduce the 
coregion construct, inspired by the MSC construct of the same name. In the absence of 
loops, when combined with the local ordering construct (see below), it is as expressive 
as the explicit predecessors of the UML 1.4 arrow label notation. Unlike this UML 1.4 
notation, it is unambiguous in the presence of loops, moreover, it is more user-friendly. 
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The interaction between the coregion and the focus bar is semantically rich in TeLa, see 
Chapter 4 for details. 

No similar construct exists in UML 1.4. UML 2.0 has also introduced the coregion and, 
moreover, their syntax turns out to be similar to ours. The interaction between coregions 
and execution regions is similar to that between coregions and focus bars proposed here 
except that the impact of the control flow scheme is not treated in UML 2.0.  

3.5 Local ordering 

We wish to allow arbitrary extra ordering relations to be imposed between events on the 
same lifeline which fall inside a coregion. We introduce the local ordering construct in 
order to accomplish this. 

No similar construct exists in UML 1.4. The general ordering construct of UML 2.0, 
inspired by the MSC construct of the same name, is similar to the one we propose here 
except that it is not restricted to events on the same lifeline. The UML 2.0 construct 
(like its MSC counterpart) thus covers both the TeLa synchronization message construct 
and the TeLa local ordering construct. We use two different constructs as we consider 
that it leads to clearer and thus more easily-readable diagrams, particularly when the 
possibility of using synchronization messages within the SUT is offered, as in TeLa. 

3.6 Loops 

We introduce a construct to allow the specification of general iterative behaviour. If a 
non-ambiguous syntax were defined for multi-object lifelines (this is a big “if”!), our 
sequence-diagram loop syntax could also be used for sending the same message, 
possibly with different parameter values, to a set of objects, in a similar way to the 
UML 1.4 recurrence construct. 

The recurrence of UML 1.4 enables the same message to be sent to a set of objects. 
Concerning the “target” of the call/send action involved, [OMG01] speaks of the action 
“iterating over a set of target instances”. This obliges the use of multi-object lifelines, 
though the meaning of emissions and other receptions on such lifelines is ambiguous. 
Moreover, it is difficult to see how the notation could be clarified, particularly in the 
presence of asynchronous messages without associated focus bars and in the presence of 
indefinite choices. In [Kna99] it is stated that the formal semantics defined therein is 
flexible in this regard. However, this simply sidesteps the issue of finding a non-
ambiguous syntax in the general case. 

There is also a “presentation option” of UML 1.4 in which “a connected set of arrows 
may be enclosed and marked as an iteration”. However, its use in the presence of 
concurrency (e.g. in the case of alternative messages with non mutually exclusive 
guards) is not clear and the statements made about this in [OMG01] are confused. 
Furthermore, this construct can only describe limited iterative behaviour since if a finite 
number of iterations is not specified, there is no way to map it to the UML 1.4 
metamodel. This is since the absence of a loop construct at the metamodel level means 
that loops must be unfolded in order to map them to the UML 1.4 metamodel. 

The “loop” construct of UML 2.0, inspired by the MSC inline expression of the same 
name, is similar to the TeLa activity-diagram loop construct. However, as well as a 
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guard, MSC and UML 2.0 loops allow a minimum and maximum number of iterations 
to be specified. In TeLa, we also introduce the user-friendly TeLa sequence-diagram 
loop construct, which allows the specification of a subset of the loops specifiable with 
the TeLa activity-diagram loop construct. 

3.7 Branching 

We introduce a construct, which we will call choice, for specifying alternative 
behaviours. This construct allows for alternate behaviours which are not fully specified 
(without such an occurrence denoting concurrency, as in UML 1.4). 

As can be observed from the old name of the widely-accepted telecom test description 
language TTCN: Tree and Tabular Combined Notation, in general, a test description 
will involve branching6. In black-box testing, the conditions for taking each of the 
branches at an SUT branch point may depend on details of the internal state of the SUT 
not known to the tester. This situation is particularly likely to arise if the SUT contains 
concurrency and/or distribution. Therefore, to describe the situation where the SUT may 
exhibit different possible behaviours, a test description language needs a mechanism for 
describing choices which may be indefinite. We say that a choice is indefinite if the 
criteria for making it are not fully specified. 

In the case where the tester is at the origin of different possible behaviours, all 
branching should be fully specified (including the guards being mutually exclusive) if 
the tester is to be controllable, and therefore fully executable. This condition may be 
relaxed if the indefiniteness of the specification is to be resolved at execution time. 

As discussed earlier in this chapter, UML 1.4 attempted to define a semantics based on 
complete causal flows (though outside of procedural diagrams, the attempt could not be 
said to have been successful!). It is logical that in such a context all choices are viewed 
as occurring at message emission. However, for a test language, the obligation to 
completely specify all causal flows, including those which pass through the SUT, runs 
contrary to a black-box testing philosophy. In accord with this philosophy and coherent 
with the projection semantics, we view all the choices of our test descriptions as tester 
choices. Our test descriptions therefore contain choices other than those between 
emissions of UML 1.4. Notwithstanding this restriction to tester choices, we may 
occasionally use a syntax where a sequence-diagram choice operator is shown as being 
located on an SUT instance simply for the purposes of simplifying the graphical 
representation. 

The branching construct shown in Fig. 3-57 of the UML standard and introduced as a 
“presentation option” is not suitable for our test description language for the following 
reasons: 

- Limited expressiveness: only choices between message emissions in which each 
emission is guarded are allowed. In the case where the choices are between 
messages sent from the SUT to the tester, we cannot specify indefinite choices. 

- Incompletely-specified choice ambiguity: it is not stated that the disjunction of the 
guards is equivalent to true, yet nothing is said of the meaning in the case where 
none of them is verified. In fact, the same problem arises with a single guarded 

                                                 
6 To reflect its expanded aims it is now called the Testing and Test Control Notation 
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message: it is not clear what the semantics is supposed to be if the guard is not 
verified. Two possible semantics for such situations are deadlock or continuation 
without sending the message, but for the latter option, we also have the problem 
discussed in the next point. 

- Complete causal flow assumption: if causal flows are not completely specified 
(which is only guaranteed in the procedural diagram case), representing different 
alternatives on the same diagram leads to ambiguity since it cannot be discerned 
which messages belong to which alternative. 

- Branching/concurrency confusion: for mutually-exclusive guards it denotes 
alternative behaviours; otherwise, depending on the value of the guards at execution 
time, it may denote alternative behaviours or it may denote concurrency. A language 
construct which mixes concurrency and branching is not very useful for 
specification.  Particularly when we consider that with any non-trivial data language 
it is undecidable whether a choice denotes exlusively choice or sometimes choice 
and sometimes concurrency, depending on data values. 

The “alt” operator of UML 2.0, inspired by the MSC inline expression of the same 
name, is similar to the TeLa activity-diagram choice construct. However, in TeLa, we 
also introduce the user-friendly TeLa sequence-diagram choice construct, which allows 
the specification of a subset of the choices specifiable with the TeLa activity-diagram 
choice construct. 

3.8 Focus bars/suspension regions 

In TeLa, as in UML 1.4, the use of focus bars is obligatory for synchronous invocations 
where they serve to relate request and reply. For asynchronous invocations, focus bars 
are optional. By comparison, UML 1.4 is rather vague about the use of focus bars with 
asynchronous invocations. 

In TeLa, apart from connecting request to reply in synchronous invocations, the main 
role of focus bars is to impose ordering if they fall inside the scope of a coregion. In this 
role, they are thus simply equivalent to a particular set of local ordering relations. 
Exactly which local ordering relations are denoted by a focus bar and the interaction of 
this ordering role with the notion of “passive”/”active” object is discussed in Chapter 4. 

In TeLa, we do not use MSC-style suspension regions since we prefer to model control-
flow scheme constructs using an additional semantic layer. Whether this layer is 
required or not is to be denoted via annotations on the test architecture component 
diagram. Hence, in TeLa, whether a synchronous call is blocking or not depends on the 
control flow annotations associated to the component represented by the emitting 
lifeline, and those associated to its subcomponents. 

The meaning of focus bars (or suspension regions) is not trivial in the presence of 
lifeline composition/decomposition. In the same way as with guards, see Section 2.3 
above, this issue is not addressed in MSC nor in UML 2.0 sequence diagrams. 
However, in MSC, this lack of treatment is not of any semantic importance since 
control flow constructs officially have no semantics! 

In UML 2.0, focus bars can be placed on lifelines and correspond, at the metamodel 
level, to execution occurrences. An executionOccurrence is defined by two events, a 
start event and a finish event. From the current UML 2.0 documentation, it is not clear if 
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the execution occurrence construct can be used more widely than for focus bars. It is 
also not clear if focus bars are to be used systematically with synchronous, or even with 
asynchronous, messages arrows. 

3.9 TeLa textual language 

3.9.1 Syntax of expressions 
In UML descriptions, no specific notation is prescribed for expressions, such as guard 
expressions, action expressions (on state machine transitions), expressions calculating 
method parameter values, etc. in order to leave open the possibility of using different 
expression languages. In MSCs, this idea is made a little less vague by defining a 
framework in which different languages could be used but which permits some general 
reasoning about expressions in the language.  

Though a specific textual language, based on OCL, was defined for TeLa in the COTE 
project, in this document we take the same position as UML and MSC, though less 
precisely defined than in MSC. 

3.9.2 Variables 
TeLa contains static variables, which parameterise the whole specification, at two 
levels: at the level of the whole specification, and, in the case of two-tier scenario 
structures, also at the level of the individual sequence diagrams. TeLa also contains 
system dynamic variables and component dynamic variables. System dynamic variables 
are owned by a single base-level component and can be used in the parameters of 
messages. 

3.9.3 Syntax of message-arrow labels 
The TeLa notation for message-arrow labels uses the guard notation as in UML 1.4 and 
the notation for a method name and parameter values as in UML 1.4. As we do not wish 
to use the sequence numbering notation for the reasons given earlier, the TeLa notation 
does not use the dot notation (for activation), the slash notation (for explicit 
predecessors), the thread names notation (for concurrency), or the recurrence notation 
(for simple iterations), nor does it use the return value notation (for showing the value 
returned by an synchronous call on the invocation message arrow). 

In TeLa, a syntax for showing the value returned by an invocation on the return message 
arrow is needed. A special notation is also needed to distinguish the case where an 
exceptional value is returned. In addition, a syntax is needed for showing the value 
returned in parameters of the invocation which are of the out or inout kind on the return 
message arrow. Finally, a special syntax is used to indicate the sending of an unknown 
value by the SUT to the tester, and a special syntax is used to indicate the assignment of 
such an unknown value to a dynamic variable. 

Where lifelines do not represent the lowest level of components in the component 
hierarchy (usually objects), as we will see later, the labels of the communication events 
must include information about the ports involved in the communication. Similarly, the 
labels of internal action events must include information about the owning component. 
For communication events, the required information can be obtained by using a syntax 
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for the message arrow labels that includes the name of the originating and target ports of 
the message. For proper reception events (i.e. those for which the sender is the SUT), it 
may often be the case that only the receiver port information is available. 

In particular, this extended message arrow label syntax is needed in order to guarantee 
an adequate representation of the output of the Umlaut/TGV tool in the TeLa language. 
The only representation of this output that can be guaranteed in all cases is one with 
only two lifelines: the SUT and the tester. 

3.9.4 Syntax of internal action contents 
A syntax is also required for use with the internal action construct we have introduced. 
An assertion internal action contains a boolean expression. An assignment internal 
action contains a series of assignments either each on a new line or separated by 
commas. A creation internal action contains the name of the creator and created 
subcomponents and the creation parameters. An escape internal action contains a 
procedure call or the assignment of a function value to a dynamic variable, for which 
the procedure/function is external. Such “trap doors” should satisfy certain semantic 
restrictions in order for the semantics of the language not to be perturbed by them. 
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4 UML 2.0 sequence diagrams 

In Sections 1.3 and 1.4, we discussed at length the suitability of UML 1.4 sequence 
diagrams for describing tests. Though based on UML 1.4 sequence diagrams, the test 
description language we have defined borrows many constructs from MSC. Since UML 
2.0 sequence diagrams also borrow many constructs from MSC, on introducing the 
constructs of TeLa which are novel w.r.t. UML 1.4 sequence diagrams, in Section 2, we 
also related them to UML 2.0 sequence diagrams. 
The starting point for our test language was UML 1.4 since UML 2.0 was very 
immature at the time this work began. However, now that UML 2.0 is almost ready for 
release and since the recently released UML Testing Profile is based on UML 2.0, in the 
light of our work, we briefly discuss here the semantics of UML 2.0 sequence diagrams. 

4.1 Semantics via an abstraction/conformance relation? 

As for UML 1.4, the abstract syntax, or metamodel, of a UML 2.0 sequence diagram is 
called an interaction. According to the UML 2.0 specification, the semantics of a single 
UML 2.0 interaction (not that of a pair of such interactions!) is stated to be a set of 
“valid traces” and a set of “invalid traces”. It is stated explicitly that the union of valid 
traces and invalid traces does not necessarily constitute the trace universe. Clearly, then, 
a notion of trace universe also plays a part in the semantics, though exactly what part, is 
unclear! It seems reasonable to assume that the (semantic counterparts of the) actions of 
the interaction are contained in the set of atomic actions used to construct the traces of 
the trace universe. 

The description of the semantics given in [U2P03] apparently betrays a confusion 
between the following two possibilities for the set of traces that an interaction is a 
denotation of: 
• a set of traces constructed from the actions represented in that interaction (we will 

use the term “explicit-model” semantics) 
• a set of traces constructed from actions of some unspecified universe of actions, that 

contains the actions represented in the interaction, where the traces represent 
executions of the interaction (we will use the term “set-of-possible-models” 
semantics) 

The latter view of semantics is illustrated by the neg, ignore, consider and assert 
interaction operators and the state invariant. In the definition of these constructs, but not 
in that of the other constructs of the language, interactions are apparently viewed as 
properties that any actual execution must or may satisfy. The ignore, consider and 
assert operators, in particular, affect how the selection of the traces from the nebulous 
trace universe is performed. 

The “set-of-possible-models” semantics is similar to the way MSCs are used in, for 
example, [Ek93], [AlgLejHug93], [ComPicRen95]. It is also similar to the way MSCs 
are used to describe test objectives in [GraHogNah93] and [SchEkGra98]7. In the third 

                                                 
7 The test objectives of [Jer02], [PicJarTra02] and Chapter 5 of this document are more general since they 
may involve actions of the specification which do not appear in the test, i.e. the relation between the test 
objective and the test is more than just an abstraction relation. 
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article cited, properties are divided into positive properties, i.e. properties that any 
selected trace must have, and negative properties, properties that any selected trace must 
not have. The test objective scenarios of [PicJarTra02] and of Chapter 6 of this 
document are similarly divided into positive and negative scenarios. In such a scheme, 
the negation of a positive property, or positive selection criterion, gives a negative 
property, or negative selection criterion. Ideas of this nature could be at the origin of the 
neg operator. 

However, in all the cited articles, the universe in which the intended/selected traces 
reside is clear, that is, the set of intended models of the property is restricted. For 
example, in [Ek93], [AlgLejHug93] the denoted traces belong to the set of traces of an 
SDL specification and in [PicJarTra02] the selected traces belong to the set of traces of 
a UML specification. In the UML 2.0 sequence-diagram case, the set of intended 
models, i.e. the universe in which the selected traces reside, is not discussed. 

An example of a scenario language for which a “set-of-possible-models” semantics is 
used without restricting the set of intended models, that is, without discussing the 
universe in which the selected traces reside, is the “live sequence charts” of 
[DamHar01]. Though the semantics of these charts is actually given in terms of finite 
state machines, it could have been given in terms of selected execution traces. There is 
some similarity between the contentious UML 2.0 constructs and the constructs of these 
charts, notably the “live sequence chart” constructs enabling parts of a chart to be 
labelled as optional or mandatory. There are also significant differences, such as the fact 
that the authors of [DamHar01] use this mechanism to encode control structures such as 
alternatives, unlike in MSC and UML 2.0 sequence diagrams, where these control 
structures are given as operators. However, the semantics of “live sequence charts” is 
given in terms of a single finite state machine and if the semantics were given in terms 
of traces, it would be in terms of a single set of traces: those selected. 

Therefore, if a “set-of-possible-models” semantics is required and the “valid traces” and 
the “invalid traces” are selected execution traces, why is the set of “invalid traces” not 
simply the complement of the set of “valid traces”? Clearly, it is not intended to be the 
case, so that there must be execution traces which are neither “valid” nor “invalid”. 
What is the meaning of such traces? 

The definition of the neg operator is consistent with interactions being properties, but 
with the “valid traces” and “invalid traces” being simply the trace expressions of the 
properties, not the execution traces selected by these properties. If this is the case, the 
semantics is not really defined as properties. Instead, it is an “explicit-model” semantics 
which is then used (as both positive and negative selection criteria) to select execution 
traces, in a similar way to [Ek93], [AlgLejHug93], [ComPicRen95] or Chapter 6 of this 
document. There is then some abstraction relation between an interaction trace and the 
execution traces it selects.  

This is not without its problems since using a language as complex as UML 2.0 
sequence diagrams (which imports all the richness of MSC 2000 and adds a few more 
operators, for good measure!) as a property language is likely to run into difficulties, 
particularly concerning compositionality. 

However, before we can conclude that the semantics of UML 2.0 sequence diagrams is 
an “explicit-model” semantics, and that the “valid traces” and “invalid traces” are 
simply the trace expression of the properties, we note that the definition of the operators 
ignore, consider and assert is inconsistent with this view. The definition of these 
operators makes clear that the “valid traces” and “invalid traces” are execution traces 
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according to a “set-of-possible-models” semantics. These operators appear to have been 
influenced by the interactive method of defining test objectives in the TestComposer 
and Autolink tools, see [SchEbnGra00] for example. Thus, we cannot avoid addressing 
the problem of giving meaning to invalid execution traces as well as to execution traces 
that are neither valid. This in a “set of possible models” semantics for which the 
universe of actions is apparently any universe which contains the actions of the 
interaction. 

Perhaps the intention is that the semantics contain within it the notion of conformance 
relation and the idea of demonstrating conformance. In testing involving a centralised 
tester and enumerated data, it is usually said that an inconclusive verdict must be 
relative to a test objective. In this thesis, we use inconclusive verdicts for testing 
involving a possibly distributed tester and non-enumerated data, without this being 
relative to a test objective. Perhaps the execution traces which are neither “valid” nor 
“invalid” are supposed to correspond to traces which would produce an inconclusive 
verdict. That is, it cannot be demonstrated that such traces are conformant and it cannot 
be demonstrated that they are not conformant. However, a conformance relation is 
normally specified as a relation between two well-defined semantic models. Without 
such a relation, it is difficult to see how anything can be “demonstrated”!  

Even without taking into account the problems with the ignore, consider and assert 
constructs, it is difficult to judge if the pair-of-trace-sets semantics is viable, since the 
rules for deriving new pairs of trace sets from combined trace sets are not given. For 
example, if (a,b)  represents a set of valid and a set of invalid traces, • denotes 
sequential composition and . trace concatenation, is it the case that ({a},{b})•({c},{d}) 
= ({a.c}, {b}∪{a.d})? 

At this point, we conclude that in the absence of further explanation on the part of the 
authors of the UML 2.0 interactions document, further analysis degenerates into pure 
speculation. However, in our opinion, due to the addition of the operators cited above, 
the semantics of the proposed language cannot be defined coherently. 

4.1.1 Separating semantics from abstraction/conformance relation 
Putting aside the issue of whether the current semantics can be made consistent, there 
seems to be little justification for combining the notion of semantics of an interaction 
and that of an abstraction or conformance relation w.r.t. to execution traces. On the 
other hand, there is every reason to separate these two concepts. Even if there is a need 
to mix syntactic constructs which reflect the two viewpoints, which is certainly 
debatable, a more sensible approach would be to define the semantics in two stages, as 
follows. 

First, define an unambiguous semantics in terms of the set of traces composed 
exclusively from the actions represented in the interaction, without the constructs that 
concern an abstraction/conformance relation. This is already, in itself, a difficult 
enterprise. Second, define a semantics for interactions which involve the additional 
constructs according to an abstraction/conformance relation between the set of traces 
defined by the first stage semantics and the traces which are considered to represent an 
execution of the interaction in some other universe. Separating the issues of semantics 
and abstraction/conformance relation also allows flexibility in choosing the exact 
abstraction/conformance relation required, without compromising the semantics of the 
basic constructs. 
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This two-stage approach would still require strong well-formedness conditions to ensure 
that the use of the constructs reflecting the abstraction-relation / conformance-relation 
view is restricted to situations where they have a clear meaning. See the following 
sections for examples of situations where, with the current definitions, they do not. As 
defined currently, these constructs are problematic. 

We now take a closer look at the contentious constructs: those whose semantic 
definition apparently incorporates some abstraction or conformance relation. 

4.2 Abstraction/conformance relation constructs 

4.2.1 The neg interaction operator 
Invalid traces can be defined explicitly using the neg interaction operator. 

The semantics of this operator is clearly intended to be an operator turning valid traces 
into invalid traces and vice versa. However, it is far from clear how it is to be composed 
with the other operators of the language. For example, what is the meaning of a state 
invariant, a duration constraint or an assert operator in the scope of a neg operator? 

As stated above concerning the separation of the concept of semantics of an interaction 
and that of an abstraction/conformance relation, if the context requires the specification 
of invalid traces, with a clear semantics of interactions in terms of traces, this can be 
achieved by the designer simply labelling some complete interactions as specifying 
invalid traces rather than valid ones. This is the case for the existential, universal, exact 
and negated interpretations of MSCs in [Kru00], for example. The incorporation of the 
concept of negation of a behaviour into the language itself as an operator, without 
defining a proper compositional semantics, only serves to create serious confusion. 

4.2.2 The state invariant 
The state invariant defines a constraint on a lifeline. If the constraint is true, the trace is 
a valid trace and if it is false, the trace is an invalid trace. 

As for the neg operator below, the use of a parallel operator with one operand involving 
a state invariant does not have an obvious meaning. In fact, with any non-trivial data 
language, it is likely to be undecidable at compile time whether such a combined 
fragment denotes an interleaving of valid traces or an interleaving of valid and invalid 
traces. The latter would appear to be meaningless. 

4.2.3 The ignore/consider and assert interaction operators 
Though not stated in [U2P03], one assumes that an ignore instruction for a message 
type has priority over a consider instruction for the same message type in the 
surrounding scope and vice versa. 

The ignore interaction operator is used to define a set of message types that can occur 
between those specified in valid executions. Apparently, then, the ignore operator 
defines new actions of the semantic universe as well as an abstraction/conformance 
relation, according to which valid executions can contain these actions in any position. 
Apparently, the set of actions explicitly specified via messages plus the set of actions 
specified in an ignore clause does not define the total set of actions. If a valid trace can 
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contain other actions which are not in the alphabet of the interaction, is there a need for 
an ignore operator, apart from to cancel the effect of a consider or an assert operator? If 
a valid trace cannot contain other such actions, is there a need for an assert operator? 

The consider interaction operator is used to define the set of message types that should 
not be ignored. From Fig. 8-156 of [U2P03], it would seem that message types not 
appearing in the interaction can be “considered” using the consider operator. How are 
actions involving such a message type to be considered dealt with? That is, if a trace 
involves the sending and receiving of a message of this type in the scope of such a 
consider expression, is it invalid? If so, why is there a need to use an assert operator in 
Fig. 8-156? If not, in what way is such a message type to be “considered”? The mystery 
deepens with the explanation on page 396, according to which messages to be 
“considered” are handled in some manner by the running system but ignored by the 
specification! 

The meaning of the assert interaction operator is that the trace of the operand of the 
assertion is the only valid trace. Again, this “meaning” is far from clear. Is this not 
already covered by having no operator or by using the consider operator? What is the 
meaning of a neg interaction operator in the scope of an assert? What about an ignore in 
the scope of an assert? 

What is the meaning of an expression “ignoring” a message type a in parallel with an 
expression involving message type a, or with an expression that “considers” message 
type a, or with an expression that asserts the exchange of a message of type a? What is 
the meaning of a neg or ignore expression in the scope of an assert operator?  

The abstraction/conformance relation is not at all clear from these operators. Is the 
default to ignore actions not explicitly specified, that is, can a valid trace have any 
actions between those explicitly specified as long as they are not from the alphabet of 
those explicitly specified? If so, why is there a need for an ignore operator? Or is the 
default to consider actions that are not explicitly specified? If so, why is there a need for 
a consider or an assert interaction operator? Needless to say that a significant amount of 
confusion surrounds the definition of these operators. 

Finally, what is the meaning of a combined fragment whose interaction operator is 
ignore, consider or assert in parallel with another fragment? For example, what is the 
meaning of an expression “ignoring” a message type a in parallel with an expression 
involving message type a, or with an expression that “considers” message type a, or 
with an expression that asserts the exchange of a message of type a?  

The introduction of the ignore, consider and assert operators creates even more 
difficulties than that of the neg operator. 

4.3 Other problems with UML 2.0 sequence diagrams 

4.3.1 Scope of interaction fragments 
The scope of interaction fragments does not seem to be limited in any way, e.g. Fig 8-
134 shows such a scope which crosses a message. The question arises as to the meaning 
of, for example, a loop combined-fragment whose scope includes the reception of a 
message but not its emission (or vice versa).  Can a simple set of syntactic restrictions 
be defined? 
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4.3.2 The strict and critical region constructs 
A strict interaction operator designates that the combined fragment represents a strict 
sequencing between the behaviours of the operands. The critical region interaction 
operator designates that the traces of the operand cannot be interleaved with any other 
occurrences. In both these cases, there is an ambiguity concerning lifeline 
decomposition, which may lead to more messages becoming explicit. 

The meaning of an interaction in which an ignore interaction operator, a neg interaction 
operator or a state invariant occurs in the scope of a strict operator or a critical region 
operator is also far from clear. What about such a combined fragment whose scope 
includes a critical region or a use of the strict interaction operator? For example, what 
is the meaning of a strict expression or a critical region in parallel with an expression 
containing some of the same messages? 

4.3.3 Meaning of sequence numbering 
The sequence numbering system has not been abandoned in spite of the problems that 
its use supposes in the presence of loops, choices, coregions, guards etc., and in spite of 
the impossibility of equivalence between interaction diagrams and collaboration 
diagrams with superimposed interaction (or communication diagrams as they are now 
called) with the sequence numbering system in its current form. 

4.4 Concluding remarks on UML 2.0 sequence diagrams 

Part of language design should involve ensuring that all, or at least most, expressions 
that can be written in the language have an obvious meaning. This aspect does not seem 
to have been given sufficient importance in UML 2.0 sequence diagrams. While many 
of the problems of UML 1.4 sequence diagrams have been solved by basing the 
language on MSC, the UML 2.0 constructs which are new with respect to MSC 
introduce a plethora of new ambiguities, opening up a veritable Pandora’s box of 
impenetrable expressions, and, in so doing, seriously obfuscate the semantics. 
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In this chapter we present the TeLa language and give an informal presentation of its event-
based semantics. This is not done in the style of a user manual or a reference manual but more 
in the style of a tutorial. 

We do not intend this chapter to be a complete language design, rather a detailed discussion 
of the issues involved in defining a scenario-based test language. Most of the constructs 
proposed, particularly for the one-tier scenario structures, were responses to concrete needs 
and desires expressed in the COTE project. In general, we have not questioned the basis of 
these needs and have assumed them to be well-founded. Instead, we analyse the proposed 
constructs to clearly show the restrictions necessary for them to be well-defined. In a more 
complete language design, we would perhaps eliminate some of these constructs if the 
restrictions are seen to be too constraining. Similarly, we sometimes offer several alternatives 
to specify the same behaviour. In a more complete language design, some of these alternatives 
would be eliminated. However, we consider that the decision as to which constructs should 
remain in a more polished language is a decision which should be taken after more 
consultation with tool vendors and users. 

The choice of concrete syntax was also heavily influenced by the objectives of the COTE 
project. One of the principal objectives was for this syntax to be as close as possible to UML 
1.4 syntax, as implemented in the Objecteering UML tool. Thus, we do not claim that 
concrete syntax for local operators, such as the TeLa sequence-diagram loop operator and 
TeLa sequence-diagram choice operator, is the most adequate. 

Regarding the use of the language, only part of the language presented in this chapter was 
actually used to describe tests in the COTE project.  
In the first section we present an overview of TeLa. In Section 2 we present the constructs 
used in TeLa sequence diagrams. In Section 3 we present the constructs used in TeLa activity 
diagrams. 
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1 Overview of TeLa language 

1.1 One-tier or two-tier scenario structures 

The full TeLa language is a two-tier language in which TeLa activity diagrams – based on 
UML activity diagrams – can be used to link TeLa sequence diagrams – based on UML 
sequence diagrams – much in the way that HMSCs can be used to link MSCs. We prefer this 
syntax to using an equivalent of MSC in-line operators in spite of the fact that it is the latter 
which is presented as the main syntax in UML 2.0 sequence diagrams. The main reason for 
this is that it leads to a simpler-to-use sublanguage which guarantees fundamental technical 
properties, notably concurrent controllability, see Section 2.10.5.1. Another reason is that the 
fact that inside the scope of an in-line operator, lifeline ordering is not respected (due to the 
vertical sequencing of different operands) can be confusing. 

In accordance with our aim of progressive presentation of the required language constructs, 
we first define a language based exclusively on UML sequence diagrams before showing the 
need for the extra tier based on UML activity diagrams. 

Such a progressive presentation also introduces the two tiers of the language in order of 
importance in the sense that, for most applications, the sublanguage defined by the one-tier 
part of TeLa is sufficient. This sublanguage is designed to be simpler and more intuitive than 
the full language but as a consequence it is less expressive. In this respect, the relation 
between the full two-tier language and the one-tier sublanguage is different to the relation 
between HMSCs and MSCs with inline expressions. In the latter case, as for UML 2.0 
sequence diagrams and UML 2.0 interaction graphs, the two tiers have the same 
expressiveness1. In TeLa, the main complexity contained in MSCs is absent from the one-tier 
sublanguage. As this complexity is not always apparent to the user, in our view, this 
constitutes an advantage of the TeLa approach over the MSC/UML2.0 approach. The 
discussion of Section 3.4.4 concerning the non-trivial restrictions that must be imposed on a 
two-tier test description in order for it to define a test case throws some light on this 
complexity. 

The main feature of TeLa which leads to the one-tier sublanguage being simpler is the 
locally-defined (that is, on a single lifeline) loop and choice constructs. Locally-defined 
operators were seen as user-friendly and were demanded by the CASE-tool vendor in the 
COTE project. The use of these one-tier constructs is restricted in order to guarantee that they 
can be rewritten in terms of two-tier constructs, without the need to introduce a parallel 
operator in the two-tier diagrams. The fact that they can be rewritten then means that, without 
loss of generality, we can restrict the sequence diagrams linked via TeLa activity diagrams to 
TeLa elementary sequence diagrams, where a TeLa elementary sequence diagram is defined 
as a TeLa sequence diagram containing no locally-defined loops and choices. 

                                                 
1 For the sublanguages with no guards, more types of loops can be described with MSCs than with HMSCs. 
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1.2 Limited parallelism 

MSC, TTCN-3 GFT and UML2.0 constructs which are significant by their absence in TeLa 
are an explicit parallel operator (though, or course, parallelism exists between different 
lifelines of a diagram) and the notion of sequence diagram gates/ports. The reason for this 
absence is that, in the presence of loops, their introduction would significantly complicate the 
semantics. 

In the absence of loops and gates, if two expressions to be placed in parallel involve two sets 
of components which together comprise part of an interaction framework of the component 
model (roughly speaking, they are disjoint, no component of one is a subcomponent of a 
component of the other), use of a parallel operator simply denotes a type of union. In this 
case, the expression involving a parallel operator is equivalent to one which does not involve 
a parallel operator. Again in the absence of loops and gates, if the two expressions involve 
two sets of components which do not have the above disjointness property, a test description 
involving a use of the parallel operator is equivalent to one involving only the use of 
coregions and local orderings. 

In our estimation, most types of test currently used can be specified without a parallel 
operator and gates. This certainly applied to the tests of the COTE project. Nevertheless, as a 
consequence of the lack of these constructs, it is difficult to use TeLa for describing some 
types of distributed testing scenarios, such as those involving concurrent choices. If the 
demand for these constructs becomes more evident, they could be added to the current 
language, but any such addition should be done while taking care with regard to the semantic 
implications. In any case, in our opinion, an analytic approach to a sequence-diagram based 
test language first involves clarifying the most important and most well-defined constructs 
before extending the language to include more complex constructs. 

1.3 Other significant omissions from the language 

Like MSCs, there is no multi-cast to an arbitrary number of receivers in TeLa. The multi-cast 
construct of UML 1.4 sequence diagrams (involving the “recurrence” and the “multi-object”) 
gives rise to serious ambiguities concerning the meaning of communications shown as 
originating or terminating in multi-objects. In TeLa, we do not wish to introduce constructs 
which are clearly ill-defined. It is possible that in the context of a hierarchical component 
model, multi-cast messages could be unambiguously defined, c.f. the assumptions about the 
transmission of knowledge about system dynamic variable values of Section 2.2.4.5. 
However, do not study this issue here. 

Again as for MSCs and UML 2.0 sequence diagrams, by the nature of sequence diagrams, it 
is not possible to specify the creation of an arbitrary number of components. Again, the use of 
an underlying hierarchical component model and a creation internal action may permit 
unbounded component creation to be specified in certain cases. However, we do not explore 
this issue further here. As in MSCs and UML 2.0 sequence diagrams, the number of 
components to be created is fixed at compile time. 

Finally, we reiterate that, as for MSCs, the event denoted by a message arrow touching a 
lifeline is the consumption of the corresponding message. If the receiver has a queue, the 
event denoted is not the arrival of a message in this queue. We further suppose that there is no 
access to any input queue without consumption. Guards on messages received from the SUT 
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at the tester are assertions on parameter values. If no such assertion evaluates to true, a fail 
verdict results; the message cannot be left in some input queue. 

1.4 The underlying component model 

We suppose that underlying a TeLa test description is a specification of a test description 
component model and an initial snapshot of this component model, see Chapter 5, Section 1. 
If none is specified, the simple object model is assumed and the test context is completely 
determined by the initial lifelines, along with the identification of which lifelines belong to 
the tester and which to the SUT. 

A component model describes a structure of components owning ports which are connected 
via connectors. Usually, the smallest type of component, a base-level component, is an object. 
Base-level components have a single port and we therefore identify them with this port. 
Events are labelled by actions which refer to ports. We call the base-level component that 
owns the originating port of an invocation the emitting component. We call the (not 
necessarily base-level) component that owns the target port of an invocation the receiving 
component. Since ports are owned by components, events can also be viewed as being owned 
by components. 

The simple object model is a special case in which there are two levels of hierarchy (apart 
from the top-level component which includes all others). These are the whole tester and 
whole SUT component level, and the base-level (the objects/ports) 

The existence of an underlying hierarchical component model provides a framework in which 
to define the notion of composition/decomposition of lifelines and in which to define 
component properties which influence the interpretation of TeLa test descriptions. We 
stipulate that the same level of decomposition (the same interaction framework) must be used 
throughout a one-tier or two-tier scenario structure.  

The notion of decomposition is analogous to that of MSCs or to the part decomposition of 
UML2.0 and is a feature which does not exist in the TTCN-3 GFT and is not really treated in 
the UML Test Profile currently under standardisation. 

Currently, we suppose that any component properties are denoted via annotations on the 
initial snapshot diagram defining the test context, even though this supposition is rather 
limiting. The two properties discussed here are the control flow scheme (the property of being 
active or passive) and the property of internally using a message-oriented semantics or an 
event-oriented semantics. We assume, for simplicity, that all dynamically-created components 
are passive and that all dynamically-created components use the semantics of their 
supercomponent. 
The first property is that of the control flow scheme. Control flow scheme restrictions add an 
extra layer of semantics which we will refer to as implementation directives. If we choose to 
add this layer of semantics, it imposes extra well-formedness conditions on TeLa sequence 
diagrams, notably concerning the use of focus bars. Passiveness is understood in terms of 
implementation directives concerning: 
• the implementation of concurrency using scheduling rather than execution threads 
• the implementation of synchronous calls as blocking the sender 
• the interpretation of focus bars as representing method body executions 
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Base-level components are passive unless there is an annotation to the effect that they are 
active. Other components are active if they contain an active subcomponent and passive 
otherwise. More details can be found in the sections concerning the TeLa constructs whose 
interpretation is affected by this property, in particular, the focus bar. 

The second property is that of communication semantics (events or messages). This concerns 
the ordering relations which are to be inferred between the events located on the lifeline or 
lifelines that represent a given component. Components use the event-oriented semantics 
unless there is an annotation to the effect that they use the message-oriented semantics. More 
details can be found in Chapter 3, Section 2.5 and Chapter 5, Section 3. 

1.5 Verdicts 

Semantically, verdicts are annotations to events (in the non-interleaving semantics)2 and are 
therefore local. In general, TeLa verdicts are implicit and are derived as follows: 

• if the behaviour completes as shown, the verdict is pass, 

• if an unspecified reception from the SUT occurs, the verdict is fail, 

• in the non-enumerated data case, if one of the concurrent guards of the tester does not 
evaluate to true, the (local) verdict is inconclusive; similarly, if none of the alternative 
guards of the tester evaluate to true. 

All implicit verdicts are local, however, for pass and fail verdicts, the passage from local to 
global is simple. As fail is an existential notion, a single local fail implies a global fail. As 
pass is a universal notion, a local pass on all concurrent branches implies a global pass, this is 
simply the result of reaching the end of the behaviour without any other verdict having been 
derived. 

However, the semantics of the inconclusive verdict is more delicate. The meaning is that the 
component which derives the verdict performs no more actions while the other components of 
the interaction framework continue as far as possible to see if they can derive a fail verdict. 
See Chapter 5, Section 2.1.3.2 for more details. The process of communicating the local 
verdicts to the entity that is responsible for the global verdict is not explicitly modelled in 
TeLa. 

We also allow a limited use of explicit verdicts, for the situation in which this is more 
convenient. The use of any explicit verdict other than an inconclusive verdict on reception of 
message from the SUT involves restrictions on the test description in order for it to be well-
defined. 

The existence of implicit verdicts means that in TeLa we do not have the notion of defaults, as 
in TTCN. Using implicit verdicts instead of defaults allows a more abstract view of test 
behaviour and is also more flexible, e.g. it can accommodate the notion of decomposition of 
lifelines. 

                                                 
2 In an interleaving semantics, they would be annotations to transitions, not special states. 
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1.6 TeLa textual language / data language 

In the COTE project [JarPic01], a textual language based on OCL (Object Constraint 
Language, a language which complements the UML and is defined in the same UML standard 
[OMG03], [OMG03]) was defined for TeLa. In this document, we do not define such a 
language. We merely discuss the essential elements it must contain and the restrictions which 
would need to be imposed on it in order for it to be used as the TeLa textual language. 
Clearly, it must be able to refer to objects of the model. 

1.7 TeLa test descriptions 

A TeLa test description consists of a set of specification-level parameters or static variable 
declarations and a parameterised TeLa scenario structure. A scenario structure can be one-tier 
or two-tier, in which case we also describe the test description as one-tier or two-tier. 

A two-tier scenario structure comprises a TeLa activity diagram in which each node contains 
either a set of sequence-diagram level parameter (static-variable) declarations and a TeLa 
diagram reference to an elementary sequence diagram or a symbol indicating the empty 
sequence diagram. The empty sequence diagram is a sequence diagram with no events and is 
simply used to keep the notation compatible with the UML activity diagram notation. 

A one-tier scenario structure comprises a set of TeLa sequence diagrams linked via the TeLa 
diagram referencing mechanism. 

A TeLa diagram reference is a construct in which a sequence diagram is referenced by name; 
clearly, any sequence diagram which is to be referenced must be named. TeLa diagram 
references are allowed in two different contexts in TeLa sequence diagrams, see Section 2.3, 
and one in TeLa activity diagrams, see Section 3.2. 
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2 TeLa sequence diagrams and 1-tier scenario structures 

In the previous chapter, we gave an overview of TeLa test descriptions, and hence TeLa 
sequence diagrams, in terms of partial orders of events or messages, we discussed what these 
diagrams represent in terms of testing and clarified the main differences between TeLa 
sequence diagrams and UML 1.4 sequence diagrams. In this section, we introduce the syntax 
of TeLa sequence diagrams and give an informal description of the intended semantics. In 
discussing the semantics, we sometimes need to discuss both the semantics before and after 
projection. The question of the semantics of TeLa is discussed in more detail in Chapter 5. 

A TeLa sequence diagram may be named (in order to be referenced) and may be accompanied 
by a set of sequence-diagram level parameter declarations, as stated at the end of the previous 
section. 

2.1 Basic constituents of TeLa sequence diagrams 

2.1.1 Variables 

2.1.1.1 INTRODUCTION 
TeLa is a statically-typed language. There are three kinds of typed variables in TeLa: 

• Static variables, which parameterise whole TeLa activity diagrams or whole TeLa 
sequence diagrams and whose value is fixed for the entire activity or sequence diagram on 
instantiation of that diagram. Static variables can be declared at two levels as described 
above. 

• Dynamic variables, whose value can be changed in the course of a TeLa test description 
by an assignment. Each dynamic variable is owned by a particular base-level component. 
There are two kinds of dynamic variable: 
• system dynamic variables, whose scope is global to all components. 
• component dynamic variables which are of type integer and cannot be used in 

message parameters thereby restricting their architectural scope to a single component; 
a typical use of such a variable is as a loop counter. 

Dynamic variables are considered to be declared on first use (the type of system dynamic 
variables is known from the corresponding class diagrams). 

• Anonymous variables, which refer to the parameters of a message from the SUT to the 
tester. They occur either in a guard on such a message or in an internal action attached to 
the arrowhead of such a message. The scope of these variables is a single message so that 
the same anonymous variables can be reused for different messages. 

Among the types, we need a type which is a supertype of all the component types used in the 
underlying component model and a type which is a supertype of all the port types used in the 
underlying component model. We can then use variables and constants of these types to 
model the communication of component and port identifiers, notably in the case of 
dynamically-created components. 
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2.1.1.2 SYNTAX 
For anonymous variables, we use the syntax _1,  _2 etc. where the subscripts refer to the 
position in the parameter list. 

2.1.1.3 WELL-FORMEDNESS CONDITIONS 
System dynamic variables must be owned by a tester base-level component. No system 
dynamic variables can be owned by an SUT component. Reading and writing of SUT public 
attributes by the tester should be modelled as synchronous get and set operations. 

Component dynamic variables cannot be used in message parameters; they can only be used 
in internal actions on a lifeline representing the component that owns them or a 
supercomponent of it. 

Anonymous variables can only refer to the parameters of a message received by the tester 
from the SUT. 

2.1.1.4 INFORMAL SEMANTICS 
Different components do not necessarily share the same knowledge of the value of a given 
system dynamic variable. 

Though static variables also contribute, it is the need for anonymous variables, or of proper-
reception assigned variables, see later, that makes it impossible to avoid a symbolic treatment 
of data. This reflects the fact that a test description must often deal with the situation in which 
the SUT can send any one of an infinite set of values and the tester behaviour may depend on 
which value is sent. 

2.1.2 Message arrows 

2.1.2.1 INTRODUCTION 
As in UML 1.4 and UML 2.0, in TeLa there are three types of message arrow: a continuous-
line unfilled arrow used to represent an asynchronous message (invocation or signal), a 
continuous-line filled arrow used to represent a synchronous invocation message and a 
discontinuous-line unfilled arrow used to represent both a synchronous return message and a 
component-creation message. 

We treat a component-creation message as a particular type of synchronous invocation, the 
corresponding return message being the sending of the created component identifier to the 
creator component (as in the UML 1.4 sequence diagrams of the Objecteering UML CASE 
tool). 

The syntax of the arrow labels is discussed in Section 2.2. Messages between tester ports or 
between SUT ports are known as coordination messages (tester coordination messages or 
SUT coordination messages respectively). Asynchronous coordination messages with the 
message name “sync”, see the section on message arrow labels, are called synchronization 
messages. 

2.1.2.2 SYNTAX 
Fig. 4.1 shows the three different types of message arrow. 
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asychronous message arrow

sychronous invocation message arrow

sychronous return message arrow
creation message arrow  

Figure 4-1: The three different types of message arrow 

2.1.2.3 WELL-FORMEDNESS CONDITIONS 
A synchronous invocation arrow must be associated to a synchronous return arrow in the 
opposite direction. 

The only types of SUT coordination messages allowed are synchronization messages. 

2.1.2.4 INFORMAL SEMANTICS 
All message arrows except synchronization and creation messages denotes two events, the 
send event and the corresponding receive event, and an ordering relation between them. If the 
message is exchanged between lifelines representing subcomponents of a component in which 
the message semantics applies, further ordering relations are inferred, see Chapter 3, Section 
2.5 and Chapter 5, Section 3. The events are labelled by the direction of the event (send or 
receive), by the name of the message and by the originating port (necessarily a port of a base-
level component) and the target port. They may also be labelled by a guard and by a set of 
associated assignments. 

As in MSCs, the receive event of a message, for all messages except synchronization 
messages and creation messages, denotes message consumption; if the diagram is 
implemented on a communication architecture where the message is queued after reception, 
the reception and queueing occur before the TeLa denoted receive event. 

Creation messages denote a single event. Synchronization messages do not denote any events, 
their meaning is similar to that of the MSC general ordering construct, see Section 2.2.4.4 for 
more details. 

Unguarded synchronization messages with no parameters play the role of non-local MSC 
general orderings, that is, general orderings between events on different lifelines. They denote 
ordering relations between the predecessors of the virtual event corresponding to the sending 
of the synchronization message, and the successors of the virtual event corresponding to the 
reception of the synchronization message. For the semantics of guarded synchronization 
messages or synchronization messages with parameters, see Section 2.2. 

2.1.3 Lifelines 

2.1.3.1 INTRODUCTION 
As in UML 1.4, in TeLa, arrows are shown linking vertical lines, or lifelines. There are two 
types of lifelines, tester lifelines, which represent tester components, and SUT lifelines, which 
represent either SUT components or SUT ports. 

In the case where they represent tester or SUT components, the name given to the lifeline can 
be the full name or the abbreviated name. The full name is the name of a component followed 
by a colon followed by the name of the component type of the component. The whole tester 
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and whole SUT component are exceptions to this rule in that they are simply labelled by the 
name tester and SUT respectively. In the case where a lifeline represents a component, let this 
component be called the lifeline component. 

In the case where lifelines represent SUT ports, the name given to the lifeline is the name of 
an SUT port. In the case where a lifeline represents a port, let this port be called the lifeline 
port. 

In the simple object model, there are two levels of components, the whole SUT and whole 
tester components, and the base-level components or objects. In the simple object model, a 
tester lifeline represents either the whole tester component or it represents a tester object ( = 
tester port). Similarly, in the simple object model, an SUT lifeline represents either the whole 
SUT component or it represents an SUT object ( = SUT port). 

We do not distinguish graphically lifelines representing passive and active components since 
the property of passiveness or activeness is viewed as an additional semantic layer which we 
may, or may not, wish to add. 

2.1.3.2 SYNTAX 
Each SUT lifeline is capped by a rectangle with the name of the component/port appearing 
inside this rectangle; each tester lifeline is capped by an actor symbol with the name of the 
component appearing below this symbol. Hence, the two types of lifeline are distinguished by 
the use of an actor symbol or a component symbol rather than by the use of a stereotype as in 
[UTP03], see Fig. 4.2. 

proxy2
proxy1agent1

agent2

 

Figure 4-2: Tester and SUT lifelines. 

2.1.3.3 WELL-FORMEDNESS CONDITIONS 
The events located on a lifeline representing a component are owned by that component or by 
one of its subcomponents. The events located on a lifeline representing an SUT port refer 
correctly to that port (for emissions it is the originating port, for receptions, the target port). 
This is part of what is defined as structural consistency, see Chapter 5, Section 1.6. 

The SUT must be modelled as a set of components or as a set of ports but not a mixture of the 
two. 

Internal actions, see Section 2.4, are not allowed on lifelines representing SUT ports. The only 
type of internal action that is allowed on lifelines representing SUT components are creation 
actions. 
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2.1.3.4 INFORMAL SEMANTICS 
The semantics of a lifeline is that it imposes a total ordering on the events in its scope unless 
they are contained in a coregion. A coregion specifies a lack of ordering relations between the 
events located on the lifeline component which are inside its scope, see Section 2.5. 

2.2 Message arrow labels 

2.2.1 Introduction 
The constituents of a label on a message arrow are as follows: 

• A guard, i.e. a boolean expression involving static and dynamic variables. In the case of a 
guard on a message emitted by the tester, the boolean expression may be preceded by a 
component name and a colon. Guards are optional. Notice that their meaning is different 
on message received by the tester from the SUT to other messages, see below. 

• The name of the base-level port which is the originator of the message and of the port 
which is the target of the message. In the simple object model, target ports are also base-
level ports (objects). Originator and target port names are obligatory on all tester 
coordination messages and on messages from the tester to the SUT, unless they can be 
deduced from the context, see below. As regards messages from the SUT to the tester, on 
some systems, only the target port can be specified. Thus for messages from the SUT to 
the tester, depending on the type of system being modelled, either one or two ports must 
be specified, unless they can be deduced from the context. If SUT lifelines represent 
components, port information may, or may not, be specified for intra-SUT messages; if it 
is specified, it serves only to restrict the allowable lifeline decompositions. 

• The name of the message. That is, the operation (or signal) name, for invocations (or 
signals), the operation name followed by a colon, for return messages, the word “create”, 
for creation messages, and the word “synch”, for synchronization messages. A message 
name is obligatory on all messages. 

• The message parameters: message parameters are optional though they must be coherent 
with the formal parameters of the operation or signal, for invocations, with the formal 
creation parameters for creation messages, and with the return value and the out or in/out 
parameters, for synchronous return messages. In all cases except for synchronous return 
messages, the syntax used for the message parameters is a list of expressions separated by 
commas. 

2.2.1.1 OMITTING THE PORT INFORMATION 
The originating, resp. target, port can be deduced from the context for those message arrows 
that originate, resp. terminate, in a lifeline which represents a base-level component. The case 
where SUT lifelines represent ports, rather than components, is a special case. Hence, in a 
diagram in which all lifelines represent base-level components (objects/ports), all port 
information can be omitted from the messages. 

The target port for synchronous invocation return messages can also be deduced from the 
context since it must be the same as the originating port of the invocation message. Hence, in 
the case of synchronous invocation return messages from the SUT to the tester in systems 
where the originating port cannot be specified, no port is specified. In other systems, only the 
originating port is specified on synchronous invocation return messages. 
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2.2.1.2 COORDINATION MESSAGES 
Messages between two tester components or between two SUT components are called 
coordination messages. Coordination messages with the message name “sync” are called 
synchronization messages. Synchronization messages are simply used to impose orderings 
between events on different lifelines in a way that is similar to non-local MSC general 
orderings. 

We allow both intra-tester and intra-SUT synchronization messages, even if this leads to 
redundancy, in order for the user to be able to choose the simplest representation for each 
case. 

2.2.1.3 OWNING COMPONENT OF A GUARD 
In the case of a guard on a message emitted by the tester, if the boolean expression of the 
guard is preceded by a component name and a colon, this component is the owning 
component of the guard. If the boolean expression of the guard is not preceded by a 
component name and a colon, the lifeline component is the owning component of the guard. 
In a simple object model, all guards are owned by a base-level component (object). 

In the case of a guard on a message received by the tester from the SUT, the owning 
component of the guard is the owning component of the target port of the message. 

Under the projection semantics, a guard on an SUT synchronization message leads to a guard, 
or a clause of a guard, on one or more receptions from the SUT for which the owning 
component is defined as above. 

2.2.1.4 SYSTEM DYNAMIC VARIABLE VALUES 
Recall that each system dynamic variable is owned by a base-level component but a value of a 
system dynamic variable can be held by any base-level component. Thus, we must ensure that 
there is no ambiguity in the intended value of such a variable at any use of it. 

A system dynamic variable used in a guard may be preceded by a base-level component name 
followed by a dot. If this is the case, the intended value of the variable is that held by the 
specified base-level component. If this is not the case, the intended value is as explained in 
the well-formedness conditions below. 

The intended value of a system dynamic variable used in a message parameter is that held by 
the owning component of the originating port. If this port information is not available as may 
be the case for messages received from the SUT or intra-SUT messages, the intended value is 
that held by the emitting lifeline component, for tester coordination messages, and the 
receiving lifeline component for messages from the SUT to the tester. 

2.2.2 Syntax 
Some examples are given in Fig. 4-3 and Fig. 4-4. 

In Fig 4-3, SUT lifelines represent components. We assume that we know from the associated 
component model that the two proxies are base-level components so that it is not necessary to 
use two port names in messages exchanged with them. user is the originating port of the 
synchronous invocation find. findit and add_log are asynchronous invocations. peers, location 
and y are system dynamic variables. 

In Fig. 4-4, The diagram on the r.h.s is closer to the implementation and demonstrates that the 
implementation of ordering relations introduced by the SUT may introduce race conditions 
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between tester coordination messages and messages from the SUT. In [GrabKochSchHog99], 
it is proposed that this be resolved by supposing that tester coordination messages have lower 
latency. 

proxy1agent1
agent2

[peers>0] user.find(y)

found(∗location)

proxy2

findit(y)
sync(y)

sync

find: location

log2

add_log(y)

 

Figure 4-3: A TeLa sequence diagram showing the use of dynamic variables, guards, ports, message parameters 
and proper-reception assigned variables. 
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 sync

 sync

m2m2

m1m1

SUT1 SUT2 SUT1 SUT2
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 sync

 

Figure 4-4: TeLa diagram showing two equivalent ways of using synchronization messages (intra-SUT and 
intra-tester messages respectively) to specify that the tester expects to receive invocation m2 from SUT2 after it 

has invoked m1 on SUT1.  

2.2.2.1 “OUT” AND “IN/OUT” RETURN VALUES IN SYNCHRONOUS INVOCATIONS 
Synchronous return messages must also take into account the values returned in “out” or 
“in/out” parameters. In the syntax used, the expressions for the out and in/out parameter 
values appear as a list separated by commas inside parentheses and the return value precedes 
these values, outside the parentheses. The order of appearance of the “out” or “in/out” return 
values is the order of appearance of the corresponding parameters. 

Hence, if there are no “out” or “in/out” parameters, the return value appears without 
parenthesis immediately after the message name and the colon. If there are “out” or “in/out” 
parameters, these appear after the return value inside parentheses and separated by commas, 
e.g. get_last : last (top, 4), where get_last is the name of the synchronous invocation, last and 
top are variables. 

2.2.2.2 ARBITRARY VALUES RETURNED BY THE SUT 
The expressions used in the message parameters of messages sent from the SUT to the tester 
extend the expressions which can be used in the message parameters of other messages with 
two new constructs as follows: 

• The ∗ construct: this syntax denotes the transmission of an unknown value. 

• The ∗x construct, where x is a dynamic variable owned by the component represented by 
the lifeline at the receiving end of the message or a subcomponent of it: this syntax 
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denotes an unknown value and the assignment of this unknown value to x. We will refer to 
x as a proper-reception assigned variable. 

• In the case where there are “out” or “in/out” parameters, if on a synchronous invocation 
return, after the colon, there is a single wildcard, it applies to both the return value and the 
“out” / “in/out” return values. Otherwise the wildcard can be applied specifically to one of 
these parameters, e.g. get_last: ∗ (4, ∗). 

The use of the ∗ construct is reserved for messages sent from the SUT to the tester; if we wish 
to describe the tester sending an arbitrary value to the SUT, a static variable should be used 
for this purpose. The ∗x construct is an alternative to using the ∗ construct and an assignment 
internal action, see below. 

2.2.2.3 EXCEPTIONS 
We also need a special notation for the case where a synchronous invocation returns an 
exception in place of a return value. For this, we replace the colon with a sharp sign, e.g. 
get_last# *error_type 

2.2.3 Well-formedness conditions 

2.2.3.1 PORT INFORMATION 
The originating port of any message emitted on a lifeline must be owned by the component 
represented by that lifeline or by a subcomponent of it. The target port of any message 
received on a lifeline must be owned by the component represented by that lifeline or by a 
subcomponent of it. 

If specified explicitly rather than being left implicit, the target port of a synchronous 
invocation return message must be the originating port of the invocation message. 

2.2.3.2 COMPATIBILITY WITH TEST CONTEXT AND COMPONENT MODEL 
The names of the messages must be coherent (type-compatible) with the structure of the ports 
in the underlying component model, that is, the interfaces of which they are composed. The 
name of an asynchronous message must be the name of an operation required at the 
originating port and offered at the target port or of a signal produced at the originating port 
and accepted at the target port. The name of a synchronous message must be the name of an 
operation required at the originating port and offered at the target port. The name of a return 
message must be the name of an operation required at the target port and offered at the 
originating port followed by a colon etc. 

2.2.3.3 SYNCHRONIZATION MESSAGES 
Synchronization messages are considered to be type compatible with any port. Any 
expression used in the parameter of a synchronization message must comprise a single 
dynamic variable. The only SUT coordination messages allowed are synchronization 
messages. 

2.2.3.4 GUARDS 
The owning component of a guard must be a subcomponent of the lifeline component. 

The owning component of a guard on a message emitted from the tester must be a 
supercomponent of the base-level component owning the originating port of that message. 
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If a system dynamic variable used in a guard is preceded by a base-level component name and 
a dot, the identified component must be a subcomponent of the component owning the guard.  
If a dynamic variable name used in an assertion or in a creation expression is not preceded by 
a component name, all base-level subcomponents of the component owning the guard must 
share a common view of its value.  

2.2.4 Informal semantics 

2.2.4.1 MESSAGE NAMES AND PARAMETERS 
The exchange of a message between two components is interpreted as either a synchronous 
invocation, an asynchronous invocation or signal exchange, a synchronous invocation return, 
or a component creation. The message name is interpreted as the name of this invocation or 
signal, for the first two types of message, and the name of the corresponding invocation for 
the third type. For the last type, the standard message name “create” is used. The parameters 
are interpreted as the parameters of the invocation or signal for the first two types, and as the 
return values together with the values of the out and inout parameters for the synchronous 
invocation returns. The parameters of the creation message are interpreted as the parameters 
passed to the created component on creation. 

2.2.4.2 GUARDS ON TESTER EMISSIONS 
For a guarded message emitted by the tester the guard of the message arrow label is 
interpreted as a guard on the corresponding emission action, that is, semantically, it is part of 
the corresponding controllable event. Part of the semantics of guards on tester emissions is the 
implicit inconclusive verdict, as follows. In the following, we suppose that an unguarded 
message is guarded by the condition true. 

If the guarded message is not one of several alternative messages that can be sent by the tester 
and the guard is not verified, an inconclusive verdict results. This inconclusive verdict is local 
to the component owning the guard.  

If the guarded message is one of several alternative messages that can be sent by the tester and 
none of the guards of these alternatives are verified, an inconclusive verdict results. This 
inconclusive verdict is local to the component owning the choice. 

In both cases, the semantics is the same as that obtained if the guard is placed in an assert 
internal action occurring immediately before the emission action, see below. 

Alternative message emissions by the tester arise with the use of the TeLa sequence-diagram 
choice construct introduced in Section 2.10. However, more general alternative behaviours 
can arise with the use of the activity-diagram choice construct in two-tier scenarios. The 
semantics of guarded messages in the case of this more general alternative is defined in 
Section 3.4. 

2.2.4.3 GUARDS ON PROPER TESTER RECEPTIONS 
If any message received by the tester from the SUT has a data expression as the value of one 
of its parameters, semantically this in fact denotes a boolean expression that is to be conjoined 
to any existing guard. This boolean expression equates the anonymous variable corresponding 
to that parameter to the expression given as the parameter value. 

For a guarded message received by the tester from the SUT, the guard of the message arrow 
label is interpreted as a guard on the corresponding tester reception action, not on the 
corresponding SUT emission action. That is, the guard is part of the corresponding observable 
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event. Moreover, we assume that the guard constrains only the anonymous variables. Part of 
the semantics of guards on proper tester receptions is the implicit fail verdict, as follows. In 
the following, we suppose that an unguarded message is guarded by the condition true. 

If the guarded message is not one of several alternative messages that can be received by the 
tester, then if a message with the same name and signature as that of the message arrow label 
in question is received and the guard is not verified, a fail verdict results.  

If the guarded message is one of several alternative messages that can be received by the 
tester, then if a message with the same name and signature as that of the message arrow label 
in question is received, and none of the guards on any of the alternative messages having that 
message name and signature are verified, a fail verdict results. 

In both cases, the semantics is the same as that obtained if the guard is placed in an assert 
internal action attached to the arrowhead of the incoming message, see below. 

Alternative message receptions by the tester arise with the use of the TeLa sequence diagram 
choice construct introduced in Section 2.10. However, more general alternative behaviours 
can arise with the use of the activity diagram choice construct in two-tier scenarios. The 
semantics of guarded messages in the case of this more general alternative is defined in 
Section 3.4. 

2.2.4.4 GUARDS ON SYNCHRONIZATION MESSAGES 
Synchronization messages define ordering relations between the predecessor(s) of the virtual 
send event and the successor(s) of the virtual receive event. If they have parameters, they also 
denote the communication of knowledge about dynamic variable values, see below. 

Synchronization messages may be guarded. For intra-tester synchronization messages, these 
guards have the same meaning as those on other types of message emitted by the tester. For 
intra-SUT synchronizations, through the projection semantics, these guards are in fact guards 
on tester reception events. 

2.2.4.5 MESSAGE PARAMETERS AND VALUES OF SYSTEM DYNAMIC VARIABLES 
Message arrows between lifelines serve to pass knowledge of system dynamic variable values 
between the components represented by lifelines, or rather between the base-level 
components which are subcomponents of them. If such a variable is used in a message 
parameter expression, knowledge of its value is considered to be transmitted by the 
communication. 

Suppose we have a use of a system dynamic variable, e.g. in a guard. We define the intended 
value of the variable in this use to be that assigned to it in the assignment internal action that 
is the “most recent predecessor” of the event in question. The “most recent predecessor” is the 
one that is reached via the most recently received communication (recursively). 
When a message is sent to a port on a component that is not a base-level component, it is 
assumed that all the knowledge of system dynamic variable values contained in the 
communication is transmitted to all the base-level subcomponents of this component. This 
policy could perhaps be refined, supposing the knowledge is only transmitted to the 
components connected to this port, though we do not investigate this possibility here. 

In the symbolic case, it is knowledge of the constraints on a system dynamic variable´s value 
that is passed between components via communications. Constraints are accumulated along 
paths through the partial orders defining the semantics of the system. The global constraint at 
a particular point of an execution is defined as the conjunction of the constraints on each of 
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the concurrent paths. For example, for a consistent test description execution, the conjunction 
of the accumulated constraints at each of the pass-annotated events must not be equivalent to 
false. 

Due to the way we define the intended value of a system dynamic variable, we must allow 
synchronization messages to have parameters in order to use them to transmit knowledge 
about dynamic variable values where required. Since we allow multiple SUT lifelines, this 
also applies to SUT synchronization messages. 

2.3 TeLa sequence diagram references 

2.3.1 Introduction 
As stated in Section 1.7, TeLa diagram references are allowed in two different contexts in 
TeLa sequence diagrams; we will refer to these two types of diagram reference as lifeline-
anchored references and message-anchored references. A message to which a message-
anchored reference is associated is called a link message. 

TeLa diagram references are used in TeLa sequence diagrams to denote sequential 
composition. In the case of message-anchored references, the composition is always weak 
sequential composition. However, in the case of lifeline-anchored references, we may want to 
denote strong sequential composition with respect to the tester components, that is, sequential 
composition involving a synchronization between all the tester components. Strong sequential 
composition is novel with respect to MSCs. 

As shown in Section 2.10, message-anchored references are used to implement alternative 
diagram continuations. They allow the use of a syntax for the TeLa sequence diagram choice 
construct which is close to the “presentation option” branching mechanism of UML 1.4, 
generally perceived as user-friendly. 

TeLa diagram references can also be used to implement a joining of alternative branches in 
the sense that an identical reference to a diagram can be made in several different diagrams 
representing the different alternative branches. The interpretation is that the referenced 
diagram is the continuation of each of the alternatives, that is, that the alternative behaviour is 
common after a certain point. 

From a tooling point of view, the diagram referenced could be implemented as hyperlinks to 
the corresponding diagram, a mechanism similar to that proposed in [EkkSchGra00b]. 

2.3.2 Syntax 
For lifeline-anchored references, see Fig. 4-5 l.h.s., we use a syntax taken from the MSC 
reference construct. For message-anchored references, see Fig. 4-5 r.h.s. we use a syntax 
taken from a presentation option of UML 1.4. In message-anchored references, a send event 
of the referenced diagram appears in the referencing diagram and it is to this send event that 
the reference is attached. 

Our use of lifeline-anchored references is much more restricted than the MSC use of MSC 
references (or UML 2.0 use of the equivalent), due to the absence of gates in TeLa and to the 
absence of reference expressions other than sequence-diagram names. TeLa lifeline-anchored 
references always cover all the lifelines of an interaction. The diagram references in TeLa 
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activity-diagrams, see Section 3.2, are similar to the lifeline-anchored diagram references in 
TeLa sequence diagrams. 

Handover 

[x<0] op: 2x 
op: 2x 

Handover 

«assert»
x<0 

SUT SUT
TesterTester

 

Figure 4-5: lifeline-anchored references (left) and message-anchored references (right), where Handover is the 
name of a TeLa sequence diagram. 

Our use of message-anchored references is not the same as the use of the UML 1.4 
“presentation option” of the standard from which the syntax is taken. In the standard, this 
syntax was proposed as a kind of simplified gate construct, used for dividing a sequence 
diagram horizontally, placing some lifelines of an interaction on one diagram and some on 
another. Moreover, on the referenced diagram, we do not use the matching syntax, in which 
the receiver half of an arrow is shown, in order to be able to reference a given sequence 
diagram via a message-anchored reference or via a lifeline-anchored reference. However, as 
for the UML 1.4 “presentation option”, the link message is repeated in the referenced 
diagram, except in the case of the “default alternative”, presented in Section 2.10.3.1 and 
2.10.3.2. 

The message arrow label on the repeated message in the referenced diagram does not need to 
include the guard, if one exists. Usually, then, the guard on the repeated message only appears 
in the referencing diagram. Similarly, if the link message is a synchronous invocation return, 
the synchronous invocation focus bar only appears on the referencing diagram, not in the 
referenced diagram. If the link message is any other message emitted from inside the scope of 
a focus bar, the focus bar in the referencing diagram is shown without the bottom side of the 
rectangle and the focus bar in the referenced diagram is shown without the top side of the 
rectangle. 

The syntax we use for a lifeline-anchored reference denoting strong sequential composition is 
to precede the reference with a horizontal bar (covering all the lifelines of the interaction) 
representing a synchronization between tester components, as shown in Fig. 4-6. 

Test Case 2

Test Case 1

 

Figure 4-6: Strong sequential composition in TeLa 
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2.3.3 Well-formedness conditions 
We do not allow TeLa diagram references to be used recursively. In particular, we do not 
allow a sequence diagram reference to contain the name of the referencing diagram. Detecting 
such cycles could be done using the Tarjan algorithm for calculating simply connected 
components [Tar72]. 

2.3.4 Informal semantics 
Semantically, weak sequential composition implies ordering relations between the last event 
on a lifeline of the referencing diagram and the first event on the same lifeline of the 
referenced diagram, for each of the lifelines which the two diagrams have in common. 

Strong sequential composition implies ordering relations between all the tester events of the 
referencing diagram (and any preceding diagrams) and all the tester events of the referenced 
diagram (and of any succeeding diagrams). One way of realising this ordering in the 
semantics is by explicitly introducing an event shared by all the tester lifelines. Strong 
sequential composition does not imply any synchronization between the tester and the SUT; 
all tester-SUT communication must be explicitly described. 

2.4 Internal actions 

2.4.1 Introduction 
The internal action construct is used to describe a tester component performing any other 
operation besides sending or receiving a message. The stereotypes «assign», «assert», 
«create» and «escape» are used for variable assignments, assertion evaluations, subcomponent 
creation and escape to another language respectively. In the enumerated data case, only the 
«create» and  «escape» internal actions are used. 

2.4.1.1 ALLOWED INTERNAL ACTIONS IN TELA 
An assignment internal action is used to assign values defined by expressions to dynamic 
variables. A single assignment internal action may contain assignments to several such 
dynamic variables. In the usual case, all variables assigned to in an assignment internal action 
belong to the same base-level component and the internal action is attached to a single 
lifeline. If this is not the case, the internal action may be attached to a single lifeline or 
multiple lifelines, depending on the level of decomposition. The semantics of an assignment 
internal action attached to a single lifeline at the point where a message is received from the 
SUT (we will say it is attached to an SUT-message arrowhead) is slightly different to that of 
other assignment internal actions, see below. 

An assertion internal action is used to verify that a boolean expression involving static, 
dynamic and anonymous variables holds. It may be attached to a single lifeline or to multiple 
lifelines. The semantics of an assertion internal action attached to a single lifeline at the point 
where a message is received from the SUT (we will say it is attached to an SUT-message 
arrowhead) is different to that of other assertion internal actions, see below. 

Recall that each dynamic variable is owned by a base-level component but a value of a system 
dynamic variable can be held by any base-level component. Thus, we must ensure that there 
is no ambiguity in the intended value of such a variable at any use of it. A system dynamic 
variable value used in an assertion or on the r.h.s of an assignment may be preceded by a 
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base-level component name followed by a dot. If this is the case, the intended value of the 
variable is that held by the specified base-level component. If this is not the case, the intended 
value is as explained in the well-formedness conditions below. 

An escape internal action is used to insert code from an external language. It either takes the 
form of an assignment, to a system dynamic variable, of the result of a call to an external 
function, or the form of a call to an external procedure. A create internal action is used to 
model the creation of a subcomponent. 

2.4.1.2 OWNING COMPONENT OF AN INTERNAL ACTION 
For an assertion or assignment internal action attached to multiple lifelines, let the 
components that are represented by one of the lifelines to which the internal action is attached 
be called the internal action components.  

Recall that the component containment hierarchy is a tree. For an assertion internal action 
attached to multiple lifelines, the smallest component containing all the internal action 
components is said to own the internal action. For an assertion internal action attached to a 
single lifeline at the point where a proper reception action occurs, the component owning the 
target port of the message is said to own the internal action. For an assertion internal action 
attached to a single lifeline and not at the point where a proper reception occurs, if a 
subcomponent of the lifeline component is not specified explicitly as the owning component 
(its name followed by a colon appears before the assertion), the assertion belongs to the 
lifeline component. 

For an assignment internal action attached to multiple lifelines, the smallest component 
containing all the internal action components is said to own the internal action. For an 
assignment internal action attached to a single lifeline at the point where a proper reception 
action occurs, the component owning the target port of the message is said to own the internal 
action. For an assignment internal action attached to a single lifeline and not at the point 
where a proper reception occurs, the smallest component containing the set of base-level 
components owning a variable on the l.h.s. of one of the assignments is the owner of the 
internal action. 

For a creation internal action, the smallest component contaning the created and creator 
component is said to own the internal action. 

An escape internal action is owned by the component represented by the lifeline to which it is 
attached. 

In the simple object model, all internal actions are owned by a base-level component (object). 
The information about the owning component is considered to be part of the action labelling 
each of the four types of component-internal event. 

2.4.1.3 DECOMPOSTION OF CERTAIN INTERNAL ACTIONS 
Certain assignment internal actions can be decomposed into an exchange of tester 
coordination messages. The necessary prerequisite is that the dynamic variables on the r.h.s. 
of the assignment(s) are all owned by the same base-level component c, while the dynamic 
variable on the l.h.s. is owned by another base-level component d. In this case, the assignment 
internal action can be decomposed into the exchange of a tester coordination message from c 
to any supercomponent of d which does not include c. 

In a similar way, a creation action can be decomposed into a message exchange – the creator 
sending a creation message to the created component, using the UML syntax for this. 
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2.4.2 Syntax 
In the graphical syntax used here, an internal action is presented as a stereotyped note 
attached to a particular point on one or several lifelines. Notes stereotyped «assert» contain 
boolean expressions; each line is a new clause to be conjoined with the clauses of the other 
lines. Notes stereotyped «assign» contain assignment expressions. Notes stereotyped «create» 
contain creation expressions. Notes stereotyped «escape» contain escape expressions.  

Figs. 4-7 and 4-8 show alternative syntaxes for proper receptions. All these alternative 
syntaxes are legal, since we hold the view that more user experience is needed before 
deciding which of these options to prohibit. The first figure shows that the use of expressions 
in message parameters does not obviate the use of anonymous variables. p1 and  p2 are ports, 
u, v, x, y are system dynamic variables, _1, _2, _3, _4 are anonymous variables. Note that in the 
enumerated data case, neither internal actions, nor guards, nor the any-value notation nor the 
proper-reception assigned variable notation are used. 

 [_2 > _3 + _4] p1.p2.f(∗u,2x+y,∗v,∗)

SUT

 f: x

 p1.p2.f(∗,∗,∗,∗)

Tester

«assert»
_2 > _3 + _4

_2 = 2x + y

«assign»
u := _1
v := _3

SUT

 f: x

 p1.p2.f(∗u,2x+y,∗v,∗)

Tester

«assert»
_2 > _3 + _4

SUT

 f: x

Tester

 

Figure 4-7: Three alternative syntaxes for the same behaviour showing the use of assign and assert internal 
actions attached to SUT-message arrowheads, proper-reception assigned variables, anonymous variables and 

guards. 

 f: x2

 f(x)

SUT

Tester

«assign»
y := x2

 f: ∗y

 f(x)

SUT

Tester

«assert»
_1 = x2

 f: ∗y

 f(x)

SUT

Tester

«assert»
y = x2

 f: ∗

 f(x)

SUT
Tester

«assert»
_1 = x2

«assign»
y := _1

 f: ∗

 f(x)

SUT
Tester

«assert»
_1 = x2

«assign»
y := x2

 f: ∗

 f(x)

SUT
Tester

«assert»
y = x2

«assign»
y := _1

 f: x2

 f(x)

SUT

Tester

«assign»
y := _1

 [_1 = x2] f: ∗y

 f(x)

SUT

Tester

 [y = x2] f: ∗y

 f(x)

SUT

Tester

 [_1 = x2] f: ∗

 f(x)

SUT

Tester

«assign»
y := _1

 [_1 = x2] f: ∗

 f(x)

SUT

Tester

«assign»
y := x2

 [y = x2] f: ∗

 f(x)

SUT

Tester

«assign»
y := _1  

Figure 4-8: Twelve alternative syntaxes for the same behaviour showing the use of assign and assert internal 
actions attached to SUT-message arrowheads, proper-reception assigned variables, anonymous variables, and 

guards. 
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2.4.3 Well-formedness conditions 
All internal actions except the «create» internal action, can only be placed on lifelines 
representing tester components. The «create» internal action can also be placed on a lifeline 
representing an SUT component but not on a lifeline representing an SUT port. 

If an internal action is attached to multiple lifelines, it cannot fall within the scope of a 
coregion on any of them. If an internal action is attached to multiple lifelines, the components 
represented by these lifelines must be subcomponents of a single component (and, of course, 
be members of an interaction framework, see Chapter 5, Section 1.3.5). 

The first two parameters of a create internal action must be names of components (the first 
being that of the creator component and the second being that of the created component). 

2.4.3.1 OWNING COMPONENTS 
The owning component of a create internal action, an assertion internal action or an 
assignment internal action that is attached to a single lifeline must be a subcomponent of the 
component represented by the lifeline. In the case of the assignment internal action, this 
implies that each dynamic variable on the l.h.s. of an assignment is owned by a base-level 
subcomponent of the component owning the internal action. Each dynamic variable on the 
l.h.s. of an assignment in an assignment internal action attached to multiple lifelines is also 
owned by a base-level subcomponent of the component owning the internal action. 

2.4.3.2 VARIABLES USED IN ASSERTIONS AND ASSIGNMENTS 
An assertion internal action attached to an SUT-message arrowhead can involve static, 
dynamic and anonymous variables. All other assertion internal actions can only involve static 
and dynamic variables. An assignment internal action attached to a message arrowhead must 
involve at least one anonymous variable on proper reception-assigned variable in the 
expression on the r.h.s. of each assignment. All other assignment internal actions can only 
involve static and dynamic variables. Creation actions can only involve state and dynamic 
variables. 

2.4.3.3 DYNAMIC VARIABLE VALUES IN ASSERTIONS AND ASSIGNMENTS 
If a dynamic variable name used in a creation expression, an assertion or on the r.h.s. of an 
assignment is preceded by a base-level component name and a dot, the identified component 
must be a subcomponent of the component owning the internal action.  

If a dynamic variable name used in an assertion or in a creation expression is not preceded by 
a base-level component name, all base-level subcomponents of the component owning the 
internal action must share a common view of its value. 

If a dynamic variable name used on the r.h.s. of an assignment is not preceded by a 
component name followed by a dot, the value of this variable held by the owner of the 
dynamic variable on the l.h.s. of that assignment must be inferred. 

2.4.3.4 EQUIVALENCE OF SYNTAX INVOLVING GUARDS AND INVOLVING ASSERTIONS 
An assertion internal action cannot occur inside a coregion. 
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2.4.4 Informal semantics 

2.4.4.1 ASSERTIONS 
Semantically, an assertion internal action attached to an SUT-message arrowhead denotes a 
guard on the corresponding proper reception action. We will assume that this guard constrains 
only the anonymous and/or proper-reception assigned variables of the corresponding 
message. If this is the only action available to the tester and the guard is not verified, a fail 
test verdict will be obtained. Thus, such an internal action does not define a controllable event 
but, instead, is part of an observable event. 

Any other type of assertion internal action denotes either an assert component-internal event, 
that is, an action with a guard and a name but with no other content, or the guard of the 
following controllable event. In both cases, if this is the only alternative action available to 
the tester and the guard is not verified, an inconclusive test verdict will be obtained. For an 
assertion internal action whose assertion involves dynamic variables from different base-level 
components, a synchronization between these base-level components is implied. 

2.4.4.2 ASSIGNMENTS 
The r.h.s. of an assignment of an assign internal action that is attached to an SUT-message 
arrowhead may include anonymous variables. If the r.h.s. of an assignment is a single 
anonymous variable, the notation is an alternative to the use of a proper-reception assigned 
variable in the corresponding message parameter. Assignments from assign internal actions 
attached at any other point in a diagram cannot include anonymous variables. Semantically, 
an assignment internal action attached to an SUT-message arrowhead denotes a set of 
assignments involving the message variables, that is involving values sent by the SUT. 

All assignment internal actions are interpreted as an assign component-internal event. An 
assignment to dynamic variable x defines a change in the data context associated to the base-
level component which owns x. For an assignment internal action involving several 
assignments, the order of appearance of these assignments in the component-internal event is 
exactly that of the syntax. An assignment internal action comprising assignments to variables 
from different base-level components involves the synchronization of these components in 
order to realise the assignments specified. 

2.4.4.3 COMPONENT CREATION AND ESCAPE 
Semantically, a creation internal action is a creation component-internal event. Semantically, 
an escape internal action is an escape component-internal event. Both events are placed in the 
partial orders according to their predecessors and successors on the lifeline on which they 
appear. 

2.4.4.4 RELATION BETWEEN GUARDS AND ASSERTIONS 
In general, in system specification there is a clear difference between an assertion and a 
guard: a guard specifies that an execution path is not feasible if the expression does not 
evaluate to true, whereas an assertion specifies that an exception will be raised if the 
expression does not evaluate to true. However, in a test description and in the presence of 
implicit verdicts, this distinction is blurred. 

Consider, for example, a guarded proper tester reception event that is not in conflict with any 
other events (that is, it is not one of several possible alternative behaviours). If this event is 
enabled in an execution, and an event corresponding to the reception of a message on the 
same port with the same name and the same signature is received, if the guard is not satisfied 
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a fail verdict results. Thus, a kind of exception is raised. More details of the semantics of 
guards and assertions can be found in Sections 3.4 and 3.5. 

2.5 Coregions 

2.5.1 Introduction 
A coregion is used to break the default ordering, that is, to introduce concurrency on 
lifelines3. Concurrency may arise naturally on a lifeline representing a non base-level 
component due to parallelism of its subcomponents. It may also arise when we do not want to 
restrict the behaviour of the SUT to one particular ordering, for example, to test a multicast 
operation to be performed by the SUT. Notice that a coregion merely states that the lifeline in 
question imposes no ordering requirements, not that the events in question are not ordered. 
They may be ordered via messages, as are the events: sending of the invocation of get-time to 
Stub1 and the reception of the corresponding reply from Stub1 in Fig. 4-9. 

If a lifeline is part of a component on which the partially-ordered message semantics is to be 
used, the role of the coregion is different, see Chapter 5, Section 3. In particular, the use of 
this semantics means that some coregions have no effect. 

If the test description is to define a fully-executable test case, the only events from the same 
base-level component which are allowed in the scope of a coregion must be receptions, since 
for a fully executable test case, the tester behaviour must be fully specified. 

2.5.2 Syntax 

x+y+z/3

get_time()

 get_time: x

get_time()

get_time
(Stub1,Stub2,Stub3)

SUT

« escape »
x := time()

get_time() « escape »
z := time()

« escape »
y := time()

 Tester1 Stub1 Stub1 Stub1

 get_time: y

 get_time: z

 

Figure 4-9: A coregion used to explicitly specify a multicast to three components in which ordering is 
unimportant. The parameters of the message get_time sent by Tester1 contain the constants Stub1, Stub2 and 

Stub3. 

                                                 
3 The introduction of this operator therefore pre-supposes we are not using the minimalist interpretation 
discussed in Chapter 2, Section 3.3.2. 
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In the current graphical syntax, a coregion is presented as a pair of vertical braces, as shown 
in the example of Fig. 4-9. The syntax used does not connect up the braces since the coregion 
may be annuled, or partially annuled (see Section 2.7) by a focus bar appearing in its interior. 

In this example, we can suppose that the ports in question are those of base-level components 
(objects) and are therefore identified with these base-level components. x, y and z are system 
dynamic variables. The internal action is an escape internal action, rather than an assign 
internal action, since the function time() is an external function, that is, it is not part of the 
TeLa language. Note that if the SUT is passive in this example, the restrictions concerning 
calling regions discussed in Section 2.7.4.3 mean that no event (such as the sending of another 
get_time() invocation) can occur between the sending of a get_time() invocation and the 
reception of the corresponding reply. 

2.5.3 Well-formedness conditions 
A coregion must be contained in a single TeLa sequence diagram (i.e. coregions are not 
allowed to cross diagram references). This condition is imposed to simplify the semantics and 
to allow the equivalence between one-tier and two-tier TeLa test descriptions to be easily 
demonstrated. 

A coregion may not overlap with that of a focus bar if the lifeline component is passive. Any 
such coregion is effectively annuled by the restrictions imposed by passiveness (see well-
formedness conditions and semantics of focus bars). This does not prohibit a focus bar on a 
passive lifeline from containing a coregion or from being contained in the scope of a 
coregion. 

The scope of a coregion may not overlap with that of a suspension region (a calling region on 
a lifeline representing a passive component). This does not prohibit a calling region from 
containing a coregion or from being contained in the scope of a coregion. 

We do not allow identically-labelled events in the scope of a coregion in order not to 
introduce pointless non-determinism. 

2.5.4 Informal semantics 
A coregion cancels the ordering effect of a lifeline. The only ordering between events falling 
inside a coregion is that defined via messages (including synchronous calls) or by explicit 
local orderings, where these may be represented by the local ordering construct or by focus 
bars. 

As stated in Section 2.7.4, a focus bar or calling region inside a coregion cancels the effect of 
the coregion for the events in its scope, except any events which may be inside another 
coregion contained in the scope of that focus bar or calling region. More details concerning 
the semantics of focus bars or calling regions inside coregions is given in Section 2.7.4. 

The coregion construct lends itself to confusion between implementation-level parallelism, 
where the meaning is in terms of multiple thread/processes, and specification-level 
parallelism, where the meaning is simply that the ordering is not constrained. To clarify this 
point, consider that specification-level parallelism may be implemented as implementation-
level parallelism, i.e. via multiple threads, or it may be implemented using a single thread and 
choosing an order from among the possible orders. 

We attempt to cater for both these interpretations by considering that the basic interpretation 
is specification-level parallelism while allowing the passive/active component annotations on 
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tester components to indicate how this specification-level parallelism is meant to be 
implemented. We may even allow these annotations to be placed on SUT components if we 
wish to be able to impose such implementation restrictions on the SUT. 

2.6 Local orderings 

2.6.1 Introduction 
Local orderings are curved discontinuous lines connecting events on the same lifeline. They 
are used to impose orderings between events that fall inside a coregion. They are essential for 
conserving orderings under lifeline composition. 

2.6.2 Syntax 
Figure 4-10 shows the syntax of the local ordering construct. Notice that there no ordering is 
denoted between the reception of messages m1 and m2, nor between the emission of message 
m3 and m4, nor between the reception of m1 and the emission of m3. 

SUT
Tester1 Tester2

m1

m2

m3

m4

 

Figure 4-10: Local orderings specifying that the reception of message m2 precedes the emission of messages m3 
and m4 and that the reception of message m1 also precedes the emission of message m4.  

2.6.3 Well-formedness conditions 
A local ordering can only be used to connect two events falling inside the same coregion. 

2.6.4 Informal semantics 
Local orderings play the role of local MSC general orderings, that is, general orderings 
between events on the same lifeline. They are used to impose orderings between events within 
a coregion. 

2.7 Focus bars 

2.7.1 Introduction 
In TeLa, vertically-aligned rectangles called focus bars must be attached to the end of 
synchronous invocation arrows and may optionally be attached to the end of asynchronous 



98   A SCENARIO-BASED TEST DESCRIPTION LANGUAGE (TELA) 

invocation arrows. In the case of a synchronous invocation, the focus bar is terminated by the 
return message of that synchronous invocation4. 

Note that we allow focus bars associated to intra-SUT synchronization messages. This is to 
allow the definitions of nested invocation and callback, see below, to take into account causal 
chains passing through the SUT. 

2.7.1.1 OWNING COMPONENT OF A FOCUS BAR 
Given a focus bar, let the invocation represented by the message arrow to which the focus bar 
is attached be called the focus bar invocation, the port which is the target of the focus bar 
invocation be called the focus bar port and the owning component of the focus bar port be 
called the focus bar component. The focus bar component is said to own the focus bar. In the 
simple object model, the owning component of a focus bar is always a base-level component 
(object). 

By structural consistency, the focus bar component is necessarily a subcomponent (proper or 
otherwise) of the lifeline component. An event is in the scope of a focus bar if it is vertically 
coincident with it. Due to lifeline composition/decomposition, focus bar scope does not 
necessarily coincide with the idea of activations. For example, an emmision event can be 
ordered with respect to the events of a focus bar without being emitted by (a subcomponent 
of) the focus bar component. Let the events in the scope of the focus bar be called the focus 
bar events. By structural consistency, if the lifeline component is the focus bar component, all 
focus bar events are owned by the focus bar component or a subcomponent of it. 

2.7.1.2 CALLING REGIONS 
The connection between a synchronous invocation message and the corresponding return 
message is denoted by connecting the synchronous invocation message reception event and 
the return message emission event on the receiver lifeline using a focus bar. The vertical 
space on the sender lifeline bounded by the synchronous invocation emission event and the 
return message reception event also defines a scope which we call the calling region (though 
we do not use any special syntax to denote it). 

Given a calling region, let the bounding synchronous invocation and corresponding return be 
called the calling region invocation and the calling region return respectively. Let the 
component owning the originating port of the calling region invocation (the emitting 
component) be called the calling region component. Let the bounding events of the calling 
region, together with any events falling inside the calling region be called the calling region 
events. If the lifeline component on which the calling region occurs is a passive component, 
the calling region is said to define a suspension region. A calling region on a lifeline 
representing an active component is not a suspension region. 

2.7.1.3 NESTED INVOCATIONS AND CALLBACKS 
An invocation emitted from within the scope of a focus bar whose originating port is owned 
by the focus bar or a subcomponent of it is said to be a first-level nested invocation of the 
focus bar invocation. If an intra-SUT synchronization message has an associated focus bar, 
then any message emitted inside the scope of this focus bar is said to be a first-level nested 
invocation of the focus bar invocation. A first-level nested invocation is a nested invocation 

                                                 
4 Note that we also allow synchronous invocations from the tester to the SUT with no return arrow in order to 
model the situation in which the SUT does not reply due to some internal error. 
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and a nested invocation of a nested invocation is also a nested invocation, i.e. the property of 
being nested is recursive. Notice that on composition of a lifeline containing a (level 1) focus 
bar and another lifeline on which a nested invocation of the (level 2) focus bar invocation is 
emitted, in the composed diagram, the nested invocation emission will be in the scope of the 
(level 1) focus bar represented in the composed diagrams. Focus bars may be conserved under 
lifeline composition by using auto-invocations. If the notion of passive/active components is 
used, we oblige this conservation on passive components. 

A nested invocation i2 of an invocation i1 is said to be a base-level callback or object callback 
of i1 if 
• i2 is received inside the calling region defined by i1 
• the target port of i2 is the originating port of i1 
A nested invocation i2 of an invocation i1 is said to be a callback or focus bar callback of i1 if: 
• i1 is a first-level nested invocation of a focus bar invocation, 
• i2 is received inside the calling region defined by i1 (this calling region being in the scope 

of the corresponding focus bar), 
• the target port of i2 is owned by the focus bar component or by a subcomponent of it. 

2.7.1.4 NESTED AND COINCIDENT FOCUS BARS 
Focus bars which overlap vertically on a lifeline may, or may not, overlap horizontally. If 
they do not overlap horizontally, they are said to be coincident but independent. If two focus 
bars overlap horizontally, one of them must be vertically contained in the other and the inner 
one is said to be a nested focus bar of the outer one. If a set of focus bars are nested, an event 
may be in the scope of several focus bars. In such a case, an event is said to be in primary 
scope of the outermost focus bar at that vertical position. By well-formedness, if a focus bar is 
nested inside another, the inner focus bar invocation is a nested invocation of the outer focus 
bar invocation. 

2.7.2 Syntax 
The focus bar is represented as a vertical rectangle attached to the end of a message arrow. 
Figs. 4-11, 4-12 and 4-13 illustrate the interaction between the focus bar and the coregion. 

Classifying Tester2 of Fig. 4-11 as a passive component is to say that in any linearisation, the 
events !m1 and !m8 cannot occur between ?m2 and !m3, nor between !m3 and !m4, nor between 
!m4 and !r2, nor between ?m5 and !m6, nor between !m6 and !m7 (where ! denotes emission and 
? denotes reception). See Section 2.7.4 for more details. 

Classifying Tester2 of Fig. 4-12 as a passive component is to say that in any linearisation, the 
events !m1 and !m8 cannot occur between any of the other events, and the event !m7 cannot 
occur between ?m5 and !m6 and also that m5 is necessarily a callback. See Section 2.7.4 for 
more details. 

In Fig. 4-13, note the use of focus bars attached to intra-SUT synchronization messages in 
order to allow causal chains to pass through the SUT. 
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SUT
Tester1 Tester2

m1

m2

m3

m5

m6

m7

m8

SUT
Tester1 Tester2

m1

m2

m3

m5

m6

m7

m8

m4 m4

r2 r2

 

Figure 4-11: Focus bars associated to synchronous and asynchronous invocations falling inside the scope of a 
coregion (l.h.s) and the equivalent orderings denoted using the local ordering construct (r.h.s).  

SUT
Tester1 Tester2

m1

m2

m3

m6

m7

m8

m4

r2

SUT
Tester1 Tester2

m1

m2

m3

m6

m7

m8

m4

r2

m5 m5

 

Figure 4-12: A more complicated example of nesting of focus bars and coregions (l.h.s) and the equivalent 
orderings denoted using the local ordering construct (r.h.s).  
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SUT1
Tester1 Tester2

m1

m2

m3

sync

m5

m4

SUT2

sync

 

Figure 4-13: Nested invocations and callbacks. To simplify the example, we suppose that all lifelines represent 
base-level components so that there is no need for explicit port information. 

2.7.3 Well-formedness conditions 

2.7.3.1 OWNING COMPONENTS AND NESTING 
The return message of a synchronous invocation must be owned by the focus bar component 
or by a subcomponent of it. 

If a focus bar f2 with focus bar invocation i2 is nested inside another focus bar f1 with focus 
bar invocation i1, then i2 must be a nested invocation of i1. In fact, in the case where the 
lifeline on which the focus bar appears represents a passive component, i2 is necessarily either 
an auto-invocation or a callback of a nested invocation of an invocation emitted in the scope 
of f1.  

2.7.3.2 FOCUS BARS ON PASSIVE LIFELINES 
If control flow scheme annotations are used in the component model, we also have the 
following well-formedness conditions w.r.t. the passiveness notion: 

• If a lifeline component is passive, all incoming invocations must have associated focus 
bars and all outgoing invocations must be in the scope of a focus bar. Thus, on a passive 
lifeline, all calling regions are inside focus bars. 

• If two lifeline components are passive, then any composition of these lifelines (see 
Section 2.8) must conserve all focus bars (by means of auto-invocations that may be 
synchronous or asynchronous). This then ensures that on passive lifelines, all events in the 
primary scope of a focus bar are owned by the focus bar component or one of its 
subcomponents. 

• Coincident but independent focus bars cannot occur on a passive lifeline. 

• If a lifeline component is passive, no focus bar occurring on it can have incoming 
messages in its scope that are not callbacks of a nested invocation of the focus bar 
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invocation (in fact, due to point 2 above, we need only discuss first-level nested 
invocations). 

2.7.4 Informal semantics 
A focus bar attached to a synchronous invocation arrow and terminated by a synchronous 
return arrow serves to relate the request to the reply. A focus bar attached to either a 
synchronous an asynchronous invocation that falls inside a coregion serves to impose a total 
ordering between the events in its scope. A calling region that falls inside a coregion also 
serves to impose a total ordering between the events in its scope. Thus, in this respect, a focus 
bar is a shorthand for a set of local orderings. Coincident but independent focus bars denote 
the same ordering relations as a single focus bar occupying the combined vertical scope of the 
coincident focus bars. 

In addition to denoting ordering, the focus bar is the principle TeLa construct concerned by 
control flow scheme annotations (i.e. the property of activeness/passiveness). The way focus 
bars impose orderings and the way they are affected by the property of passiveness is 
coherent with their interpretation as representing method bodies (or activations). 

2.7.4.1 BLOCKING OF PASSIVE COMPONENTS ON SYNCHRONOUS INVOCATION 
If the emitting component of a synchronous invocation is passive, it is considered to be 
blocked between the sending of the invocation and the reception of the corresponding reply. 
The same applies to any passive subcomponent or supercomponent of it. Clearly, for a 
synchronous invocation emitted in the scope of a focus bar, if the focus bar component is 
passive, it is among the blocked components. 

The blocked component(s) may be unblocked by the reception of a base-level callback of the 
synchronous invocation, the unblocking lasting for the duration of the treatment of this 
callback. We also consider that the blocked component(s) may be unblocked by the reception 
of a focus bar callback that is not a base-level callback, if the following three conditions are 
satisfied: the synchronous invocation is emitted in the scope of a focus bar, the originating 
port of the synchronous invocation is the focus bar component or a subcomponent of it, and 
the focus bar component is passive. Again, the unblocking lasts for the duration of the 
treatment of this callback. Thus, the only events owned by a passive supercomponent of the 
emitting (base-level) component that can occur in a calling region are receptions and replies 
to callbacks. 

2.7.4.2 PASSIVE FOCUS BAR COMPONENTS AND COREGIONS 
Suppose we have a coregion containing, or overlapping, a focus bar. That is, some or all of 
the events in the scope of the coregion are in the scope of the focus bar but there are events in 
the scope of the coregion which are not in the scope of the focus bar. The property of 
passiveness of the focus bar component is read as an implementation directive imposing a 
relation between the focus bar events of the coregion and the other events of the coregion. The 
relation between these two types of events is expressed as a constraint on the allowed 
linearisations of all events in the scope of the coregion. 

Let the events which are in the scope of the coregion, but not in the scope of the focus bar, 
and which are owned by a passive sub- or super-component of the focus bar component, be 
called the restricted events. The constraint on linearisations is as follows: in any allowed 
linearisation, no restricted event can occur between two focus bar events. Notice that 
interleaving with events of the coregion owned by active subcomponents of the lifeline 
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component is not constrained. See Figures 4-11 and 4-12 and the explanatory text of Section 
2.72 for an example. 

2.7.4.3 PASSIVE CALLING REGION COMPONENTS AND COREGIONS 
Suppose we have a coregion containing, or overlapping, a calling region. If the calling region 
is inside a focus bar which, in turn, is inside a coregion, the case is already covered by the 
previous section, so suppose the calling region is not inside a focus bar. In a similar way to 
the situation for focus bars, the property of passiveness of the calling region component is 
read as an implementation directive imposing a relation between the calling region events of 
the coregion and the other events of the coregion. 

Let the events which are in the scope of the coregion but not in the scope of the calling region, 
and which are owned by a passive super-component of the calling region component, be 
called the restricted events. The constraint on linearisations is as follows: in any allowed 
linearisation, no restricted event can occur between two calling region events. Notice that 
interleaving with events of the coregion owned by active subcomponents of the lifeline 
component is not constrained. 

2.8 Lifeline composition 

2.8.1 Introduction 
The existence of an underlying component model provides the structure necessary to define 
lifeline composition and decomposition, see the definition of interaction framework in 
Chapter 5, Section 1.3.5 and 1.4.3. 

The coregion and local ordering constructs are essential in order to preserve the orderings on a 
composed lifeline, i.e. at the interface of the component which the composed lifeline 
represents. 

Lifeline composition also presents a challenge for the use of focus bars. However, we have 
defined focus bars in such as way as to permit their unambiguous use in the presence of 
lifeline composition (see, in particular, Section 2.7.3.2). As mentioned earlier, the same level 
of decomposition must be used throughout a one-tier or two-tier scenario structure. 

2.8.2 Syntax 
Two examples of lifeline composition are shown below. Both Figs. 4-14 and 4-15 show two 
views of the same behaviour, one showing more detail than the other. In both figures, on the 
r.h.s., the component Tester 2 is represented, while on the l.h.s. its two subcomponents 
Tester2a and Tester2b are represented. 

Fig. 4-14 shows the need for local ordering relations; the required ordering relations cannot be 
imposed using two coincident but independent focus bars (since ?m1 and !m3 are not ordered). 

Classifying Tester2 of Fig. 4-15 as a passive component is to say that m3 cannot occur 
between m1 and r1 in any linearisation, thus imposing the relation !r1 < ?m3, effectively 
annulling the coregion. 
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Tester1 Tester2a

m1m2

m3

m5

m4

SUT2
Tester2b

SUT
Tester1 Tester2

m1

m2

m3

m4

 

Figure 4-14: The TeLa sequence diagram on the r.h.s. is obtained from the TeLa sequence diagram on the l.h.s 
by composing the two lifelines Tester2a and Tester2b.  

Tester1 Tester2a

m1
m2

m3

SUT2
Tester2b Tester1 Tester2

m1

m3

SUT2

r1

r2

r3

r1

r3

 

Figure 4-15: The TeLa sequence diagram on the r.h.s. is obtained from the TeLa sequence diagram on the l.h.s 
by composing the two lifelines Tester2a and Tester2b. 

2.8.3 Well-formedness conditions 
The set of lifelines of the composed and decomposed diagram both define an interaction 
framework, see Chapter 5, Sections 1.3.5 and 1.4.3. 

2.8.4 Informal semantics 
One diagram is a composition of another if the interaction framework of the first diagram is a 
decomposition of that of the second diagram, see Chapter 5, Section 1, and the ordering and 
conflict relations for the events which appear in both diagrams are the same. 

2.9 Sequence diagram loops 

2.9.1 Introduction 
We wish to introduce a locally-defined loop construct to provide a user-friendly, if rather low-
level, means of specifying simple loops in a single sequence diagram. However, the global 
meaning of locally-defined loops is not necessarily clear, except for procedural sequence 
diagrams (diagrams with a single flow of control and using only synchronous invocations). In 
particular, if the scope of a loop is only defined on one lifeline, how do we know its scope on 
other lifelines when asynchronous invocations do not necessarily have an associated focus bar 
and there may be more than one control flow? How do we detect illegal casual chains which 
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start in the scope of a loop and finish on the lifeline of the loop but outside the scope of the 
loop (or vice versa)? 

One way to solve this problem is to explicitly specify the global scope by delimiting a region 
encompassing several lifelines (of course, no messages may cross this scope). This is the 
solution adopted in the MSC standard for the loop in-line expression. 

We adopt a slightly more complicated solution that involves recursively defining the notion of 
projection of the loop scope on other instances, see below. This second solution is more in 
keeping with our desire to use operators with local scope in TeLa sequence diagrams, even if 
this means that TeLa sequence diagram loops are less expressive than TeLa activity diagram 
loops. More complicated loops can be described using TeLa activity diagrams. 

In TeLa sequence diagrams with no so-called “crowns”, see Chapter 5, Section 3.1, that is, 
sequence diagrams which have the RSC property [ChaMatTel96], we can define the 
projection of the loop scope onto other lifelines as follows: 

• If the event corresponding to the emission, resp. reception, of a message is inside the loop, 
the event corresponding to the reception, resp. emission, of that same message is also 
inside the loop. 

• If a lifeline contains two events which are in the loop, any events vertically between these 
two events are also in the loop. If the events are located on a lifeline other than the one on 
which the loop is defined, the vertical space between these two events is considered to 
define the projection of the scope of the loop onto this lifeline. 

The projection of the loop scope is therefore defined by the two valid cuts of the diagram (that 
is, cuts which bisect all lifelines without bisecting a message) which include the loop scope 
and the minimum number of events. This can be calculated using Tarjan´s algorithm for 
calculating simply connected components of a graph [Tar72], see also [HélMai00]. 

In general, all loops should be placed on tester lifelines. However, in the same way as we 
allow intra-SUT synchronizations, we also allow loops on SUT lifelines, in case this is more 
convenient. Recall that though the SUT system dynamic variables are not allowed in TeLa, 
we have not disallowed SUT component dynamic variables, which can therefore be used as 
loop counters for such loops. 

2.9.1.1.1 Owning component of a loop 
The owning component of the loop is the smallest component which contains all the 
following components as subcomponents: 
• the owning component of the originating port of each of the messages emitted inside its 

scope 
• the owning component of the target port of each of the messages received inside its scope 
• the owning component of the internal actions inside its scope 
Clearly, if these component are not all the same component, tester coordination internal to the 
component owning the loop is necessary to implement it. In the simple object model, all loops 
are owned by a base-level component (object). 

2.9.2 Syntax 
Graphically, a sequence diagram loop is presented as a self-invocation of the method 
for(a;b;c), which thus defines the scope of the loop construct. a, c are any textual 
expressions legal inside internal actions and b is a boolean expression; See Fig. 4-16 for an 
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example in which the test fails if the size of any of the queues 0, 1, 2 and 3 is less than 
max_size. 

SUT

for(i=0; i<4; i:=i+1)

get_queue_size(y)

get_queue_size: ∗

 MTC

« assert »
_1 < max_size

« assign »
y := i

 

Figure 4-16: An example of the use of the TeLa sequence diagram loop construct, where i is a component 
dynamic variable, y is a system dynamic variable and _1 is an anonymous variable. 

2.9.3 Well-formedness conditions 
The sequence diagram loop cannot be used in diagrams which are not RSC (see Chapter 5, 
Section 3.1) [ChaMatTel96] in order for the notion of projected scope, see above, to be well-
defined. 

If a system dynamic variable value used in a loop guard is not preceded by a base-level 
subcomponent name followed by a dot (where this base-level subcomponent is a 
subcomponent of the loop component), all the base-level subcomponents of the component 
owning the loop share a common idea of its value. 

The scope of a loop on any lifeline (that is including the projected scope) cannot overlap with 
any other scope (operator, focus bar, calling region). This does not prohibit a loop containing 
another scope or being contained within another scope, though see the condition below 
concerning coregions. Applying this rule to calling regions on procedural diagrams (where 
loops may involve more than two lifelines) eliminates the possibility of causal flows starting 
and finishing on the lifeline of the loop, with start event inside the scope of the loop but with 
finish event outside the scope of that loop (or vice versa). 

The scope of a loop must be entirely contained in a single sequence diagram.  

Though a coregion may occur inside the scope of a loop, a loop may not occur inside the 
scope of a coregion. This latter restriction ensures that each use of a TeLa sequence-diagram 
loop is equivalent to a use of a TeLa activity-diagram loop. One apparent way to relax this 
restriction would be to state that the events in the scope of a loop that falls inside a coregion 
are ordered w.r.t. each other in the same way as the events in the scope of a focus bar that falls 
inside a coregion. However, there would be no equivalent TeLa activity diagram for such a 
TeLa sequence diagram without the introduction of an explicit parallel operator between TeLa 
activity diagrams, something that we have tried to avoid. 

2.9.4 Informal semantics 
In the expression for(a;b;c), a is any internal action occurring immediately before the 
scope of the loop on the lifeline, b is a boolean expression evaluated on each iteration to see if 
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the loop body should be executed5, and c is any internal action occurring immediately before 
the end of the scope of the loop on the lifeline. for(a;;c) defines a loop with unspecified 
termination condition (rather than being infinite). 

2.10 Sequence diagram choices 

2.10.1 Introduction 
The TeLa sequence diagram choice construct provides a user-friendly means of specifying 
choices in a sequence diagrams. A sequence diagram choice is used to model a situation in 
which the tester may perform one of several possible message receptions or one of several 
possible message emissions. 

Though semantically all choices are tester choices, due to the semantics by projection onto 
tester lifelines, syntactically, the choice operator may be situated either on a tester lifeline or 
on an SUT lifeline. 

The TeLa sequence diagram choice makes use of message-anchored TeLa sequence diagram 
references. Different sequence diagrams are used to denote the different possible ways 
another primary sequence diagram can be continued. Several messages on the referencing 
diagram, one for each of the possible continuations, are then used as link messages to the 
referenced diagrams. 

2.10.1.1 THE NOTION OF LOCAL CHOICE 
We say that a TeLa sequence diagram choice is local if the messages constituting the different 
alternatives of the choice are represented as being emitted by the same (tester or SUT) 
lifeline, whether it is the emissions, or the receptions, of these messages which are in the 
scope of the choice operator. Otherwise we say the choice is non-local. 
The notion of local choice concerns the semantics before projection onto tester instances. As a 
consequence, it is not the most useful locality notion for our test description language. Below, 
we define a notion of locality that concerns the semantics after projection onto tester lifelines. 

2.10.1.2 CHOICES BETWEEN MESSAGES RECEIVED ON THE SAME LIFELINE 
For a language with a semantics based on the use of complete causal flows, all choices should 
be viewed as occurring at emission and therefore a choice operator whose scope can only 
include emissions, and which can therefore only specify local choices, should be sufficient. 
Hence, the “presentation option” branching construct of UML 1.4 was of this nature. 
TeLa, however, is a black-box test description language. The semantics by projection onto 
tester lifelines means that choices involving alternative messages sent from the SUT to the 
tester in fact denote choices between the corresponding receptions of these messages at the 
tester. If the scope of a sequence-diagram choice operator could only include emissions and 
we wished to describe a choice between reception, at the tester, of messages sent from 
different SUT lifelines, we would be obliged to add SUT-internal synchronization messages, 
as in Fig. 4-27 and 4-28. While we allow this possibility, we take the view that obliging it, 

                                                 
5 Note that evaluation of this guard never leads to a verdict since the exit from the loop is guarded by its negation 
so an event from one of the these two branches is always fireable. 
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that is, obliging the specification of inter-SUT communication, contradicts the black-box 
nature of the SUT. 

We therefore allow the scope of the sequence-diagram choice operator to contain either 
message emissions or message receptions but not both. A choice operator whose scope can 
include message receptions makes non-local choices inevitable but, as already mentioned, this 
notion of locality is, in any case, of little relevance to our test language. More importantly, 
such an operator allows greater flexibility for the test designer, even if it leads to diagrams 
which are perhaps slightly less intuitive, such as those of Figs. 4-22 and 4-24. It also enables 
us to deal with the problem of denoting alternative responses to a synchronous invocation, 
providing the means to ensure that both messages are emitted from the bottom of the focus 
bar, as in Figs. 4-21 and 4-23. 

The restriction of TeLa sequence diagram choices to choices between either message 
receptions or message emissions makes it easier to ensure syntactically that a test description 
is “controllable”, see Section 2.10.5.1. More complicated choices, such as choices between 
internal actions, can be described using TeLa activity diagram choices. 

2.10.1.3 MORE LOCALITY NOTIONS 
The concepts defined in this section are generalised to the TeLa activity diagram choice 
construct in Section 3.4.1.2. 

2.10.1.3.1 Tester-internal, SUT-internal, hybrid and proper choices 
We say that a TeLa sequence diagram choice is tester internal if all the messages which 
constitute the alternatives of the choice are both emitted and received by the tester. The notion 
of tester internal is the same for both the semantics before projection, and that after 
projection, onto tester instances. 

We say that a TeLa sequence diagram choice is SUT internal if all the messages which 
constitute the alternatives of the choice are both emitted and received by the SUT. The notion 
of SUT internal concerns the semantics before projection onto tester instances. Under the 
projection semantics, an SUT-internal choice will become a choice between tester actions. 

The only SUT-internal choices we allow are local, see next section. We do not assume that 
tester internal choices are local, though the under-specification that the use of non-local tester 
internal choice implies would be somewhat unusual. 

We say that a choice is proper if either all the messages constituting the alternatives of the 
choice are sent from the SUT to the tester or are all sent from the tester to the SUT.  Note that 
if a choice is neither tester internal nor SUT-internal, it is not necessarily proper. This is since 
choices may involve both coordination messages and proper messages (that is messages 
which are not coordination messages). Such improper choices will be called hybrid choices. 

2.10.1.3.2 Test local and SUT local choices 
We say that a choice is test local if the messages constituting the different alternatives are 
either all emitted or all received by a particular tester instance and test non-local otherwise. 
The notion of tester local is the same for the semantics before projection, and that after 
projection, onto tester instances. However, it does depend on the level of decomposition, c.f. 
the notion of maximally test local choice of Section 3.4.1.2. 

Similarly, we say that a choice is SUT local if the messages constituting the different 
alternatives are represented as being either all emitted or all received by a particular SUT 
instance. The notion of SUT local concerns the semantics before projection onto tester 
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instances (though in some systems, information concerning the sending port is available at the 
tester so the notion may be recoverable after projection). Under the projection semantics, an 
SUT-local choice will become a choice between tester actions that is not necessarily test local 

Since the scope of the sequence diagram choice construct is defined on a single lifeline and 
the choice is either between emissions or receptions on that lifeline, all choices which can be 
described with it are either test local or SUT local. In particular, a tester internal choice is 
necessarily test local, but not necessarily local, while an SUT internal choice is necessarily 
SUT local, but not necessarily local. A choice which is neither test local nor SUT local cannot 
be represented in a TeLa sequence diagram and must be represented using a TeLa activity 
diagram. 

2.10.1.3.3 Test local choice: the appropriate locality notion for testing 
The appropriate locality notion for the testing context is not the local choice but the test local 
choice. The use of the semantics by projection onto tester instances reflects the fact that TeLa 
is a black-box testing language. In such a language, the important property for a choice 
between messages sent from the SUT is whether or not it is test local; whether or not it is 
local (and therefore SUT local) is of much less importance in black-box testing. In any real 
implementation all choices are local; however, test non-local choices between messages 
received from the SUT will often arise in black-box testing. The property of locality is only 
really of importance when it coincides with that of test locality, i.e. for tester emissions. 

Note that the notion of test local depends on the level of decomposition. See Section 3.4.1.2 
for a notion that does not depend on decomposition: maximally test local choice. 

In TeLa sequence diagrams, a test local choice is either a local choice between emissions on a 
tester lifeline or a choice, which may or may not be local, between receptions on a tester 
lifeline. 

As for test non-local choices, the principal interest is in test non-local choices involving 
messages emitted by the SUT. However, we do not prohibit test non-local choices between 
messages emitted by the tester; such a choice is to be interpreted as (rather unusual) under-
specification of the tester. Such non-local choices will need to be resolved by other 
mechanisms such as additional synchronizations or a global controller before a test 
description involving such a choice can be fully executable. However, since TeLa involves 
implicit verdicts, the same is also true of test non-local choices between tester receptions, see 
Chapter 5, Section 2.3.3.2 for more details. 

The only SUT-internal or hybrid SUT-local choices we allow are those whose scope contains 
only emissions. In the hybrid case, some of these emissions are of SUT synchronisation 
messages. In the SUT internal case, they are all of SUT synchronisation messages. Such SUT 
local choices are subject to additional well-formedness constraints in order to ensure that the 
tester choice which they denote (i.e. after projection) is deterministic and is a choice between 
tester receptions. 

2.10.1.4 THE NOTION OF TEST CASE AND CHOICES BETWEEN TESTER EMISSIONS 
To ensure that a TeLa test description defines a test case, see Section 2.10.5.1, in the 
enumerated data case, only those sequence-diagram choices that denote a choice between 
tester receptions can be used. Recall that, due to the semantics by projection, such a choice 
operator may actually show a choice between SUT emissions. Activity-diagram choices, see 
Section 3.4, on the other hand, can be between tester emissions, even in the enumerated data 
case, though the resulting test description cannot denote a test case. 
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In the non-enumerated data case, sequence-diagram choices between tester emissions can also 
be used. To ensure that a TeLa test description defines a test case, see Section 2.10.5.1, the 
messages of such a choice must be guarded. 

The meaning of guards is different for receptions from the SUT than for other types of 
message, as explained in the previous sections concerning message labels and internal actions. 

2.10.1.5 INDEFINITE CHOICES 
Choices for which the criteria for making the choice are not fully specified are termed 
indefinite choices. All other choices are termed definite choices. We reserve the term non-
deterministic choice for an indefinite choice between messages with identical messages 
names and parameter values. 

Unlike the unwieldy semantics of branching in UML 1.4, the interpretation of an indefinite 
choice in TeLa does not allow concurrent execution of alternative events in an execution 
where more than one alternative event of a choice is fireable. In both TeLa sequence diagram 
choices and TeLa activity diagram choices, only one alternative of the choice can ever be 
executed. Indefinite choices are simply interpreted as a form of under-specification, except for 
non-deterministic choices between observable actions which are considered invalid. An 
indefinite choice between controllable actions means that the information in the specification 
is not sufficient to guarantee that only one of the alternatives is fireable in any execution. 

2.10.1.6 OWNING COMPONENT OF A CHOICE 
In a choice between tester emissions, the owning component of a choice is the smallest 
component containing the following subcomponents: 
• the owning component of each of the guards on the messages emitted inside its scope (the 

owning component of the originating port of that message is necessarily a subcomponent), 
• the owning component of the originating port of each of the unguarded messages emitted 

inside its scope. 

Clearly, if these components are not all the same base-level component, tester coordination 
internal to the component owning the choice is necessary to implement it. In fully-guarded 
choices between emissions (in TeLa, to ensure controllability, we impose the condition that 
all choices between emissions should be fully-guarded), only the last message of a choice can 
be unguarded. 

If the choice is not test local (and is thus to be interpreted as under-specification of the tester) 
the owning component of the choice may be the whole tester component. If the choice is test 
local, then in the simple object model, the owning component of the guard and of the 
originating port of each of the emitted messages (and therefore of the choice) is the same 
base-level component, which is represented by the lifeline.  

In a choice between tester receptions, the owning component of a choice is the smallest 
component containing the following subcomponents: 
• the owning component of the target port of each of the messages received inside its scope. 
Clearly, if these components are not all the same component, tester coordination internal to 
the component owning the choice is necessary to implement it. 

If a choice is not test local, the owning component of the choice may be the whole tester 
component. If the choice is test local, then in the simple object model, it is owned by a base-
level component (object). 
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2.10.1.7 CHOICES SPECIFIABLE WITH SEQUENCE DIAGRAM CHOICE OPERATOR 
We now discuss the different types of choice which can be specified with the TeLa sequence 
diagram choice operator. We do so from a tester point of view since, thanks to the projection 
semantics, a TeLa sequence diagram specifies only tester behaviour.  

Clearly, for a choice between messages which are all emitted by the tester (so ruling out 
hybrid SUT-local choices) if the choice is local, it is test local. Such a local choice may or 
may not be proper and may or may not be SUT local. If the choice is non-local, it is either 
SUT local and proper or test local and tester internal. Choices between messages emitted by 
the tester are dealt with in Sections 2.10.2.1 and 2.10.2.2 below. 

For a choice between messages which are all received by the tester in the semantics before 
projection (so ruling out hybrid SUT local choices), the choice may be test local whether or 
not it is local. If the choice is not tester internal and not SUT local it must be non-local (but 
test local). We do not allow hybrid choices between messages which are all received by the 
tester in order to obtain the property of controllability, see below. Therefore, if the choice is 
non-local and not tester internal, it is necessarily proper. Choices between messages received 
by the tester are dealt with in Sections 2.10.2.3 and 2.10.2.4 below. 

The remaining choices are SUT local and either SUT internal or not proper. We impose the 
condition that, under the projection semantics, such a choice must denote a deterministic 
choice between tester receptions. These choices are dealt with in Section 2.10.2.5 below. 

As stated above, choices which are neither SUT local nor test local cannot be described using 
the TeLa sequence-diagram choice operator. If required, they must be described using the 
TeLa activity-diagram choice operator. However, if such a choice is between messages sent 
by the SUT, it can be turned into a semantically-equivalent hybrid SUT-local choice or an 
SUT-internal choice by the addition of intra-SUT synchronisation messages, see Section 
2.10.2.5 below, due to the use of the semantics by projection onto tester lifelines. 

2.10.2 Syntax 
Graphically, the choice between several alternatives is presented as a self-invocation of the 
method choice, which thus defines the scope of the choice construct. As stated above, the 
connection between the alternative messages of the choice and the consequent ensuing 
behaviours is made using message-anchored TeLa sequence diagram references. 

We now present systematically the different types of choice which it is possible to describe 
with TeLa sequence diagrams. The examples of TeLa sequence diagram constructs in 
previous figures of this chapter show only diagram fragments. However, the use of sequence 
diagram references requires the use of complete diagrams, in order to show how diagrams are 
named. Thus each TeLa sequence diagram shown in the figures of this section is enclosed in a 
box with an indexing tab in which its name appears. 

2.10.2.1 TEST LOCAL CHOICES BETWEEN MESSAGES SENT BY THE TESTER 
Such choices are necessarily local though they may be tester internal (their scope includes 
only tester coordination messages), hybrid (their scope includes some tester coordination 
messages) or proper. 

2.10.2.1.1 General case 
Such choices are described using a sequence-diagram choice operator – whose scope includes 
the alternative emissions – on the emitting tester lifeline. Such a choice is either tester internal 
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see Fig. 4-17, hybrid see Fig. 4-18, proper and SUT non-local see Fig. 4-19 or proper and 
SUT local see Fig. 4-20. 
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 [y = false] trigger()

 [y = true] trigger()

Seq2

MTC

Seq 1

Tester1 Tester2

Seq 3

stack2
MTC

 trigger()
 get_last()

 get_last: ∗last_sig2
 trigger: last_sig2

Tester2

Seq 2

stack1
MTC

 trigger()
 get_last()

 trigger: last_sig1
 get_last: ∗last_sig1

Tester1

 

Figure 4-17: A tester-internal, local choice 
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[y = false] get_top() 

[y = true] trigger() 
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Seq 2 

Tester1 Tester2

 get_top() 
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 get_top() 

 get_top: *top1
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Figure 4-18: A test local, SUT non-local, hybrid choice. 
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 get_temp ∗x

[x>=0]: notify()
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SUT1 SUT2

 notify: ∗y

 notify()

 sum(x+y)

Tester

Seq 2

Seq 3
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 notify: ∗y
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Figure 4-19: A fully-guarded, test local, SUT non-local, proper choice. 

Seq 1

SUT

 queue-size()

 queue-size: ∗x
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[x=6]: f(6)

Seq3

[x=9]: g(9)

choice
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Seq 2

SUT

 f(6)

f: 12
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SUT

 g(9)

g: 36

Tester

Seq 3

 

Figure 4-20:  A fully-guarded, test-local, SUT-local, proper choice between messages emitted by the tester. 

2.10.2.1.2 Alternative for (test) local / SUT local choices between synchronous returns 
Due to the projection semantics, such choices can also be described using a sequence-diagram 
choice operator – whose scope includes the alternative receptions – on the receiving SUT 
lifeline. This is done for presentation reasons in the case of choices between different tester 
responses to a synchronous invocation from the SUT, see Fig. 4-21. Note that alternative 
responses to a synchronous invocation are shown as originating at the same point: the bottom 
of the corresponding focus bar. 
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Seq 3
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Figure 4-21: A fully-guarded, test local, SUT-local, proper choice between return messages to a synchronous 
invocation made by the SUT. In this case, for presentation reasons, the choice operator is placed on the SUT 

lifeline. 

2.10.2.2 TEST NON-LOCAL CHOICES BETWEEN MESSAGES RECEIVED BY THE SUT 
Such choices are necessarily SUT local, non-local and not tester-internal. They are also 
proper, since we do not allow hybrid SUT-local choices whose scope contains receptions of 
SUT synchronization messages. Test non-local, SUT-local, proper choices between messages 
received by the SUT are to be interpreted as under-specification of tester behaviour. 

2.10.2.2.1 (Test) non-local, SUT-local, proper choices 
Such choices are described using a sequence-diagram choice operator – whose scope includes 
the alternative receptions – on the receiving SUT lifeline, see Fig. 4-22. 

SUT

choice
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 response2()

Seq3

 response1()

Seq2

Tester1
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Tester2

Seq 2

SUT

 response1()

 method1()
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SUT

response2()

 method2()

Seq 3
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Figure 4-22: A test non-local, SUT-local, proper choice between messages emitted by the tester. Such a diagram 
is to be interpreted as under-specification of the tester. 
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2.10.2.3 TEST LOCAL CHOICES BETWEEN MESSAGES RECEIVED BY THE TESTER 
If such choices are non-local, they may be tester internal (their scope includes only tester 
coordination messages) or proper; recall that hybrid test-local choices between messages 
received by the tester are prohibited in order to ensure controllability. Tester-internal, non-
local choices are to be interpreted as a rather unusual under-specification of tester 
coordination. If they are local, they are either tester internal (in which case, they are covered 
in Section 2.10.2.1) or they are SUT local and proper.  

2.10.2.3.1 Test-local choices not covered in Section 2.10.2.1 
Such choices are described using a sequence-diagram choice operator – whose scope includes 
the alternative receptions – on the receiving tester lifeline. We illustrate the (SUT) local, 
proper case, see Fig. 4-23, and the non-local, proper case, see Fig. 4-24, and the non-local 
tester-internal case, see Fig 4-25. Notice the crucial difference between the example of Fig. 4-
20 and that of Fig. 4-23. In the latter, if the value returned by the SUT is neither 6 nor 9, an 
implicit fail verdict is obtained. In the former, if the value returned by the SUT is neither 6 
nor 9, an implicit inconclusive verdict is obtained. 
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Figure 4-23: A test local, SUT-local, proper choice between messages received by the tester. 
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Figure 4-24: A test local, SUT non-local, proper choice between messages received by the tester. 
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Figure 4-25: A tester-internal, non-local choice. Such a diagram is to be interpreted as a (rather unusual) under-
specification of tester coordination. 

2.10.2.4 TEST NON-LOCAL CHOICES BETWEEN MESSAGES SENT BY THE SUT 
Such choices are necessarily SUT local, local and not tester-internal. They are also proper, 
since we have stipulated a choice between messages sent by the SUT. Hybrid SUT local 
choices whose scope contains both emissions of messages to the tester and emissions of SUT 
synchronization messages are dealt with in case 5. 

2.10.2.4.1 Test non-local choices which are (SUT) local 
Such choices are described using a sequence-diagram choice operator – whose scope includes 
the alternative emissions – on the emitting SUT lifeline, see Fig 4-26.  
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Seq 3
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Figure 4-26: A test non-local, SUT-local, proper choice between messages received by the tester. 

2.10.2.5 OTHER TEST NON-LOCAL, SUT-LOCAL CHOICES 
We also allow certain types of SUT-local choices whose scope includes emissions of SUT 
synchronisation messages as an extra facility. Such choices are either SUT internal or hybrid. 
If, under the projection semantics, such a choice becomes a choice that is not between tester 
receptions or is between tester receptions but is non-deterministic, it is statically incorrect. If, 
under the projection semantics, such a choice is equivalent to a test local choice, it is 
preferable to use the test local version. 

2.10.2.5.1 SUT-local choices which are SUT-internal or not proper 
Such choices are described using a sequence diagram operator – whose scope includes the 
alternative emissions – on the emitting SUT lifeline. We illustrate both the SUT-internal, 
SUT-local case, see Fig. 4-27, and the hybrid SUT-local case, see Fig. 4-28. 

Fig 4-27 also shows knowledge of the value of system dynamic variable x being transferred 
from SUT3 to SUT1 or SUT2, and knowledge of the system dynamic variables y and z being 
transferred in the opposite direction. The intra-SUT transfer of knowledge about x ensures 
that the value known to SUT3 (assumed to have been received earlier from some tester 
component) is the value expected by the tester as a parameter of the invocation b or c. Under 
the projection semantics, the guards on the SUT emissions will become guards on the tester 
receptions, that is, assertions on expected message parameter values. 

In fact, the test description of Fig. 4-28 has exactly the same semantics as the test description 
of Fig. 4-24. 
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Figure 4-27: An SUT-local, SUT-internal choice denoting a deterministic choice between tester receptions 
(under the projection semantics).  
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Figure 4-28: An SUT-local, hybrid choice denoting a deterministic choice between tester receptions (under the 
projection semantics). 

2.10.3 Extensions to the basic choice 

2.10.3.1 EXPLICIT DEFAULT ALTERNATIVE 
An explicit default alternative can be specified to cover the case where none of the other 
alternatives of a sequence-diagram choice are possible. Though defined locally, the explicit 
alternative is a global concept and we must impose restrictions on its use, see well-
formedness conditions below. 
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2.10.3.2 SYNTAX OF THE EXPLICIT DEFAULT ALTERNATIVE 
In the case of a (test) local choice between guarded messages emitted by the tester, an explicit 
default alternative is represented graphically as the sending of an asynchronous message 
labelled else6, from inside the scope of the choice operator on the tester lifeline. It does not 
in fact represent the sending of any message by the tester, simply the case where none of the 
guards evaluates to true, see Fig. 4-29 for an example. It may be shown as being received on 
any SUT lifeline, the meaning is the same. 

In the example of Fig. 4-29, if ¬(x=2y) ∧ ¬(x=0) the ready message is sent. If x=y=0, the 
stop message is sent. Thus, the TeLa sequence diagram choice is interpreted as a case 
statement. No inconclusive verdict can be reached in the choice. 
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Tester

Seq1

SUT

choice

  get_size()

Seq2

[x=2y] stop()

 get_size: ∗x

[x=0] continue()
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Tester
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shutdown()

Tester

Seq2

SUT

ready(x)

Tester

Seq4

 

Figure 4-29: A choice between messages emitted by the tester which includes an explicit else alternative. 

If an explicit default alternative is not present in a choice between tester emissions, in the case 
where none of the guards evaluates to true an inconclusive verdict is obtained, see Fig. 4-30 
for an example. 

In the example of Fig. 4-30, the implicit else alternative means that if ¬(x=2y) ∧ ¬(x=0) an 
inconclusive verdict is reached. 

                                                 
6 The word else is shorter than the word otherwise and is also the word used for this purpose in UML 
activity diagrams. 
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Figure 4-30: A choice between messages emitted by the tester which does not include an explicit else 
alternative. 

In the case of a test local proper choice between messages for which the tester is the receiver, 
an explicit default alternative is also represented as an asynchronous message labelled else 
received inside the scope of the choice operator on the tester lifeline. It does not necessarily 
represent the reception of an asynchronous message at the tester, simply of any message that 
is not among those specified, see Fig. 4-31 for an example. It may be shown as being emitted 
on any SUT lifeline, the meaning is the same. In Fig 4-31, no fail verdict can be reached in 
the choice. 

Seq1

SUT

  undo()

 undo: 0

  else

 Seq2

choice

 Seq3

Tester

Seq2

SUT

  method1()

Tester

SUT

undo: 0

  method2()
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Seq3

 

Figure 4-31: A test local choice between messages received by the tester which includes an explicit else 
alternative. 

In an explicit alternative is not present in a choice between tester receptions, in the case where 
a message not among those specified is received a fail verdict is obtained. Fig. 4-32 shows an 
example in which the implicit else alternative means that if the SUT returns a value other than 
0 or 1, a fail verdict results. 
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Seq2
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 undo: 0

 choice
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Figure 4-32: A test local choice between messages received by the tester which does not include an explicit else 
alternative. 

In all cases, the asynchronous message labelled “else” only appears on the referencing 
diagram, not on the referenced diagram. 

As already made clear, the most important type of test non-local choices to consider are those 
between messages for which the tester is the receiver of messages from the SUT. The only 
statically-correct choices of this type are proper, as in the example of Fig. 4-26. The only 
statically-correct SUT-internal and hybrid, SUT-local choices also denote proper choices 
between messages for which the tester is the receiver. An explicit default alternative for these 
choices takes the form of an asynchronous message labelled else sent from inside the scope 
of the choice operator on the SUT lifeline. It does not necessarily represent the reception of an 
asynchronous message at the tester, or the sending of any asynchronous message by the SUT, 
simply the reception at the tester of any message that is not among those specified. It may be 
shown as being emitted on any SUT lifeline; the meaning is the same. 

In these test non-local choices, if an explicit default alternative is not present, then in the case 
where a message not among those specified is received, a fail verdict is obtained. 

However, test non-local choices between messages for which the tester is the emitter are also 
possible. Such choices are necessarily proper and represent under-specification of the tester. 
An explicit default alternative for these choices takes the form of an asynchronous message 
labelled else received inside the scope of the choice operator on the SUT lifeline. It does not 
in fact represent the sending of any message by the tester, simply the case where none of the 
guards evaluates to true. It may be shown as being received on any SUT lifeline; the meaning 
is the same. 

If an explicit default alternative is not present, in the case where none of the guards evaluates 
to true, an inconclusive verdict is obtained. 

Notice that for test non-local choices, in both the explicit and implicit default alternative 
cases, the implementation of the default alternative requires the resolution of this non-locality, 
e.g. by synchronizations or an implicit global controller, see Chapter 5, Section 2.3.3.2. 
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2.10.3.3 ALTERNATIVE LEADING TO AN EXPLICIT VERDICT 
A message of an alternative can be shown as explicitly leading to the termination of the 
behaviour and the derivation of a verdict. 

In a choice between messages emitted by the tester, an explicit verdict is necessarily a local 
inconclusive verdict (arrived at by the sender). We assume that in such a choice, the explicit 
default alternative is also used and that it does not also lead to an explicit inconclusive 
verdict, otherwise the choice is equivalent to one without an explicit verdict or explicit default 
alternative. 

In a choice between messages received by the tester from the SUT, an explicit verdict can be 
a local fail verdict or a local inconclusive verdict (arrived at by the receiver). In the case were 
the explicit fail verdict is used, we assume that the explicit default alternative is also used and 
that it does not also lead to an explicit fail verdict, otherwise the choice is equivalent to one 
without an explicit verdict or explicit default alternative. In the case where the explicit 
inconclusive verdict is used, the explicit default alternative may, or may not, be used; if it is 
not used, the implicit fail verdict still exists. 

As for implicit verdicts, we do not explicitly specify the communication of the local verdict to 
the component responsible for the global verdict. Nor do we need to specify test component 
termination. Also, as for implicit verdicts, an inconclusive verdict is not definitive since it can 
still degrade into a fail verdict.  

An explicit pass verdict is superfluous since it is implicit on reaching the end of any specified 
behaviour which does not end in an explicit inconclusive or fail verdict. 

2.10.3.4 SYNTAX OF ALTERNATIVE LEADING TO EXPLICIT VERDICT 
Graphically, alternatives leading to explicit verdicts in a choice operator use a syntax which is 
similar to that of the message-anchored sequence-diagram reference. The construct has the 
same form as such a reference except that one of the keywords fail or inconclusive is used in 
the place of a TeLa sequence diagram name. 

An example involving a choice between messages received by the tester is given in Fig. 4-33. 
In this example involving an explicit inconclusive verdict, since the explicit default 
alternative has not been used, the default verdict still exists: if a value different to 0 or 1 is 
received the verdict is fail. 

Seq1

SUT

  cut()

  cut: 1

  cut: 0

inconc

choice

Seq2

Tester

Seq2

SUT

  method1()

Tester

  cut: 0

 

Figure 4-33: Choice between messages received by the tester with alternative leading to an explicit verdict.  
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An example involving a choice between messages sent by the tester is given in Fig. 4-34. In 
this example, if “done” is true, the value 0 is returned and the behaviour terminates with an 
inconclusive verdict. If “done” is not true and “dusted” is true, the value 1 is returned and the 
behaviour continues in diagram Seq2. Finally, if neither “done” nor “dusted” is true, the 
behaviour continues in diagram Seq3 (in which case, the returned value is represented in 
diagram Seq3 but not in diagram Seq1). 

Seq1

SUT

  f(x)

Tester

 else

 [done] f: 0

inconc

choice

Seq3

Seq2

 [dusted] f: 1

 

Figure 4-34: Choice between messages emitted by the tester with an alternative leading to an explicit verdict and 
an explicit default alternative. (Diagrams Seq2 and Seq3 not shown) 

2.10.3.5 ALTERNATIVE(S) CONTINUED ON THE SAME DIAGRAM 
A presentation option for the choice operator is to represent the behaviour of one of the 
alternatives in the same diagram where the choice is made, thus reducing the number of 
diagrams needed. In the case where there is only one acceptable behaviour, this also provides 
a means of clearly distinguishing the pass case from the explicitly-specified inconclusive or 
fail verdict case. 

We can generalise the alternative continued on the same diagram to a join of alternatives in 
the case where a choice contains explicit verdicts. In this construct, all the alternatives which 
do not lead to an explicit (or implicit) verdict have the same continuation, that is, share the 
same behaviour after the choice. 

This construct is similar, but not identical to the MSC 2000  Esc in-line operator and to the 
UML 2.0 interactions Break interaction operator. 

2.10.3.6 SYNTAX OF ALTERNATIVE CONTINUED ON THE SAME DIAGRAM 
Graphically, this presentation option is realised by representing one of the messages in the 
scope of the choice using an arrow stretching from the emitting lifeline to the receiving 
instance, i.e. without having an associated TeLa sequence diagram reference. The 
continuation of the behaviour for that alternative is then the behaviour shown in the same 
diagram below the choice operator. See Fig. 4-35 for an example. 

For the generalisation to a join of alternatives, all the alternatives that do not lead to an 
explicit verdict are shown using arrows which reach all the way from the emitting instance to 
the receiving lifeline, i.e. without having an associated TeLa sequence diagram reference (e.g. 
see the return messages with value 1 and 2 in Fig. 4-36). The continuation of the behaviour 
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for these alternatives is then the behaviour shown in the same diagram below the choice 
operator. 

Seq2 

SUT

 undo: 0 

 method1() 

Tester

Seq1 

SUT

 undo() 

undo: 0 

undo: 1 

 choice 

  method2()  

Seq2 

Tester 

 

Figure 4-35: Choice with alternative continued on the same diagram (same behaviour as that represented in 
Figure 4-30). 

In the example of Fig. 4-36, if the SUT returns the value 0 an inconclusive verdict is obtained, 
if the SUT returns the value 1 or 2 (the behaviour is the same), method2() is invoked, 
otherwise a fail verdict is reached. 

Seq1

SUT

  invoke()

 0

  1

choice

  method2()

  2

inconc

Tester

 

Figure 4-36: Choice with several alternatives continued on the same diagram (thus involving a join). 

2.10.3.7 CHOICE WITH BLOCK STRUCTURE 
We also allow the use of the choice operator with a block structure. For certain simple cases, 
this enables us to represent on one diagram, choices which would otherwise have to be 
represented using several linked diagrams. It also enables us to represent, using a one-tier 
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scenario structure, behaviour which would otherwise require a two-tier scenario structure, i.e. 
use of TeLa activity diagrams. For example, it enables us to describe some choices between 
internal actions. 

On the other hand, as for the sequence diagram loop construct, the global meaning of this 
locally-defined construct is not necessarily clear, except for procedural sequence diagrams 
(diagrams with a single flow of control and using only synchronous invocations). In 
particular, if the scope of a block is only defined on one lifeline, how do we know its scope on 
other lifelines when asynchronous invocations do not necessarily have an associated focus bar 
and there may be more than one control flow? How do we detect illegal casual chains, i.e. 
chains of events starting and finishing on the lifeline of the choice, with start event in the 
scope of a block but with finish event outside the scope of that block (or vice versa)? 

One way to solve this problem is to explicitly specify the global scope by delimiting a region 
encompassing several lifelines as the scope of each block (of course, no messages may cross 
this scope). We adopt a slightly more complicated solution that involves recursively defining 
the notion of projection of the block scope on other instances, see below. This second solution 
is more in keeping with our desire to use operators with local scope in TeLa sequence 
diagrams. 

In TeLa sequence diagrams with no so-called “crowns”, see Chapter 5, Section 3.1, that is, 
sequence diagrams which have the RSC property [ChaMatTel96], we can define the 
projection of the block scope onto other lifelines as follows: 

• If the event corresponding to the emission, resp. reception, of a message is inside the 
scope of a block, the event corresponding to the reception, resp. emission, of that same 
message is also inside the scope of that block. 

• If a lifeline contains two events which are in the scope of a block, any events vertically 
between these two events are also in the scope of that block. If the events are located on a 
lifeline other than the one on which the block is defined, the vertical space between these 
two events is considered to define the projection of the scope of the block onto this 
lifeline. 

The projection of the block scope is therefore defined by the two valid cuts of the diagram 
(that is, cuts which bisect all lifelines without bisecting a message) that include the block 
scope and the minimum number of events. This can be calculated using Tarjan´s algorithm for 
calculating simply connected components of a graph [Tar72], see also [HélMai00]. 

2.10.3.8 SYNTAX OF CHOICE WITH BLOCK STRUCTURE 
Graphically, a choice with block structure is represented by using two or more self-
invocations of the method block inside the scope of the choice operator as shown in Fig. 4-
37. 

Unfortunately, there is no suitable syntax for expressing the very common case of a choice 
with block structure in which the choice is based on different return values of a synchronous 
invocation. Such a choice must be described using the preceding constructs. 
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Seq1

SUT

  invoke()

 else

choice

block

  reply(0)

 method1()

block

 method2()

Tester

 

Figure 4-37: Choice with block structure (and explicit default alternative). 

2.10.4 Well-formedness 

2.10.4.1 ENSURING (ESSENTIAL) CONTROLLABILITY 
The scope of any TeLa sequence-diagram must contain either a set of emissions on a lifeline 
or a set of  receptions on a lifeline and must be entirely contained within a single TeLa 
sequence diagram. 

All choices between tester emissions must be fully-guarded, that is, each message emitted in 
the scope of the choice operator, except possibly the last, must have a guard. 

Test non-local choices between messages received by the tester must be proper. 

The scope of hybrid SUT-local choices and of SUT-internal choices must contain only 
message emissions (in the hybrid case, some of these emissions are of SUT synchronisation 
messages, in the SUT-internal case, they are all of SUT synchronisation messages). 

The tester choice denoted by a hybrid SUT local choice or an SUT-internal choice under the 
projection semantics must be a deterministic choice between tester receptions. 

2.10.4.2 EXPLICIT DEFAULT ALTERNATIVE AND EXPLICIT VERDICT 
Without any extra assumptions, the explicit default alternative is only allowed in coherent 
parallel test cases, see Sections 2.10.5.1 and 3.4.4.1. That is, if a choice between tester 
emissions involves a default alternative, any events concurrent with the entire choice must be 
controllable events. Similarly, it a proper choice between tester receptions, or a choice 
between SUT emissions, involves a default alternative, any events concurrent with the entire 
choice must be observable events. With assumptions about priorities between the different 
types of message, these restrictions can be relaxed, see Section 3.4.4.2. 
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Explicit verdicts, except the explicit inconclusive verdict in a proper choice between messages 
received by the tester, can only be used in coherent parallel test cases. This follows from the 
fact that use of such an explicit verdict also implies use of the explicit default alternative.  

2.10.4.3 RELATION WITH OTHER SCOPES 
The scope of a choice must be entirely contained in a single TeLa sequence diagram 

The scope of a choice cannot overlap with any other scope (operator, focus bar, call region). 
Furthermore, the scope of a choice, other than a choice with block structure, may not contain 
any other scope. This does not prohibit a choice from being contained within another scope 
(except that of a choice!). However, the following restriction limits the choices that can be 
contained in a coregion. 

2.10.4.4 CONCURRENT CHOICES 
A very limited amount of concurrency is permitted between sequence-diagram choices. Any 
concurrent choices must satisfy the following restrictions: 
• Only one of the concurrent choices has one, or more, alternatives continued on the same 

diagram and only one of the concurrent choices uses sequence diagram references other 
than explicit verdicts. These restrictions ensure that the continuation of the behaviour is 
well-defined. Concerning the second of these restrictions, in fact, due to the following 
restriction, the only explicit verdicts that can be used are inconclusive verdicts on 
reception at the tester of a message from the SUT. 

• None of the concurrent choices uses the explicit default alternative. This restriction 
ensures that the one-tier test description is equivalent to a two-tier one; in two-tier TeLa 
test descriptions the default alternative is global. 

• Either all of the concurrent choices involve tester emissions or all of the concurrent 
choices involve tester receptions (to ensure concurrent essential controllability, see 
Section 2.10.5.1). 

2.10.4.5 DYNAMIC VARIABLES IN MESSAGE GUARDS 
The rules concerning the value of variables used in guards are the same as those for assertion 
internal actions. That is, a variable may be preceded by a base-level component name 
followed by a dot. In this case, the intended value is that held by the specified component. 
Otherwise, it is assumed that all the base-level subcomponents of the owning component 
share a common view of its value. 

2.10.4.6 CONDITIONS SPECIFIC TO THE CHOICE WITH BLOCK STRUCTURE 
The choice with block structure cannot be used in diagrams which are not RSC (see Chapter 
5, Section 3.1 and [ChaMatTel96]) in order for the notion of projected scope, see above, to be 
well-defined. 

The scope of a choice block on any lifeline (that is including the projected scope) cannot 
overlap with any other scope (operator, focus bar, call region). A choice block can contain 
another scope or the entire choice with block structure may be contained within another 
scope. Applying this rule to calling regions on procedural diagrams (where loops may involve 
more than two lifelines) eliminates the possibility of causal flows starting and finishing on the 
lifeline of the choice, with start event inside the scope of a block but with finish event outside 
the scope of that block (or vice versa). 
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2.10.5 Informal semantics 
The TeLa sequence diagram choice operator specifies several alternative behaviours. The 
events in the scope of the choice (the alternatives) are either all emission events or all 
receptions events. Other events can be concurrent with the choice, though concurrent choices 
are subject to the restrictions given above in the well-formedness conditions. 

Whether the scope of the choice operator contains emission or reception events, the meaning 
is that only one of the messages concerned will be emitted and subsequently received and the 
behaviour will then continue as defined for that alternative. 

In the case of controllable actions, the value of the static and dynamic variables decides which 
of the different alternatives of the choice is to be fired. In the case of observable actions, the 
name of the message and the value of the anonymous variables, both provided by the SUT, 
decide which of the alternatives of the choice is to be fired. In an executable test description, 
only one alternative of a choice can be fireable at run-time.  

2.10.5.1 DETERMINISM AND CONTROLLABILITY 
A TeLa choice is said to be indefinite if at least one of the alternatives of the choice (in the 
event structure semantics, one of the minimal events in the corresponding configuration) is 
not guarded or if the guards are not mutually exclusive. It is said to be non-deterministic if it 
is indefinite and, in addition, the message names on the transitions concerned are identical. 

2.10.5.1.1 No indefiniteness in choices between tester emissions 
A choice between controllable events, such as a choice between messages emitted by the 
tester, is a choice which is to be resolved by the tester. An indefinite choice between 
controllable actions means that the information in the specification is not sufficient to 
guarantee that, at any time and in any execution, the tester has only one fireable alternative. 
For the test description to represent a test case, such choices can be neither non-deterministic 
nor indefinite since a test description with such an indefinite choice cannot be fully 
executable. Unfortunately, with any non-trivial data language, demonstrating that a set of 
guards are mutually exclusive is an undecidable problem. Moreover, we do not want to 
prohibit the possibility of overlapping guards on controllable events in all test descriptions, 
one reason being that we may wish to deal with this aspect at execution time. 

We choose to resolve this problem differently for TeLa sequence diagram choices and TeLa 
activity diagram choices. For the latter, we provide a mechanism to explicitly assign priorities 
to alternatives in order to turn indefinite choices between controllable events into definite 
choices. Not doing so leaves open the possibility of dealing with indefinite choices at 
execution time (if only by signalling a run-time error). For TeLa sequence diagram choices, 
with which we are concerned in this section, we simply treat a choice between tester 
emissions as a case statement, that is, we suppose there is an implicit priority defined by 
vertical position. Evidently, this also eliminates the possibility of non-determinism arising in 
such choices. 

2.10.5.1.2 No non-determinism in proper choices between tester receptions 
A choice between between observable events, i.e. a choice between messages received by the 
tester from its environment, i.e. the SUT, is a choice which is to be resolved by this 
environment. Recall that the guards on such messages do not have the same interpretation as 
the guards on tester emissions, since they cannot imply a description of some aspect of the 
SUT internal state. The tester’s knowledge of the SUT internal state is limited to that which 
can be obtained via the “SUT component interface”. A description of the aspects of the SUT 
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internal state on which the emission of each of the alternative messages depends cannot form 
part of the test. Similarly, choices between different unguarded actions simply indicate that 
the SUT can send any one of several messages. However, a proper choice between receptions 
that involves two messages with identical labels and overlapping guards is a choice which 
will not necessarily be fully resolved by the SUT and must be disallowed.  Therefore, proper 
choices between receptions can be indefinite but not non-deterministic. Similar considerations 
apply to choices between SUT emissions since, under the projection semantics, they also 
denote choices between tester receptions. 

In a similar way to the case for indefiniteness of emission choices, we choose to resolve the 
problem of non-determinism of proper choices between receptions differently for TeLa 
sequence diagram choices and TeLa activity diagram choices. For the latter, we provide a 
mechanism to explicitly assign priorities to alternatives. Not doing so leaves open the 
possibility of dealing with non-deterministic choices at execution time (if only by signalling a 
run-time error). For TeLa sequence diagram choices, with which we are concerned in this 
section, we simply treat a choice between tester receptions as a case statement, that is, we 
suppose there is an implicit priority defined by vertical position.  

2.10.5.1.3 TeLa sequence diagram choices that ensure (essential) controllability  
By definition, then, no TeLa sequence diagram choice between tester emissions can be 
indefinite and no TeLa sequence diagram proper choice between tester receptions can be non-
deterministic. 

First, let us assume that the test description is such that, for any TeLa sequence diagram 
choice, no events are concurrent with the emission or reception events of the choice. Clearly, 
in this case if all choices of a one-tier TeLa test description involving messages received by 
the tester are proper, the test description is deterministic and controllable and therefore 
defines a centralisable test case. With the restrictions imposed on SUT local choices which 
are hybrid or SUT-internal, these choices also denote deterministic choices between 
receptions at the tester of messages from the SUT, so test descriptions which include such 
choices also define test cases. Thus, to ensure controllability, we only need to prohibit hybrid 
test local choices between receptions since these are choices involving both controllable and 
observable actions. 

Well-formed choices between tester emissions should be fully guarded, that is, each of the 
alternative messages, except possibly the last, should have a guard. This is since if one 
alternative is not fully guarded, the meaning is that it has the guard true and none of the 
alternatives below it will ever be explored. Similarly, in choices between tester receptions in 
the non-enumerated data case, if more than one reception of the choice has the same message 
name and number of parameters, all such messages should be guarded, except possibly the 
last. 

Now, let us first assume that the TeLa test description is such that there are events which are 
concurrent with those of a sequence-diagram choice. Given the nature of sequence diagram 
choices explained above (and given that hybrid test local choices between receptions are 
prohibited) there are no choices between observable and controllable events. Hence, even a 
test description in which there are events that are concurrent with a choice is still essentially 
controllable (and, if minimally deterministic, defines a parallel test case). 

An essentially-controllable test description is said to be properly concurrently controllable 
(and, if minimally deterministic, to define a externally coherent parallel test case) if no event 
labelled by a proper controllable action is concurrent with an event labelled by an observable 
action. Necessary requirements for this are: 
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• for all hybrid or proper choices between tester emissions, none of the concurrent events 
are labelled by observable actions, 

• for all proper choices between tester receptions, none of the concurrent events are labelled 
by proper controllable actions. 

An essentially-controllable test description is said to be concurrently controllable (and, if 
minimally deterministic, to define a coherent parallel test case) if no event labelled by a 
controllable action is concurrent with an event labelled by an observable action. Necessary 
requirements for this are as above, with the first requirement strengthened to all choices 
between tester emissions (i.e. including tester-internal choices) and the second requirement 
strengthened to all controllable actions (including tester-internal actions). 

An essentially controllable test description is said to be controllable (and, if minimally 
deterministic, to define a centralisable test case) if no event labelled by a controllable action 
is concurrent with any other event. Necessary requirements for this are as above with the first 
requirement strengthened to exclude all concurrent events. 

More details about non-determinism and controllability in TeLa can be found in Chapter 5, 
Section 2.2. 

2.10.5.2 VERDICTS 

2.10.5.2.1 Implicit verdicts 
In this section, we only discuss implicit verdicts concerning messages in the scope of a 
choice. Implicit verdicts concerning messages that do not fall in the scope of a choice were 
discussed in Section 2.2.4.2 and 2.2.4.3. 

For a choice between receptions of messages by the tester from the SUT, if an explicit default 
alternative is not present, an implicit default alternative leading to a fail verdict is inferred. An 
implicit verdict is well-defined whether or not there are events which are concurrent with the 
choice. Recall that the allowed hybrid SUT-local choices and SUT-internal choices also 
denote such proper tester choices. The implicit fail verdict is local but also global, since fail is 
a universal property. 

For a choice between messages emitted by the tester, if an explicit default alternative is not 
present, an implicit default alternative leading to an inconclusive verdict is inferred. An 
implicit verdict is well-defined whether or not there are events which are concurrent with the 
choice. The implicit inconclusive verdict is local to the owning component of the choice; it is 
not definitive and can degrade into a fail verdict due to activity which is concurrent with the 
activity of the component owning the choice. 

2.10.5.2.2 Explicit verdicts 
Concerning explicit verdicts, as stated above, the only explicit verdict which does not also 
involve the use of the explicit default alternative (and therefore the restrictions applicable to 
the use of this alternative) is the explicit inconclusive verdict on tester receptions. This verdict 
is local to the owning component of the target port of the message. All other explicit verdicts 
are local to the owning component of the choice. 
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3 TeLa activity diagrams and 2-tier scenario structures 

The syntax of two-tier TeLa test descriptions is based on that of UML 1.4 activity diagrams. 
However, the semantics is completely different to UML 1.4 activity diagram semantics. A 
two-tier scenario structure comprises a TeLa activity diagram in which each node contains 
either a set of sequence-diagram level parameter (static-variable) declarations and a TeLa 
diagram reference to an elementary sequence diagram or a symbol indicating the empty 
sequence diagram. The empty sequence diagram is a sequence diagram with no events and is 
simply used to keep the notation compatible with the UML activity diagram notation. 

The full language using two-tier scenarios is very rich and can consequently describe many 
behaviours which cannot easily be interpreted as test cases. Though we wish to allow far more 
general descriptions than those which describe executable test cases, we still need to impose 
certain restrictions in order for verdicts to be unambiguously defined. In particular, for a test 
description to be well-defined, we impose minimal determinism together with the condition 
that any remaining non-determinism is either resolved on a controllable action or leads to 
successful termination (implicit pass verdict) or the same explicit verdict on both branches, 
and we impose conditions on choices involving guarded controllable actions, see the notion of 
normal form. We view the most general type of legal test description as analogous to the “test 
graphs” of  [JarJer02], [Jer02]. 

In order for a test graph to define a test case, we impose further restrictions, in particular, 
those concerning controllability. However, even a test description we describe as a test case is 
not fully executable since: 

• We may wish to leave implicit the resolution of choices with alternatives guarded by 
overlapping guards, in order to be able to choose how this is to be implemented (e.g. by 
using some execution-level mechanism). In consequence, we do not oblige the use of 
priorities between alternatives of a choice, in the case where guards may be overlapping. 

• We may wish to leave implicit the resolution of synchronizations, in order to be able to 
choose how this is to be implemented (by using a centralised implementation, by using a 
global controller, by using explicit synchronization messages, via shared variables, etc.). 
In consequence we do not oblige all choices to be test local nor all guards, assignments, 
assertions to be local to a base-level component. 

We still view the language of well-defined test descriptions as a test description language, 
rather than a test objective description language. In a language for describing test objectives, 
further abstraction is required, e.g. wildcards on method names in message arrow labels, 
wildcards on values in parameters of messages sent by the tester etc., see Chapter 6, Section 
1.2.3.5. 

3.1 Overview of syntactic elements 

3.1.1 UML 1.4 activity-diagram syntax used 
The features of UML activity diagrams that are used in TeLa activity diagrams are as follows: 

• Action states: in TeLa, the “action” of an “action state” (we also use the term node) is 
either the name of a TeLa elementary sequence diagram or a dash, representing the empty 
diagram, i.e. the diagram containing no events. Nodes with empty sequence diagrams are 
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used in loops with exit conditions and in consecutive choices in order to respect UML 
activity diagram syntax. 

• Transitions: in TeLa, transitions between action states denote weak sequential 
composition of the corresponding sequence diagrams. 

• Decisions: in TeLa, as in UML, the diamond-shape decision syntax is used for both choice 
and “merge”7, with only the choice case admitting guards. However, in TeLa, guards may 
only be attached to the lines emanating from the diamond shape in a choice (not to the 
incoming lines to a diamond shape). The structure of the activity diagram choice guards is 
discussed in Section 3.4.2.1; A choice may lead straight to another choice via an empty 
sequence diagram. 

• Initial (pseudo)state: in TeLa the state-diagram initial state symbol is used to denote the 
starting point of a 2-tier scenario. 

• Loops: in TeLa we allow transitions to form loops. By using an empty sequence diagram, 
such loops may commence with a choice, allowing us to model loops with exit conditions. 

• Synchronization bars: in TeLa, a limited use of is made of state-diagram synchronization 
bars; they are only used with one source state and one destination state. This syntax is 
used to denote strong sequential composition of all tester lifelines of the TeLa elementary 
sequence diagram referenced in the “source” state and the TeLa elementary sequence 
diagram referenced in the “destination” state, in the case where the default weak 
sequential composition is not required, e.g. on composition of complete test cases. 

3.1.2 UML 1.4 activity-diagram syntax not used 
The principal features of UML activity diagrams which are not used in sequence connector 
diagrams are as follows: 

• Concurrency: for simplicity, we only allow concurrency at the sequence diagram level 
(via the coregion construct and the inherent concurrency between instances). As for MSCs 
[ITU-T99], the sequence diagram concatenation mechanism does not imply a 
synchronisation point so any concurrency between events on different instances is not 
truncated at concatenation points. 

• Nested graphs (subactivity states): nodes which contain subgraphs are currently 
disallowed purely on the grounds of simplicity. 

• Final (psuedo)state: the state diagram final state symbol is not used in TeLa since only 
one final state is allowed in UML activity diagrams (leading to readability problems). 

• Organisation of responsibilities (swimlanes): this concept is not useful in this context. 

• States with input and output (object flow): this concept is not useful in this context. 

• Control indications (signal sending & receipt, deferred event): this concept is not useful 
in this context. 

                                                 
7 The use of the term “merge” in UML 1.4 reflects the fact that in UML 1.4 activity diagrams, as in UML 1.4 sequence 
diagrams, in the presence of overlapping guards, the same operator denoted choice or concurrency depending on data values. 
From here on we will use the term “join”. 
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3.1.3 Elementary sequence diagrams 
A TeLa elementary sequence diagram is a TeLa sequence diagram satisfying the following 
restrictions: 

• it contains no sequence-diagram choice operators  
• it contains no sequence-diagram loop operators. 
• it contains no sequence-diagram references 
• it contains no assertion internal actions and no guards on tester emissions if these fall 

within the scope of an activity-diagram choice. 
and with the following extensions: 
• it may contain explicit verdicts, using the message-anchored sequence-diagram reference 

style notation, subject to the restrictions given in Section 3.5.3 below. 
This is an extension since these verdicts have only been defined so far for an alternative of a 
sequence diagram choice. 

3.2 TeLa activity-diagram reference 

3.2.1 Introduction 
The activity-diagram reference is used to reference a TeLa elementary sequence diagram from 
a node of a TeLa activity diagram. 

3.2.2 Syntax 
The syntax consists of simply placing the name of the referenced TeLa sequence diagram in 
the required node of the TeLa activity diagram. See Fig. 4-38 for an example. 

 

Seq1

Seq1

SUT1

 get_temp()

 get_temp: ∗x

Tester

 

Figure 4-38: Activity diagram node (l.h.s.) referencing TeLa sequence diagram (r.h.s.). 

3.2.3 Well-formedness 
The referenced TeLa sequence diagram must be elementary. 

3.2.4 Informal semantics 
The referenced TeLa sequence diagram is composed with the diagram referenced in the 
previous state, see sequential composition. 
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3.3 Sequential composition (weak and strong) 

3.3.1 Introduction 
A transition from an activity diagram node N1 to an activity diagram node N2 denotes the 
weak sequential composition of N1 and N2. A transition from an activity diagram node N1 to 
an activity diagram node N2 which passes via a synchronization bar denotes the strong 
sequential composition of N1 and N2. 

3.3.2 Syntax 
Weak sequential composition is denoted by using the normal UML activity diagram transition 
between nodes. Strong sequential composition is denoted by adding the UML activity-
diagram synchronization bar, that is by using a transition from N1 to the synchronization bar 
and another transition from the synchronization bar to N2. See Fig. 4-39 for an example. 

Seq1

Seq2

Seq1

Seq2

 

Figure 4-39: Weak (l.h.s.) and strong (r.h.s.) sequential composition 

3.3.3 Well-formedness 
Each transition connects one of the following: 
• an activity-diagram node to another activity diagram node 
• an activity-diagram node to a synchronization bar 
• a synchronization bar to an activity-diagram node. 
Each synchronisation bar is connected to a single activity diagram node in each direction. 

3.3.4 Informal semantics 
A transition from an activity diagram node N1 to an activity diagram node N2 denotes the 
weak sequential composition of each of the partial orderings denoted by a path through the 
activity diagram from the intial state to node N1 and the partial ordering denoted by the TeLa 
sequence diagram referenced in node N2. 

The weak sequential composition of A and B, where A and B are two partial orderings 
obtained from TeLa sequence diagrams SA and SB, can be thought of as the partial ordering 
obtained by glueing the top of the lifelines of SB to the bottom of the lifelines of SA (before 
projection), for all the lifelines the two diagrams have in common. 

TeLa sequence diagrams specify the behaviour of the tester and, in spite of the use of SUT 
lifelines, the semantics of TeLa concerns only tester events. As stated in Chapter 3, this 
semantics is obtained by projection onto tester lifelines. Clearly, then, the synchronization of 
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strong sequential composition also applies only to tester lifelines, it does not imply the 
synchronization of the SUT. All tester-SUT communication must be explicitly described. 

A transition from an activity diagram node N1 to an activity diagram node N2 which passes via 
a synchronization bar denotes the strong sequential composition of each of the partial 
orderings denoted by a path through the activity diagram from the intial state to node N1 and 
the partial ordering denoted by the TeLa sequence diagram referenced in node N2. 

The strong sequential composition of A and B, where A and B are two partial orderings 
obtained from TeLa sequence diagrams SA and SB, can be obtained by ordering all the events 
of A w.r.t. each of the the first events on each lifeline of B. 

3.4 TeLa activity-diagram choice 

3.4.1 Introduction 
The activity-diagram choice construct is used to model a situation in which one of several 
possible behaviours can occur. TeLa activity-diagram choices are not restricted to choices 
between message emission events or between message reception events. Neither is a choice 
restricted to one in which each alternative has only one enabled / fireable event; several 
concurrent events may be enabled / fireable in a single alternative. Furthermore, there may be 
events that are concurrent with the enabled events of all the alternatives. 

An alternative of a TeLa activity-diagram choice can be explicitly guarded. A guard on a 
TeLa activity-diagram choice only concerns controllable events. A guard on an alternative is a 
conjunction of local guards, each of which has an owning component. A local guard only 
applies to (we will say “covers”) controllable events which are located on its owning 
component or a subcomponent of it; it has no effect on controllable events on other 
components. The notion of covered by a guard is defined more precisely below. 

A TeLa activity-diagram choice may have a default alternative. If this is the case, the 
requirements on the diagram in order for it to be well-defined are stricter than those on a 
diagram without a default alternative, see below. 

Optionally, each alternative of a TeLa activity-diagram choice can be given a priority which 
serves to ensure that only one alternative has a fireable event in the case where: 
� guards associated to controllable events are not mutually exclusive, 
� guards associated to events labelled by the same observable action are not exclusive. 

The interpretation of a choice in which guards are not mutually exclusive and priorities are 
not assigned is that the choice is indefinite, i.e. not fully specified, but that only one 
alternative can be taken in any execution (c.f. the UML 1.4 equivalent which may denote 
choice or concurrency depending on data values). 

3.4.1.1 READY, ENABLED AND FIREABLE EVENTS OF AN ALTERNATIVE 
An event is a ready event for an alternative of a TeLa activity-diagram choice if it is a 
possible first event on that alternative (without taking into account guard evaluations). Note 
that several concurrent events may be ready for an alternative and that a reception event can 
never be a ready event since the notion of ready event is concerned with the semantics before 
projection onto tester lifelines. 
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An event is a syntactically-ready event for an alternative of a TeLa activity-diagram choice if 
it is a ready event for that alternative and is not a ready event for any alternative of any other 
TeLa activity-diagram choice. If a choice is local, see below, all ready events for all 
alternatives are also syntactically ready. 

A controllable event is an enabled event for an alternative of a TeLa activity-diagram choice 
if it is a ready event for that alternative. An observable event is an enabled event for an 
alternative of a TeLa activity-diagram choice if it has a chain of predecessors, all of which are 
SUT events, leading to a ready event. That is, it is enabled in the semantics after projection 
onto the tester lifelines. 

An event is a syntactically-enabled event for an alternative of a TeLa activity-diagram choice 
if it is enabled for that alternative and is not enabled for any alternative of any other TeLa 
activity-diagram choice. If a choice is test local, all enabled events for all alternatives are also 
syntactically enabled. In Fig. 4-41, the event ?m4 (reception of message m4) is enabled but 
not syntactically-enabled on the r.h.s. alternative of the upper of the two choices. It is enabled 
and syntactically enabled on the r.h.s. alternative of the lower of the two choices. 

If a controllable event is enabled but not syntactically enabled, it may be guarded by local 
guards from several different choices. If this is the case, the owning components of these local 
guards will not necessarily coincide. Moreover, another controllable event that is enabled in 
the same alternatives is not necessarily covered by the same guards, that is it may be covered 
by some but not by others. To avoid defining complex compatibility conditions between such 
local guards, we simply restrict to test descriptions in which all enabled controllable events 
are syntactically-enabled. 

A two-tier test description is said to be in semi-normal form if all enabled controllable events 
are syntactically-enabled. The restriction to test descriptions in semi-normal form facilitates 
the syntactic detection of the essential controllability needed for the use of the default 
alternative. It would be further facilitated if we also restricted to test descriptions with no 
enabled but not syntactically-enabled observable events. However, test non-local choices 
between observable actions are an inevitable feature of using the projection semantics so that 
choices with enabled but not syntactically-enabled observable events are also likely to arise 
quite frequently. 

We reserve the term fireable for the execution level; an event is fireable in a given 
configuration if it is enabled in that configuration and its guard evaluates to true in that 
execution. 

3.4.1.2 LOCAL AND TEST LOCAL CHOICES 
A TeLa activity-diagram choice is said to be a local choice if all ready events on all the 
alternatives are located on the same lifeline. It is said to be non-local otherwise. Clearly, this 
notion concerns the semantics before projection onto tester lifelines. 

A TeLa activity-diagram choice is said to be a test local choice if all enabled events on all the 
alternatives are located on the same lifeline. It is said to be test non-local otherwise. Clearly, 
this notion concerns the semantics after projection onto tester lifelines. 

The notions of local choice and test local choice are therefore relative to an interaction 
framework and susceptible to change on decomposition. A choice is said to be a maximally 
local choice, resp. maximally test local choice, if it is local, resp. test local, for the maximal 
decomposition. 
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3.4.1.3 OWNING COMPONENT OF A CHOICE 
As for TeLa sequence diagram choices, the owning component of a choice (we assume it is in 
semi-normal form) is the smallest component which has the following as subcomponents: 
• the owning component of each of the local guards, 
• the owning component of the originating port of any tester emission actions which are 

enabled in any of the alternatives, 
• the owning component of any internal actions which are enabled in any of the alternatives, 
• the owning component of the target port of any tester reception actions which are enabled 

in any of the alternatives. 
The owning component of a choice is the owning component of any implicit verdicts derived 
in that choice, though since a local fail verdict is also a global fail verdict, this is only of any 
importance in the case of the implicit inconclusive verdict. The latter verdict can only be 
derived in the non-enumerated data case and for a test description that it essentially 
controllable, see Section 3.4.4.1. 

Note that a choice is test local iff the owning component of that choice is represented by a 
single lifeline. 

3.4.1.4 GUARDS ON ALTERNATIVES OF A CHOICE 
Suppose a two-tier scenario structure is in semi-normal form. An unguarded alternative of a 
choice of such a two-tier scenario structure is said to be implicitly guarded if one of the 
following is true: 
• it has an enabled event labelled by a tester assertion internal action, 
• it has an enabled event labelled by a tester emission action for which the arrow label on 

the corresponding message includes a guard. 

Thus, assertion internal actions are in fact treated as guards. There are no real assertions in 
TeLa, in the sense of expressions that do not influence the choice of execution path but which, 
if executed, result in an exception. This is by the nature of testing, where guards themselves 
can already result in a type of exception: the implicit verdict. 

For a two-tier scenario structure in semi-normal form, an implicit guarded alternative is 
semantically equivalent to an explicit guarded alternative. We therefore suppose that any 
explicitly guarded alternative of a choice satisfies the following: 
• no enabled event of the alternative is labelled by a tester assertion, 
• no enabled event of the alternative is labelled by a tester emission for which the arrow 

label on the corresponding message includes a guard. 

A two-tier scenario in semi-normal form and for which all the choices also satisfy the above 
condition is said to be in normal form. Again, the problem if we allow alternatives to be both 
explicitly and implicitly guarded concerns the fact that an event may be covered by two local 
guards whose owning component is not the same. 

The guards of a TeLa activity-diagram choice are tester guards that apply to tester emissions 
or tester internal actions. They have no effect on tester receptions. Therefore, proper tester 
receptions (observable actions) that are enabled for an alternative may have associated 
assertions or message arrow guards. The above restriction does not affect guarded intra-SUT 
messages either since under the projection semantics these guards become guards on proper 
tester receptions. 
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We do not attempt to turn observable action guards into activity-diagram guards in the same 
way as is done for controllable actions, since such guards are specific to the particular 
observable action to which they are associated. Contrary to the situation for controllable 
actions, for observable actions, the mutual exclusion of guards and the implicit verdict if 
guards are not verified, only concern observable actions with the same name, not all 
observable actions. Similarly, the anonymous variables that may be used in controllable 
action guards are context dependent and would be ambiguous if not clearly referring to a 
particular controllable action. 

An event e which is labelled by a controllable action a other than an assertion and which is 
enabled for an alternative A of a choice C is said to be unguarded in that alternative if: 

• Alternative A is not guarded 

• Alternative A is guarded by guard G but: 
• a is an internal action whose owning component is not a subcomponent of the owning 

component of any of the local guards of which G is composed. 
• a is a tester emission action and the owning component of its originating port is not a 

subcomponent of the owning component of any of the local guards of which G is 
composed. 

• The corresponding message arrow label does not include a guard (we include this 
situation for completeness, though in a test description in normal form it cannot arise). 

Otherwise, the event e is said to be guarded for alternative A of choice C. In the normal form 
case, we also say that e is covered by the guard of A. 

3.4.1.5 FOCUS BARS 
In a TeLa activity-diagram choice, a focus bar is allowed to begin before the choice and end 
after the choice. This means that the top half of the focus bar appears in one diagram while the 
bottom half appears in each of the diagrams constituting the different alternatives. The use of 
focus bars straddling choices in this way is inevitable, for example, in modelling the situation 
where the SUT may respond to a synchronous invocation in several possible ways. 

3.4.2 Syntax 

3.4.2.1 GUARDS AND OWNING COMPONENTS 
The guard on an alternative of a sequence diagram choice takes the form of a conjunction of 
local guards. The conjunction may be presented without logical conjunction symbols by 
writing each clause of the guard on a new line. 

Each local guard is a boolean condition involving static and dynamic variables (but not 
anonymous variables) preceded by a component name and a colon; this component is the 
owning component of the local guard. The component name and the colon can be omitted in 
the case where there is only one tester lifeline. If the component name is omitted, the 
component represented by the unique tester lifeline is the owning component of each of the 
local guards. 

The dynamic variables used in a local guard may, or may not, be preceded by a base-level 
component name and a dot. 
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3.4.2.2 GRAPHICAL SYNTAX 
Graphically, a Tela activity-diagram choice is represented using the UML activity diagram 
decision construct. Alternatives can be guarded and a default alternative can be given using 
the keyword else in place of a guard. An example of a sequence connector choice in which 
each alternative has only one minimal event and that minimal event is a controllable event is 
given in Fig. 4-40. 

Tester: x < 0

Seq1

SUT1

 get_temp()

 get_temp: ∗x
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SUT1 SUT2

 notify: ∗y

 notify()

 sum(x+y)
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sum(x+y)
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Seq2 Seq3

Tester: x >= 0

Tester

Tester

SUT3
Tester

 

Figure 4-40 : A TeLa two-tier scenario structure showing a local choice and comprising a TeLa activity-diagram 
with three nodes, together with the corresponding sequence diagrams. This scenario structure represents the 

same behaviour as the one-tier scenario structure of Fig 4-19. 
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Figure 4-41: TeLa activity-diagram choice illustrating the notion of enabled and syntactically enabled. 
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3.4.3 Well-formedness 

3.4.3.1 GUARDS 
The owning components of the local guards of which the guard of an alternative is composed 
must be members of an interaction framework of the component model of the test description 
(see Chapter 5, Section 1). That is, they are disjoint in the sense that none of the components 
is a sub or supercomponent of another. The particular interaction framework used must be the 
same for all the different alternatives of the choice. 

For each dynamic variable used in a local guard: 
• if the variable name is preceded by a base-level component name and a dot, the intended 

value is that held by this component; moreover, this component must be a subcomponent 
of the component owning the local guard in which the variable is used, 

• otherwise, all the base-level components of the owning component of the local guard must 
share a common view of the value of that variable. 

3.4.3.2 DEFAULT ALTERNATIVE 
If a choice has a default alternative, that choice must be essentially controllable, that is, if a 
controllable event is enabled in one alternative, no observable event can be enabled in any 
other alternative unless it is in all of them. 

3.4.4 Informal semantics 
A TeLa activity-diagram choice describes a situation in which one of several behaviours is 
possible. Whether the choice is fully specified or not, in the sense that it cannot be guaranteed 
that only one of the alternatives is fireable in any execution, only one of the alternatives can 
be chosen in any execution. Choices that are not fully specified are termed indefinite choices. 

If an alternative is unguarded, it is considered to be guarded by the expression “true” owned 
by the whole tester component. 

3.4.4.1 DETERMINISM AND CONTROLLABILITY 
In this section, we will only discuss the semantics after projection onto the tester lifelines. We 
will say that two events which are enabled in different alternatives of a choice are in minimal 
conflict. 

A test description is minimally deterministic if no concurrent events have identical labels and 
no observable events in minimal conflict have identical labels. A test description that is not 
minimally deterministic is considered not well-defined. We also suppose for well-definedness 
that any remaining non-determinism, due to identically-labelled controllable events in 
minimal conflict, is resolved by controllable events (delayed choices are resolved by the 
tester). 

If, in addition, the test description is such that there are no minimal conflicts involving an 
observable event and a controllable event, we say that the test description is essentially 
controllable and describes a parallel test case. If, in addition, the test description is such that 
no proper tester emissions (i.e. to the SUT) is concurrent with a proper tester reception (i.e. 
from the SUT), we say that the test description is properly concurrently controllable and 
describes a externally-coherent parallel test case. If, in addition, the test description is such 
that no tester coordination action or internal action is concurrent with a proper tester 
reception, we say that the test description is concurrently controllable and describes a 
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coherent parallel test case. Finally, if, in addition, the test description is such that no 
controllable event is concurrent with any other controllable event we say the test description 
is controllable and describes a centralisable test case. 

In the non-enumerated data case, different controllable events may be enabled in different 
alternatives of a choice. However, if the test description is to describe a parallel test case, all 
such controllable events must be guarded (in the sense defined above). For more details on 
determinism and controllability in TeLa, see Chapter 5, Section 2.2. 

We leave for future work the study of how a test description can be completed in order to turn 
it into a parallel test case, as well as the study of how a parallel test case can be made 
externally coherent, coherent or centralised by resolution of tester concurrency e.g. by adding 
synchronizations. 

3.4.4.2 DEFAULT ALTERNATIVE 
The default alternative is a global notion which can only be given meaning in a centralisable 
test case, an externally centralisable test case (see Chapter 5, Section 2.2) or a coherent 
implementation of a parallel test case. 

Suppose the test description describes an coherent parallel test case. The meaning of the 
default alternative for a choice in which all enabled events are observable events is that of an 
unspecified reception from the tester. In the non-enumerated data case, the meaning of the 
default alternative in which all enabled events are controllable events is that none of the 
guards on the specified alternatives evaluates to true. 

Now suppose the test description describes an externally-coherent parallel test case. If we 
suppose that the implementation gives priority to tester coordination messages and tester 
internal actions (we must suppose the latency of tester coordination messages is less than that 
of other messages), the default alternative is also meaningful. The meaning of the default 
alternative for a choice in which all enabled events are observable events, or tester 
coordination messages / tester internal actions that are concurrent with all of such observable 
events, is again that of an unspecified reception from the tester. 

Finally, suppose the test description describes a parallel test case. If we suppose that the 
implementation gives priority firstly to tester coordination messages and tester internal 
actions and secondly to observable actions, the default alternative is also meaningful for any 
parallel test case. The meaning of the default alternative for a choice in which all enabled 
events are observable events, or controllable events that are concurrent with all such 
observable events, is again that of an unspecified reception from the tester. 

3.5 Implicit and explicit verdicts 

3.5.1 Introduction 

3.5.1.1 IMPLICIT VERDICTS 
In the non-enumerated data case, the implicit inconclusive verdict is derived if any one of a 
set of guards on concurrent controllable events does not evaluate to true, or if none of a set of 
guards on alternative controllable events evaluates to true. In the former case, the inconclusive 
verdict is local to the component owning the guard. In the latter, the inconclusive verdict is 
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local to the component owning the choice. We assume that all other components continue 
their execution to see if a fail verdict can be derived. 

The meaning of guards on controllable actions not evaluating to true also merits further 
explanation, given the complexity of the guards described previously. In this calculation, local 
guards on events which are concurrent are disjoined whereas local guards on events which are 
in conflict are conjoined. It should also be noted in carrying out this calculation that that the 
same dynamic variable may have different values in concurrent or conflicting local guards. 

The implicit fail verdict is derived if, at any time, an unexpected proper reception occurs. 

The meaning of “unexpected” in the phrase “unexpected proper reception” merits further 
explanation. It takes into account the name of the action (as in an interleaving semantics), the 
signature of that action and the guard (as in the non-enumerated data interleaving case), as 
well as the port on which the action occurs (as in the non-enumerated data partial-order 
semantics case). Again, local guards on events labelled by the same observable action (where 
this notion includes the signature and the owning port) that are concurrent are disjoined 
whereas local guards on events labelled by the same observable action that are in conflict are 
conjoined. Again, it should also be noted in carrying out this calculation that that the same 
dynamic variable may have different values in concurrent or conflicting guards. 

3.5.1.2 EXPLICIT VERDICTS 
TeLa elementary sequence diagrams, those that can be referenced in TeLa activity diagrams, 
can also contain explicit verdicts.  

3.5.2 Syntax (explicit verdicts) 
The syntax used is the same as that used for the explicit verdicts occurring as alternatives of 
sequence diagram choices. 

3.5.3 Well-formedness 
The explicit inconclusive verdict on proper tester reception is allowed anywhere in a sequence 
diagram. 

In the non-enumerated data case, the implicit inconclusive verdict can only be derived for a 
test description that is a parallel test case. 

Explicit verdicts, other than the explicit inconclusive verdict on proper tester reception, are 
only legal if the event to which they are attached is enabled in an alternative of a choice with 
an explicit default alternative. The explicit default alternative requires that the test description 
be at least essentially controllable. If the choice is between alternative controllable events, the 
explicit verdict must be an inconclusive verdict and the explicit default alternative must not 
also lead to an explicit inconclusive verdict. If the choice is between observable events and 
the explicit verdict is a fail verdict, the explicit default alternative must not also lead to an 
explicit fail verdict. 

3.5.4 Informal semantics 
The implicit fail verdict is well-defined for any well-defined test description. In the case 
where alternative receptions are possible, if the test description describes a coherent parallel 
test case, the implicit fail verdict can be viewed as an implicit (global) default alternative. 
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In the case where none of a set of alternative tester guards evaluates to true, if the test 
description describes a coherent test case, the implicit inconclusive verdict is well-defined and 
can be viewed as an implicit (global) default alternative. If the test description describes a 
parallel test case that is not coherent, the implicit inconclusive verdict can be made well-
defined by stating that if a component derives an inconclusive verdict and a sub or super 
component derives an implicit fail verdict, the result is a fail verdict. With this priority 
scheme, the implicit verdict can again be viewed as an implicit (global) default alternative. 

In the case of the explicit verdict, the corresponding event is annotated with the verdict. In an 
execution, if the corresponding action occurs in a configuration where that event is enabled, 
the local verdict is derived. How a global verdict is derived from this local verdict is 
described in Chapter 5, Section 2.1.2.2.  

3.6 TeLa activity-diagram loops 

3.6.1 Introduction 
We allow sequences of transitions to form loops. Loops with an exit involve a TeLa activity 
diagram choice. 

3.6.2 Syntax 
A loop with an exit condition requires use of a node with an empty sequence diagram 
(denoted with a dash) in order to respect the UML activity diagram syntax. See Figure 4-42 
for an example of a sequence connector loop in TeLa. 
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_1 < max_size

« assign »
y := i 

Seq1 

« assign » 
i := 0 

Tester 

 

Figure 4-42: A TeLa two-tier scenario structure showing a loop with specified exit condition and comprising a 
TeLa activity diagram with four nodes, together with the corresponding sequence diagrams, one of which is 
empty. This two-tier scenario represents the same behaviour as the one-tier scenario structure of Fig. 4-16. 
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3.6.3 Well-formedness 
If the conditions for re-entering and exiting the loop are specified, the exit condition must be 
the negation of the re-entry condition. Usually, the default alternative branch is used to ensure 
this. 

3.6.4 Informal semantics 
A loop permits the execution of a behaviour a specified or unspecified number of times. 

The loop guard is always considered to be part of a controllable event. Even if, initially, there 
is a single ready event and it is an observable event, the diagram is not equivalent to a 
diagram in which the guard is moved to a guard on the observable event. 

 



 

Chapter V : Elements of a formal semantics 
for a scenario-based test description 

language for component testing
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In this chapter, we some of the main elements of a formal semantics for TeLa. In Section 1, 
we define the component model underlying TeLa test descriptions. In Section 2, we present 
elements of a behavioural semantics. In Section 3, we show how a message-based semantics 
can be mixed with an event-based semantics on a component by component basis. 
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1 Elements of structural semantics 

1.1 Component structures and component models 

1.1.1 Component structures 
We define a component structure ℑ as a tuple: 

( Χ, Π, Ι, ≤Χ, mult(Χ,Χ), ownsport, mult(Χ,Π), portint, connect ) 
where: 

• Χ is a finite set of component types containing a distinguished subset Χ⊥, the set of base-
level component types, and a distinguished element x⊤ ∉ Χ⊥, the top-level component 
type; in the usual case, the elements of are Χ⊥ are classes. Π is a finite set of port types 
and Ι a finite set of interface types. 

• ≤Χ is a reflexive, transitive, anti-symmetric binary relation, known as the contains 
relation, between elements of Χ satisfying: 

∀α ∈ Χ,  x⊤ ≤Χ α    and    ∀α ∈ Χ⊥ , {β ∈ Χ | α ≤Χ β } = {α}. 
≤Χ defines a containment hierarchy among the component types. We denote the irreflexive 
reduction of ≤Χ by <Χ and call it the properly_contains relation. We denote the transitive, 
irreflexive reduction of ≤Χ by <<Χ and call it the has_part relation (it signifies immediate 
containment). (Χ,<<Χ) is a tree with root x⊤ and leaves Χ⊥. 

• mult(Χ,Χ): Χ × Χ ↦ IN × IN is a function associating a pair of natural numbers, (min(α, β), 
max(α, β)) satifying max(α, β) ≥ init(α, β), to each pair of component types, (α, β), that is 
consistent with ≤Χ , i.e.: 

mult(Χ,Χ)(α, β) ≠ (0, 0)  ⇔  (α, β) ∈ <<Χ 
The tuple (min(α, β), max(α, β)) defines the multiplicity of the “child” component type β in 
the “parent” component type α, i.e. the specification of the initial and maximum1 number 
of instances of β that can be parts of any instance of α. We assume that: 

∀α ∈ Χ−Χ⊥ , ∃ β∈ Χ ,   mult(Χ,Χ)(α, β) = (1, n)  for some n ≥ 1, 
This condition ensures that every instance of a component type contains an instance of a 
base-level component type. 

• ownsport: Χ ↦ Π is a surjective mapping that associates a non-empty set of port types to 
each component type. In the usual case, each base-level component type is related to a 
single port type, i.e. 

α∈ Χ⊥   ⇒   ownsport(α) = {p} for some p ∈ Π. 
The top-level component type x⊤ may, or may not, have associated ports. 

                                                 
1 We demand an upper bound to the number of components (instances of component types) of each type to 
ensure that the number of components is bounded. 
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• mult(Χ,Π): Χ × Π ↦ IN × IN is a function that associates a pair of natural numbers, (min(α, 

p), max(α, p)) satifying max(α, p) ≥ init(α, p), to each pair of component types and port types 
(α, p) and that is consistent with the ownsport mapping in the sense that: 

mult(Χ,Π)(α, p) ≠ (0, 0)  ⇔  p ∈ ownsport(α). 
The tuple (min(α,p), max(α,p)) defines the multiplicity of port type p in component type α, 
i.e. the specification of the initial and maximum number of instances of p that can be parts 
of any instance of α. In the usual case: 

α ∈ Χ⊥   ∧  ownsport(α) = p   ⇒   mult(Χ,Π)(α, p) = (1,1) 
i.e. the multiplicity of the single port type owned by a base-level component type is (1,1). 
However, this is not true for non-standard base-level component types, see below. 

• connect is a relation between pairs of component types and port types satisfying: 
    ((c1, p1), (c2, p2)) ∈ connect    ⇔  pi ∈ ownsport(ci), i = 1,2 
     ∧   ( c1 <<Χ c2   ∨   ∃ c3 ∈ Χ  (c3 <<Χ c1  ∧  c3 <<Χ c2) ) 
     ∧   the constituent interfaces of p1 and p2 are compatible 

• portint: Π ↦ Ι, is a surjective mapping taking each port type to the set of interface types 
of which it is composed. 

The two clauses c1 <<Χ c2 and c3<<Χ c1 ∧ c3 <<Χ c1 correspond to the “delegation connectors” 
and “assembly connectors” of UML 2.0, respectively. We do not define the notion of 
interface compatibility here. Such a definition would require well-formedness conditions for 
each of the two types of connectors (assembly and delegation). However, for the objective of 
defining an underlying component basis for TeLa sequence diagrams, we do not need this 
level of detail. 

A base-level component type α for which the number of elements of ownsport(α) is one and 
the multiplicity for this port type in α is (1,1) is called a standard base-level component type. 
Any other base-level component type is called a non-standard base-level component type. 
Non-standard base-level component types are introduced in order to model components 
whose internal structure is unknown, in particular, with the SUT of black-box testing in mind. 

A component structure can be defined via a set of diagrams, each representing a component 
type α and showing the immediate sub-component types of α, each with a multiplicity, the 
port types of α, each with a multiplicity, and the port types of the immediate sub-component 
types of α. The diagram also shows lines representing connect relations, each line either 
connecting port types of distinct sub-component types of α, or a port type of α and a port type 
of one of its immediate sub-component types. 

Given a component structure ℑ, as above, instances of elements of Π, the set of port types of 
ℑ, are called Π-typed ports, or simply ports, where Π is clear. Instances of elements of X, the 
set of component types of ℑ, are called X-typed components, or simply components where ℑ 
is clear. A set of X-typed components will be called an Χ-typed component set or simply 
component set. Instances of the connect relation between ports will be called connectors. 

1.1.2 Component models 
A component model Ω is defined as comprising the following elements: 

• A component structure, ℑ, as defined above 
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• A set of rules for each component type α defining how to create/destroy ports and connect 
relations on creation/destruction of an immediate subcomponent2, i.e. an instance of a 
component whose type β satisfies α <<Χ β. Some or all of these rules may be generic to 
some or all of the component types of the component structure. We assume that ports or 
connect relations are only created/destroyed on creation/destruction of immediate 
subcomponents, except for ports of non-standard base-level components and connectors 
involving such ports. We will not formalise these rules here. 

• The rule stating that in any instantiation of the component structure, there is always 
exactly one instantiation of the top-level component x⊤. Notice that the top-level 
component is not covered by any multiplicity restriction. 

In the component models we use here, we further assume that for each component type, 
among the port types related by the ownsport mapping is a distinguished port type called the 
creation port type, which is the destination of any creation messages of a component of that 
type. This is to enable component creation to be modelled as the sending of a message from 
the creator component to the created component as in UML sequence diagrams. 

The definitions of component structure and component model are intended to be 
compositional in the sense that the top-level component type of a given component model can 
be used as the internal structure of a non top-level component type of a larger component 
model. 

1.1.3 Component-model snapshots 
A snapshot S of a component model Ω, as above, is set of components, ports and connectors, 
together with relations that are instances of the contains, ownsport and connect relations, 
which satisfy the multiplicity constraints between their types and the rules of the component 
model, and in which components and ports have identity. That is, a component-model 
snapshot is a legal instance of a component model. 

More formally, a component-model snapshot is a tuple ( S, πS, ≤S, ownsportS, connectS ) 
where S is a set of components typed by the elements of Χ, πS is a set of ports typed by the 
elements of Π, and the relations ≤S, ownsportS, and connectS satisfy: 
∀ c, c1, c2 ∈ S ,  ∀p, p1, p2 ∈ πS  : 
c1 ≤S c2  ⇔  type(c1) ≤S type(c2), so that (S, <<S) is a tree 

where <<S is the transitive, irreflexive reduction of ≤S 
p ∈ ownsportS(c)  ⇔  type(p) ∈ ownsport(type(c)) 

 and  ownsportS(c1) ∩ ownsportS(c2) = ∅,   ∀ c1, c2 ∈ S   s.t. c1 ≠ c2 
((c1,  p1), (c2, p2)) ∈ connectS  ⇔   ((type(c1), type(p1)), (type(c2), type(p2))) ∈ connect 
                                      ∧  p1 ∈ ownsportS(c1),  p2 ∈ ownsportS(c2) 
min(type(c), α) ≤ #(α in c) ≤ max(type(c), α), 
 where #(α in c) is the no. of components c′ >>S c, s.t. type(c′ ) = α 
min(type(c), κ) ≤ #(κ in c) ≤ max(type(c), κ), 
 where #(κ in c) is the no. of ports p ∈ ownsportS(c), s.t. type(p) = κ 
and where the connect relations are in accordance with the rules of the component model. 

                                                 
2 A more general model would be obtained by substituting proper subcomponent for immediate subcomponent. 
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For any snapshot, the contained elements of a component according to ≤S, <S and <<S are 
known as subcomponents, proper subcomponents, and immediate subcomponents or parts, 
respectively. If p ∈ ownsportS(c) for c ∈ S, p ∈ πS, we say that the component owns the port 
in that snapshot. 

The top-level, resp. a base-level, component is an instance of the top-level, resp. a base-level, 
component type. We use the notation c⊤, resp. c⊥, for the top level, resp. any base level, 
component of a snapshot. We use the notation C⊥, for any component set of a snapshot whose 
elements are all base-level, components. 

The relation of components with the active object notion is as follows. Certain base-level 
components are denoted active components and then a component is active if at least one of 
its subcomponents is an active component. 

1.1.4 Dynamics of component models 
We define a component animation of a component model as a sequence of component 
snapshots of that component model in which adjacent elements satisfy (recall that components 
have identity): 

• a component present in one snapshot but not in the next snapshot must have been 
explicitly destroyed 

• a component present in one snapshot but not in the previous snapshot must have been 
explicitly created 

Notice that the multiplicity requirements ensure that when a non base-level component is 
created, at least one subcomponent must also be created. We define a component development 
of a component model as a set of component animations of that component model which is 
coherent, according to some criteria which we do not define here. We suppose that the set of 
component animations of a component development associated to a test description share an 
initial snapshot. Two component developments are isomorphic if there is a renaming of 
component and port identities taking one to the other. 

We assume that a newly-created component is given a unique identifier. If the creation 
message syntax is used in a TeLa sequence diagram, we show this identifier being returned in 
a return message to the creating component. If creation of a component implies creation of 
subcomponents, these are created successively, the parent creating the child and being aware 
of its identity. If component creation takes place in a loop, on leaving the loop, the variable 
representing the returned component identity has the value of the last component created. 

Given a component development, the set consisting of the snapshots that are involved in at 
least one component animation of the component development is called the snapshot 
universe. Note that a snapshot universe may contain distinct snapshots which are isomorphic 
but which differ in the component or port identities. The set of components which take part in 
at least one snapshot of the snapshot context is called the component universe of the 
component development. We assume that each component in the initial snapshot has a distinct 
identity, and also that each component created in a component development has a distinct 
identity w.r.t. to any component which exists prior to its creation in any component animation 
of the component. The set of ports which take part in at least one snapshot of the snapshot 
context is called the port universe of the component development. We assume that each port 
in the initial snapshot has a distinct identity, and also that each port created on creation of a 
component has a distinct identity w.r.t. any port which exists prior to its creation in any 
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component animation of the component development. Thus: ownsportS(c1) ∩ ownsportS′ (c2) 
= ∅,  ∀c1∈ S, c2 ∈ S′ s.t. c1 ≠ c2, ∀S∆∈ S 

If ∆ is a component development, we denote the snapshot universe by S∆, the component 
universe by C∆ and the port universe by P∆. 

1.2 Test description component models 

At the basis of a Tela sequence diagram is a component model, which we refer to as the test 
description component model. This component model constitutes the structural foundations 
underlying the diagram. In all component models underlying TeLa sequence diagrams, the 
first level of component types under the top level contains two distinguished component types 
with multiplicity (1,1): the tester component type and the SUT component type. The 
corresponding components will be referred to as the whole-tester component and the whole-
SUT component. 

1.2.1 Tester internal structure 
The internal structure of the tester component type, together with the ports of the SUT 
component type and the connectors between the tester component type and the SUT 
component type, is that defined in the test architecture. 

The internal structure of the tester specified in the test architecture may contain hierarchy. If it 
does not, the subcomponents of the tester component type are all base-level components 
which are classes of the tester class diagram. This is the simple object model in which the 
internal structure of the tester component type is a default one defined according to the class 
diagram of the tester. 

In the case where a closed component model of the entire application – SUT + SUT 
environment – is available, the test architecture component model may, or may not, be 
derived from the SUT-environment part of the application component model (e.g. by addition 
of a controller module with verdict capability). 

1.2.2 SUT internal structure 
The SUT component type may, or may not, contain internal structure. In the simplest case, it 
does not contain internal structure and is therefore a base-level component type of the test 
description component model, as in the test architecture. This base-level component is 
standard, or non-standard, according to whether it owns one port type with multiplicity (1,1), 
or several port types. In the simple object-model case, the ports of the whole SUT component 
are in 1-1 correspondence with those of the standard base-level components (= objects) it 
contains and can be unified with them, see below. 

A component model of the SUT may be available, most likely as part of a component model 
of the entire application. If it is, in the test description component model we can define the 
internal structure of the SUT component type to be that defined by this SUT component 
model, instead of defining the SUT to be a base-level component type, as is the case in the 
test architecture component model. However, we may still choose not to represent this 
internal structure in TeLa sequence diagrams via multiple SUT lifelines. Whether or not the 
SUT internal structure is represented explicitly in the diagram, the so-called “SUT component 
interface” contains all the SUT ports referenced by any actions of the test. The set of ports of 
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the whole SUT component, on the other hand, coincides with that of the “SUT component 
interface” if the SUT internal structure is not represented explicitly, but may be a proper 
subset of it, if the SUT internal structure is represented explicitly. 

If we do not explicitly represent the SUT internal structure in TeLa sequence diagrams, we 
may represent it either as a single lifeline or as a set of lifelines representing ports. 

If we do choose to explicitly reflect the SUT internal structure in TeLa sequence diagrams via 
multiple lifelines, we are apparently assuming that the SUT implementation is organised 
according to this component model but, in fact, this is for representational purposes only. As 
stated earlier, such a representation can be particularly useful for test descriptions derived 
from sequence diagrams of the application design model. 

Whether we show the components inside the whole SUT component or whether we simply 
show the ports of this component, does not affect the semantics obtained by projection onto 
tester instances, as long as the causality relations between tester actions are the same. Recall 
also that, contrary to the situation for tester base-level components, SUT base-level 
components (including the whole SUT component if it is a base-level component) cannot own 
dynamic system variables in TeLa test descriptions. Note that SUT lifelines represent ports or 
components but never a mixture of the two. 

1.2.3 Simple object models as special case 
Each standard base-level component (= object, in usual case) of a snapshot always has a 
single port, so we can unify the identifiers of standard base-level components with those of 
their ports. If the underlying component model of a test description is a simple object model, 
it has two levels of component hierarchy apart from the top-level component: the tester + 
SUT level, and the base level. 

In the simple object model, the ports on either of the two second-level components – the 
whole tester component and whole SUT component – are in 1-1 correspondence with the 
ports on the standard base-level components they contain. We can therefore unify the 
identifiers of the ports at the two levels, thus also unifying the identifiers of the ports on 
second-level components with the identifiers of the standard base-level components (= 
objects) they contain. 

1.2.4 Dynamics of test description component models 
Given a TeLa test description we assume that the initial snapshot is specified via a component 
diagram. In the simple object model case, it is sufficient to list the base-level components. In 
this case, the lifelines of the TeLa sequence diagrams represent base-level components and 
the initial snapshot is considered specified by the initial set of lifelines (supposing that SUT 
and tester lifelines are clearly distinguished). 

We suppose that from a TeLa test description we can extract a set of linearisations. If we take 
the reduction of these linearisations w.r.t. any actions which are not creation or destruction 
actions, together with the initial snapshot, we define the component development of the test 
description. If this component development is not permitted by the component model (e.g. 
violation of multiplicity constraints), the component development is said to be inconsistent. 
Otherwise, it is said to be consistent. 

We need to handle the dynamic aspect of components (snapshots and component 
developments) since, for example, the number of lifelines representing a component of a 
given type used in a diagram may be legally greater than that permitted by the multiplicity 
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constraints. We also wish to ensure than no action can be specified as belonging to a port on a 
component that has not yet been created or has already terminated, whether or not the 
component in question is explicitly represented via a lifeline. 

1.3 Cuts and interaction frameworks 

If SUT lifelines do not represent ports, the set of lifelines of a sequence diagram, or those of a 
set of sequence diagrams, should define an interaction framework for the component 
development, as defined below. This interaction framework is not necessarily a partition of 
any of the snapshots that it cuts. 

1.3.1 Relations between sets of partially-ordered elements 
In this section we look at some of the relations induced by a partial-order relation on sets of 
elements of the partial order. In our case, the sets of elements are sets of components from a 
snapshot. For C, D ⊆ S and c, d ∈ S, and for S ∈ S∆ we define: 
C above d and C below d: 
  C ↾S d   = {c ∈ C | c ≤S d}  and  C ⇂S d  =  {c ∈ C | d ≤S c} 

C not below d and C not above d: 
 C∤⇂S d = {c∈C | ¬(d ≤S c)}  and  C∤↾S d  =  {c∈C | ¬(c ≤S d)} 

C above D and C below D: 
 C ↾S D  =  ∪{d∈D} C ↾S d      and    C ⇂S D  =  ∪{d∈D} C ⇂S d 
  = {c∈C | D ⇂S c ≠ ∅}   = {c∈C | D ↾S c ≠ ∅} 
C not below D and C not above D: 
 C∤⇂S D =   ∩{d∈D} C ∤⇂S d and  C∤↾S D  =  ∩{d∈D} C ∤↾S d 
  =  {c∈C | D ↾S c = ∅}   = {c∈C | D ⇂S c = ∅} 

Note that: 
C∤⇂S D = ∅   ⇔  C ⇂S D = C       C∤⇂S D  = C   ⇔  C ⇂S D = ∅ 
C∤↾S D = ∅   ⇔  C ↾S D = C       C∤↾S D  = C   ⇔  C ↾S D = ∅ 

If D ⇂S C = D (all of D is below C), we say that C covers D and write C 〈〈S D.  
If C 〈〈S D and C ⇂S D = ∅ (all of D is below C and none of C is below D), we say that C caps 
D and write C ≼S D 
If C 〈〈S D and C ⊆ D we say D develops C and write C ⊑S D  

1.3.2 Snapshot extension 
Let S, S′ ∈ S∆, we say that S′ develops S and write S ⊑S′  S′, if: 
• S ⊆ S′. Since all snapshots of S∆ are trees that share the same root:  S ⊆ S′  ⇒  S ⊑S′ S′ 
• πS ⊆ πS′ 
• The relations ≤S, ownsportS and connectS are the relations ≤S′, ownsportS′ and connectS′  

restricted to S  

The rules concerning the creation and destruction of ports mean that the first condition is 
sufficient to guarantee the second except in presence of non-standard base-level components. 
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(S∆, ⊑) is a partial order.  We define the downward extension in S∆, or simply extension, of a 
snapshot S as S↓ = {S′ ∈ S∆ | S ⊑S′ S′ } 

1.3.3 Cuts 
Let S ∈ S∆ and S⊥ be the set of base-level components of S. A surjective function ℵ: C∆ ↦ 
{0,1} is said to be a cut of S if the following are true: 
• ∀c ∈ CS

ℵ , CS
ℵ
⇂S c  =  c   

i.e. if a component is in CS
ℵ, none of its proper descendants are in CS

ℵ (maybe itself). 
• CS

ℵ 〈〈S  S⊥,   
i.e. every base-level component in S has an ancestor in CS

ℵ. 

where Cℵ = ℵ−1(1), the characteristic set of ℵ and CS
ℵ = ℵ−1(1)|S = Cℵ ∩ S is the 

characteristic set of ℵ for S. 

If ℵ is a cut of S we also say ℵ cuts S or that CS
ℵ cuts S. In fact, the first of the two 

conditions above means that, if ℵ cuts S then  CS
ℵ 〈〈S S⊥  ⇔ CS

ℵ ≼S S⊥ so we could have used 
the relation ≼S instead of the relation 〈〈S in the second condition. 

1.3.4 Partitions and base-level cuts/partitions 
Let Cuts∆ be the set of functions ℵ : C∆ ↦ {0,1} which are cuts of some snapshot in S∆. Given 
a snapshot S ∈ S∆, we define an equivalence relation ≡S on Cuts∆ by regarding two cuts as 
equivalent if they agree on S, i.e. ℵ1 ≡S ℵ2 if CS

ℵ1 = CS
ℵ2, that is, their characteristic sets for 

S are the same. Denote by [ℵ]S the equivalence class of the cut ℵ under ≡S. The equivalence 
class [ℵ]S has a unique representative ℵ(S) obtained by using CS

ℵ as characteristic set, i.e. 
Cℵ(S) = CS

ℵ. ℵ(S) is said to be the partition of S defined by any member of [ℵ]S on S. We also 
say that ℵ(S) partitions S (and sometimes that CS

ℵ partitions S). 

ℵ is called a base-level cut of S, if it cuts S and all elements of CS
ℵ are base-level 

components. For any snapshot S, the partition of S defined by putting Cℵ = S⊥, the set of base-
level components of S, is always a base-level partition of S. The top-level partition is the 
trivial partition obtained by putting Cℵ = {c⊤}. The entire set of base-level components of S∆, 
denoted S⊥

∆, is a base-level cut of any S ∈ S∆. 

1.3.5 Interaction frameworks 
We define the reach in S∆ of ℵ ∈ Cuts∆ as follows: 

Reach(ℵ) = { S ∈ S∆ |  ℵ is a cut of S } 

We define the set of interaction frameworks for the component development of which S∆ is 
the snapshot universe as follows: 

Frames∆ = {ℵ ∈ Cuts∆ | Reach(ℵ) = S∆} 

Notice that an interaction framework may contain more components of a given component 
type than is permitted in any snapshot by the multiplicity constraints. 

1.3.6 Minimal snapshots for a cut 
If ℵ is a cut of S∈ S∆, we say that the snapshot S′ develops S below ℵ and write S ⊑ℵ S′ if: 
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• S ⊑S′  S′   
i.e. S′ develops S  (and, in particular, CS

ℵ ⊆ S′ ) 

• S∤⇂S CS
ℵ = S′∤⇂S′ CS

ℵ  
i.e. the components of S and S′  which are not above CS

ℵ are the same 

We define the (downward) extension of a snapshot S∈ S∆ below ℵ ∈ Cuts∆ as: 
S↓ℵ = { S′ ∈ S∆ | S ⊑ℵ S′  } 

Clearly, ℵ cuts S ⇒ ℵ cuts S′, ∀S′ ∈ S↓ℵ. 

A snapshot S0 is minimal for ℵ ∈ Cuts∆ if: 
• ℵ cuts S0    ∧    S′  ⊑ℵ S0    ∧   ℵ cuts S′     ⇒     S′ = S0 

Let the set of snapshots which are minimal for ℵ be denoted minsnap(ℵ). If ℵ cuts S ∈ S∆ 
then Reach(ℵ(S)) = ∪S∈minsnap(ℵ(S)) S ↓

ℵ , where ℵ(S) is the partition of S defined by ℵ. 

1.3.7 Decomposition of cuts 
Let ℵ1, ℵ2 cut S ∈ S∆. We say that ℵ2 decomposes ℵ1 w.r.t. S or ℵ2 is a decomposition of 
ℵ1 w.r.t. S, and write ℵ1 ≼S ℵ2 if: 
• CS

ℵ1 〈〈S CS
ℵ2 

i.e. CS
ℵ2

  ⇂S CS
ℵ1 = CS

ℵ2 , in other words, all of CS
ℵ2 is below CS

ℵ1 

Since ℵ1 and ℵ2 are cuts of S, CS
ℵ2 ⇂S CS

ℵ1 = CS
ℵ2   ⇒   CS

ℵ1 ⇂S CS
ℵ2 = ∅ (in other words, if 

all of CS
ℵ2 is below CS

ℵ1, none of CS
ℵ1 is below CS

ℵ2), i.e.: 
ℵ1 ≼S ℵ2    ⇔    CS

ℵ1 ≼S CS
ℵ2 

so we could have used the relation ≼S between characteristic sets for S instead of the relation 
〈〈S in the definition of decomposition. 

If ℵ1, ℵ2 cut S ∈ S∆ and ℵ2 decomposes ℵ1 w.r.t. S, then the reach of the partitions ℵ1(S) 
and ℵ2(S) defined by ℵ1 and ℵ2 are related as follows: 

∀ S ∈ minsnap(ℵ1(S)),   ∃ S′ ∈ minsnap(ℵ2(S)) ,    S′ ∈ S ↓
ℵ1(S)   

Let ℵ1, ℵ2 ∈ Frames∆. We say that ℵ2 decomposes ℵ1 or ℵ2 is a decomposition of ℵ1, 
and write ℵ1 ≼ ℵ2 if: 
• ℵ1 ≼S ℵ2     ∀S∈ S∆ 

If ℵ1 ≼ ℵ2 and c ∈ CS
ℵ1 − CS

ℵ2 then we say that c is decomposed (into subcomponents) in 
ℵ2. 

The decomposition relation defines a partial order on Frames∆. In fact, multiplicities being 
bounded, (Frames∆, ≼) is a finite lattice with a maximum and mimimum element defined by 
the characteristic sets {c⊤} and S⊥

∆, where the latter is the entire set of base-level components 
of S∆. 

1.3.8 Containing element of an interaction framework 
Since snapshots are trees, if S ∈ Reach(ℵ) and c ∈ S ⇂S CS

ℵ then CS
ℵ 
↾S c is a singleton. That 

is, if a component of a snapshot is contained in an element of the characteristic set of a cut, it 
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is not contained in any other element of that characteristic set. For a component set C ⊆ C∆ 
and a cut ℵ ∈ Cuts∆, define Reach(ℵ)|C by: 

Reach(ℵ)|C = { S ∈ Reach(ℵ) |  C ⊆ S } 
Then, by the nature of component structures: 

S, S′ ∈ Reach(ℵ)|{c}  ⇒   c ∈ S ⇂S CS
ℵ ⇔ c ∈ S′ ⇂S′ CS

ℵ 
that is, a component cannot be contained in an element of the characteristic set of a cut for one 
snapshot and not be contained in an element of the characteristic set of that cut for another 
snapshot. Furthermore, the properties of component developments ensure that: 

S, S′ ∈ Reach(ℵ)|{c}  ⇒  CS
ℵ ↾S c = CS′

ℵ ↾S′  c 
that is, if a component c is contained in a certain element of the characteristic set of a cut for 
one snapshot of S∆, it is contained in the same element of the characteristic set of that cut for 
any snapshot in Reach(ℵ)|{c} ⊆ S∆. Finally, if ℵ ∈ Frames∆: 

∀c ∈ C∆, ∀S ∈ S∆,   c ∈ S   ⇒   CS
ℵ ↾S c ≠ ∅   ∨   CS

ℵ ⇂S c ≠ ∅ 
that is, if any component of the component universe is present in any snapshot of the snapshot 
universe, then it is either above or below the characteristic set of the interaction framework 
for that snapshot. 

For each ℵ ∈ Frames∆, we can therefore define the function ρℵ : C∆  ↦ Cℵ ∪ {c⊤} taking a 
component to the element of the characteristic set of the interaction framework that contains 
that component in some snapshot, if there is such a snapshot, and to the top-level component 
if not: 

ρℵ(c)  =  c′ ,   if ∀S∈ Reach(ℵ)|{c}, CS
ℵ ↾S c = {c′}, 

       =  c⊤,   if ∀S∈ Reach(ℵ)|{c}, CS
ℵ ↾S c = ∅ 

Note that: 
ρℵ1(c2) = c1 ∈ Cℵ1    ⇔    ∃ℵ2 s.t. ℵ1 ≼ ℵ2 and c2 ∈ Cℵ2. 

That is, a component is contained in a component which is a member of the characteristic set 
of an interaction framework iff there is a decomposition of that interaction framework for 
which it is a member of the characteristic set. 

1.4 Generalised cuts and generalised interaction frameworks 

If SUT lifelines can represent ports, the set of lifelines of a sequence diagram, or those of a set 
of sequence diagrams, should define a generalised interaction framework for the component 
development, as defined below. This generalised interaction framework is not necessarily a 
generalised partition of any of the snapshots that it cuts. 

1.4.1 Generalised cuts 
Let S ∈ S∆, with component set S and port set πS. Let S⊥ be the set of base-level components 
of S. A surjective function χ: C∆ ∪ P∆ ↦ {0,1} is said to be a generalised cut of S if the 
following are true. 
• CS

χ ∩ ComPS
χ = ∅ 

No component selected by χ has ports selected by χ. 
• ∀c ∈ ComS

χ,   ComS
χ ⇂c  =  c 
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If c is selected by χ or has ports selected by χ, this is not the case for any of its proper 
descendants. 

• ComS
χ ≼  S⊥ 

Every base-level component of the snapshot has an ancestor in S (maybe itself) that is 
selected by χ or has ports so selected. 

where  Cχ = χ−1(1) ∩ C∆,   Pχ = χ−1(1) ∩ P∆  are the characteristic sets of χ 
            CS

χ = Cχ ∩ S,   PS
χ = Pχ ∩ πS   are the characteristic sets of χ for S 

ComPS
χ  = ∪{p∈PS

χ} ownsportS
−1(p)  is the set of components of S with ports selected 

by χ 
ComS

χ = CS
χ

 ∪ ComPS
χ is the set of components of S selected by χ or with ports 

selected by χ 
The last two conditions simply state that the function ℵ(S): C∆ ↦ {0,1} with characteristic set 
Cℵ = ℵ(S)−1(1) = ComS

χ is a partition of S, as defined in Section 1.3.4. For χ a generalised 
cut, ℵ(S) is called the covering partition of χ for S. Notice that for a generalised cut we do not 
oblige PS

χ = ownsportS(ComPS
χ), i.e. if one of the ports of a component of S is selected by the 

generalised cut, we do not demand that all the ports of that component in S are selected by the 
generalised cut. 

1.4.2 Generalised partitions and base-level generalised cuts/partitions 
Let GCuts∆ be the set of functions χ : C∆ ∪ P∆ ↦ {0,1} which are generalised cuts of some 
snapshot in S∆. Given a snapshot S ∈ S∆, we define an equivalence relation ≡S on GCuts∆ by 
regarding two generalised cuts as equivalent if they agree on S, i.e. χ1 ≡S χ2 if CS

χ1 = CS
χ2 and 

PS
χ1 = PS

χ2, that is, their characteristic sets for S are the same. Denote by [χ]S the equivalence 
class of a generalised cut χ under ≡S. We can define a unique representative of the 
equivalence class [χ]S, denoted χ(S), by defining its characteristic sets as follows: 

Cχ(S) = CS
χ(S)    and    Pχ(S) = ∪{S∈ S↓ℵ(S)}ownsportS(ComPS

χ) 

where χ is any member of [χ]S and ℵ(S) is the covering partition of χ for S 3. χ(S) is said to 
be the generalised partition of S defined by any member of [χ]S on S (we also sometimes say 
that CS

χ(S) ∪  ∪{S∈ S↓ℵ(S)}ownsportS(ComPS
χ) is a generalised partition of S). Trivially, a cut 

of S is a generalised cut of S and a partition of S is a generalised partition of S (for which χ(p) 
= 0 ∀p ∈ P∆). 

If ℵ cuts S ∈ S∆ and if SΦ ≠ ∅, where SΦ is the set of non-standard base-level components of 
S, then for any CΦ ⊆ SΦ, putting Cχ = CS

χ = CS
ℵ − CΦ and Pχ = PS

χ = ∪c∈CΦ ownsportS(c) 
defines a generalised partition χ of S.  Non-standard base-level components are logical 
candidates for the set ComPS

χ, that is, to be decomposed into ports. An example is to be found 
in the whole SUT component, which may be represented as a non-standard base-level 
component. 

A generalised cut χ of S ∈ S∆ is called a base-level generalised cut of S, if all the elements of 
the characteristic set of the covering partition for S, ComS

χ, are base-level components. For 

                                                 
3 If an element of ComPS

χ has more immediate subcomponents in some extension of S than it does in S then it 
may also have more ports in that snapshot than it does in S. We must therefore use S↓ℵ(S) if we require a 
generalised partition of S to also be a generalised partition of any extension of S, as is the case for partitions. 
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each snapshot S, for any C⊥ ⊆ S⊥, putting Cχ = S⊥−C⊥ and Pχ =  ∪c∈C⊥ ownsportS(c) defines a 
base-level generalised partition of S.  

In the case of a simple object model in which the port identifiers of the non base-level 
components are unified with the identifiers of the base-level components they contain, all 
generalised partitions are also viewed as partitions (since port IDs and base-level object IDs 
are unified). 

1.4.3 Generalised interaction frameworks 
For χ ∈ GCuts∆, we define Reach(χ) in S∆ and GFrames∆ ⊆ GCuts∆ in an analogous way to 
Reach(ℵ) and Frames∆ for cuts. GFrames∆ is the set of generalised interaction frameworks 
for the component development of which S∆ is the snapshot universe. 

1.4.4 Minimal snapshots for a generalised cut 
If χ is a generalised cut of S ∈ S∆, then we say that the snapshot S′ develops S below χ and 
write S ⊑χ S′  if  S ⊑ℵ(S) S′, where ℵ(S) is the covering partition of χ for S. We can then define 
the (downward) extension of a snapshot S below a generalised cut, S↓χ , in the same way as for 
a cut. Then, χ is a generalised cut of S ⇒ χ is a generalised cut of S′, ∀S′ ∈ S↓χ. The notion of 
minimal snapshot for a generalised cut is defined in the same way as for a cut and, similarly, 
we denote by minsnap(χ) the set of minimal snapshots for the generalised cut χ. As for cuts, if 
χ is a generalised cut of S then Reach(χ(S)) = ∪S∈minsnap(χ(S)) S ↓

χ , where χ(S) is the generalised 
partition defined by χ. 

1.4.5 Decomposition of generalised cuts 
Let χ1, χ2 ∈ GCuts∆. For S∈ S∆, as previously we define: 

PS
χi =  χi

-1(1) ∩ πS,   CS
χi = {χi

-1(1) ∩ S,    i = 1,2 
ComPS

χi  =  ∪{p∈PS
χi} ownsportS

−1(p),    i = 1,2 
Cℵ(S)i  =  ComS

χi =  CS
χi

  ∪ ComPS
χi     i = 1,2 

We say that χ2 decomposes χ1 w.r.t. S or that χ2 is a decomposition of χ1 w.r.t. S and write χ1 
≼S χ2 if: 
• Cℵ(S)1 ≼S Cℵ(S)2  

i.e. the covering partition of χ1 covers (and caps) the covering partition of χ2. 
• PS

χ1⊆ PS
χ2   

i.e. the set of ports selected by χ1 is a subset of the set of ports selected by χ2. 

If, in addition, we have that c ∈ ComPS
χ1 ∩ ComPS

χ2  ⇒  (ownsportS(c) ∩ PS
χ1) = 

(ownsportS(c) ∩ PS
χ2)  i.e. if some ports of a component are selected by χ1, exactly the same 

ports of that component are selected by χ2, we say that χ2 is an owned-ports preserving 
decomposition of χ1 w.r.t. S. 

If χ1, χ2 are generalised cuts of S, then the reach of the generalised partitions χ1(S), χ2(S) 
defined by χ1 and χ2 are related as follows: 

∀ S ∈ minsnap(χ1(S)) ,   ∃ S′ ∈ minsnap(χ2(S)),     S′ ∈ S ↓
χ1(S) 
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Let χ1, χ2 ∈ Frames∆. We say that χ2 decomposes χ1 or that χ2 is a decomposition of χ1 and 
write χ1 ≼ χ2 if: 
• χ1 ≼S χ2 ∀S∈ S∆  

If χ1 ≼ χ2 and c ∈ CS
χ1 − CS

χ2 then we say that c is decomposed (into subcomponents or ports) 
in χ2. The decomposition is owned-ports preserving if it is owned-ports preserving ∀S∈ S∆. 

The decomposition relation defines a partial order on GFrames∆ with a maximum element 
defined by the characteristic sets {c⊤} and ∅ and minimum elements defined by the 
characteristic sets ∅ and Ports⊥, where the latter is any set of ports of base-level components 
s.t. each base-level component contributes at least one port. If there are no non-standard base-
level components, all base-level components have a single port and the partial-order 
(GFrames∆, ≼) has a unique minimal element. 

1.4.6 Containing element of a generalised interaction framework 
Let χ ∈ GFrames∆. Let ℵ(S) ∈ Cuts∆ denote the covering partition of χ for S ∈ S∆. By the 
nature of snapshots and component developments, we can define the interaction framework 
ℵ(χ)∈ Frames∆ by: 

ℵ(χ)(c) = ℵ(S)(c), where S ∈ S∆ is any snapshot s.t. c ∈ S 

We say that ℵ(χ) is the covering interaction framework of χ. Given χ ∈ GFrames∆, we can 
then define the function ρχ : C∆  ↦ Cℵ(χ) ∪ {c⊤}, taking a component to the element of the 
characteristic set of the covering interaction framework ℵ(χ) of χ that contains that 
component in some snapshot, if there is such a snapshot, and to the top-level component, if 
not, by ρχ(c) =  ρℵ(χ)(c).  
Note that: 

ρχ1(c2) = c1 ∈ Cℵ(χ1)    ⇔    ∃χ2 s.t. χ1 ≼ χ2 and c2 ∈ Cℵ(χ2) 
where ℵ(χ1), resp. ℵ(χ2), is the covering interaction framework of χ1, resp. χ2. That is, a 
component c2 is contained in a component c1of the characteristic set of the covering partition 
of χ1 iff there is a decomposition, χ2, of  χ1 s.t. c2 is an element of the characteristic set of the 
covering partition of χ2. 

1.5 Structural semantics of TeLa sequence diagrams 

1.5.1 Test description interaction frameworks 
As discussed previously, the test description component model underlying a TeLa test 
description is either that of the test architecture or that of the test architecture together with 
the SUT internal structure. This component model, together with the initial snapshot and the 
creation/destruction behaviour of the test description defines a component development. We 
assume this component development is consistent with the component model. We assume that 
the test description component model contains two distinguished component types, namely 
the tester component type and the SUT component type, both of multiplicity (1,1). Every 
component snapshot contains precisely one whole tester component and one whole SUT 
component. 
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The structure of a sequence diagram comprises a set of vertical lines, or lifelines, each 
labelled with a component or port name. Given a sequence diagram, we define a diagram-cut 
as a continuous line extending from its left border to its right border which does not bisect any 
message arrows (c.f. the notion of “valid cut” of [HélLeM01]. To be structurally consistent 
with a test description component development, the set of lifelines bisected by any diagram-
cut must represent a generalised partition of a snapshot of that component development. If 
this is the case, then the set of lifelines of a single sequence diagram, or those of a set of 
sequence diagrams, defines a generalised interaction framework for the component 
development (but not necessarily a generalised partition of any of the snapshots of that 
framework). 

1.5.1.1 TELA SEQUENCE DIAGRAMS WITH A SINGLE SUT LIFELINE 
In a TeLa diagram, if the SUT is represented via a single lifeline, each diagram-cut 
corresponds to a partition of a snapshot of the test description component development. The 
set of lifelines of the diagram defines an interaction framework (a specific type of generalised 
interaction framework) of the test description component model. Thus, the characteristic set 
of the covering partition of this interaction framework comprises the whole SUT component 
and one or several tester components, depending on the level of decomposition chosen. 

Any internal structure of the SUT component type is not represented in the diagram via 
lifelines, whether or not it exists. However, whether it exists or not is important to how the 
diagram can be decomposed into another diagram, see Section 1.5.3. Recall that if it does not 
exist, the SUT component type is a base-level component type, standard, or non-standard, 
according to whether it owns one port type with multiplicity (1,1), or several port types.  

1.5.1.2 TELA SEQUENCE DIAGRAMS WITH MULTIPLE SUT LIFELINES 
A TeLa diagram in which the SUT is not represented via a single lifeline, can be of two types. 

1. If the SUT is represented via multiple lifelines, each representing a component, then, as in 
the previous case, each diagram-cut corresponds to a partition of a snapshot of the test 
description component development. The set of lifelines of the diagram again defines an 
interaction framework of the test description component model. The characteristic set of 
the covering partition of this interaction framework comprises several SUT components 
(the SUT is decomposed into components) and one or several tester components, 
depending on the level of decomposition chosen. Clearly, this representation presupposes 
the existence of an SUT component model defining the internal structure of the SUT 
component type. 

2. If the SUT is represented via multiple lifelines, each representing a port, each diagram-cut 
corresponds to a generalised partition of a snapshot of the test description component 
development (which, in this case, is not a partition). The set of lifelines of the diagram 
defines a generalised interaction framework (which, in this case, is not an interaction 
framework). The characteristic sets of the generalised interaction framework comprises 
exactly the set of ports of the whole SUT component which constitutes the so-called “SUT 
component interface”, and one or several tester components, depending on the level of 
decomposition chosen. 

Any internal structure of the SUT component type of the test description component 
model is not represented in the diagram, whether or not it exists. If it does exist, then the 
choice of a generalised partition in which the whole SUT component is decomposed into 
ports is a choice to explicitly represent this component as opaque to further analysis in 
spite of the existence of this SUT component model. 
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1.5.1.3 TESTER LIFELINES IN TELA SEQUENCE DIAGRAMS 
Notice that the tester lifelines always represent components. The only type of diagram in 
which the tester lifelines can be viewed as representing ports is when each lifeline represents a 
standard base-level component, since in this case component IDs coincide with prot IDs. In 
particular, this will be the case in the simple object model. Though the definitions of 
generalised partition allow any component to be represented via its ports, we only use this 
possibility for the whole SUT component, never for any tester component, since the 
architecture of the tester is known to the test designer. 

1.5.2 Finiteness of snapshots 
In sequence diagrams, dynamic creation must be specified explicitly. Clearly, then, the fact 
that a diagram has a fixed finite number of lifelines means that it can only explicitly represent 
a fixed, finite number of components. However, the use of a hierarchical component model 
and of lifelines representing elements of cuts of snapshots from this model means that a TeLa 
sequence diagram could, in theory, represent an unbounded number of components. Though 
this is an interesting feature we do not make use of it here and we have defined multiplicities 
in such a way as to impose an upper limit on the number of possible components in a 
snapshot, in order to simplify the presentation. 

1.5.3 Decomposition of diagrams 
We have defined the notion of decomposition of partitions with the idea of using MSC-style 
decomposition in TeLa sequence diagrams, according to the hierarchy defined by the 
component model. The notion of decomposition gives us the possiblity of choosing the level 
of structural abstraction at which we wish to describe a test in a TeLa sequence diagram.  

As described above, the set of lifelines of a TeLa sequence diagram defines a generalised 
interaction framework of the corresponding component development. The decomposition 
relation between generalised interaction frameworks lifts to a decomposition relation between 
sequence diagrams describing the same test. For obvious reasons, we discount the trivial 
partition which selects only the top-level component (the component which includes the 
whole SUT component and the whole tester component). 

Regarding internal actions, though we have not included the following details in the semantics 
we have defined here, we note for future extension, the following details. A lifeline owning an 
assertion internal action can sometimes be decomposed into multiple lifelines and the sending 
of a coordination message between two of them. A lifeline owning a creation internal action 
can be decomposed into multiple lifelines including the creator and the created component 
and the sending of a creation message from creator to created. 

A particular case of interest concerns the decomposition of a diagram in which the whole 
SUT component is represented via a single lifeline and in which the decomposition is applied 
to this component. If an SUT component model does not exist, the SUT component can only 
be decomposed into ports. If an SUT component model does exist, the SUT component can 
be decomposed either into ports or into components depending on whether or not we wish to 
show the internal structure of the whole SUT component. 
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1.6 Structural consistency of TeLa sequence diagrams 

The set of lifelines of a TeLa sequence diagram defines a generalised interaction framework 
w.r.t. a component development. We now investigate the relation of the actions to the 
(generalised) partition defining this interaction framework. 

1.6.1 TeLa test description actions 
The alphabet of actions Σ is the disjoint union of the set of tester actions ΣT and the set of 
SUT actions ΣSUT, each the disjoint union of the set of component-internal actions (ΣT

int and 
ΣSUT

int), reception actions (ΣT
? and ΣSUT

?) and emission actions (ΣT
! and ΣSUT

!). Both reception 
and emission actions can be of three types: synchronous invocation, asynchronous invocation 
and synchronous invocation reply4. When dealing with the projected semantics, that is, the 
semantics in terms of tester action only, we will often omit the superscript T. 

SUT component-internal actions can only occur in the case where SUT internal structure is 
explicitly represented and can only be creation actions. Tester component-internal actions can 
be used to model the TeLa internal actions “assign”, “assert”, “create” and “escape”, where 
the last of these is used to include other-language fragments. They could also be used to 
model timer actions, though we do not deal with such actions here. 

In the non-enumerated data case, each element of Σ has an associated (possibly empty) tuple 
of types called the signature of the action5. In the enumerated data case, the signature is not 
needed since any parameters are considered part of the action name. In the non-enumerated 
data case, the message parameters of the syntax become the action parameters associated to 
the semantic actions. In the enumerated data case, on the other hand, the message parameters 
of the syntax are part of the semantic actions themselves. 

1.6.1.1 PROPER AND IMPROPER ACTIONS 
Both SUT and tester, emission and reception actions may, or may not, be proper. For the 
tester, a proper emission action resp. proper reception action is defined to be an emission, 
resp. reception, action on a tester component for which the communication partner is an SUT 
entity, i.e. it does not concern a tester-internal message. For the SUT, a proper emission 
action resp. proper reception action is defined to be an emission, resp. reception, action on an 
SUT component for which the communication partner is a tester entity, i.e. it does not 
concern an SUT-internal message. Other emissions or receptions are said to be improper. 

1.6.1.2 ACTIONS AND OWNING PORTS / COMPONENTS 
Component-internal actions are assumed to include information about the owning component. 
Emission and reception actions are assumed to include information about the sending and 
receiving port of the corresponding message, except for proper tester reception actions. The 
latter actions may only include information about the receiving tester port, depending on the 
underlying communication system. We suppose that each port is owned by a component, the 
connection between the two being specified statically in a component diagram and 
dynamically by a naming convention. 

                                                 
4 We do not distinguish signals and asynchronous invocations. 
5 Though syntactically the same operation name may be used for several operations with differing signature, in 
such cases, a different name is used in the semantics. 
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Thus, an emission action is a triple (s, r, m) where s is the sending port, r is the receiving port 
and m is the message. In the case of a tester emission action, the emission is proper or 
improper according to whether r is an SUT or tester port. In the case of an SUT emission 
action, the emission is proper or improper according to whether r is a tester or SUT port. We 
will use the notation !s.r.m 

An SUT reception action is also a triple (s, r, m) in which s, r and m are as above. The action 
is proper or improper according to whether s is a tester or SUT port. We will use the notation 
?s.r.m 

A tester reception action may be a triple of the form (s, r, m) in which s, r and m, are as 
above. The action is proper or improper according to whether s is an SUT or tester port. 
Depending on the system, a proper tester reception action may instead be a pair of the form (r, 
m), in which r is the receiving tester port and m is a message. We will use the notation ?s.r.m 
for the first type of tester reception actions and ?r.m for the second type of tester receptions. 
Proper tester receptions are ordered pairs in systems whose underlying communication 
mechanism is such that information about the sending SUT port is not available6. 

Sending ports are always ports of base-level components. If receiving ports are not ports of 
base-level components, it is supposed that the receiving component has a policy for 
unambiguously channelling the corresponding message to a base-level component. 

A component-internal action is a pair (c, a), where c is a component and a is a local action. 

1.6.1.3 OBSERVABLE ACTIONS AND CONTROLLABLE ACTIONS 
The set of proper tester reception actions, also called observable actions, is denoted Σobs. All 
other tester actions belong to the set of controllable actions, denoted Σcon, including the 
improper tester receptions, i.e.: 

Σcon = Σ! ∪ Σint ∪ Σ? - Σobs. 
The improper tester receptions and emissions, along with the tester component-internal 
actions constitute the improper controllable actions, while the proper tester emissions 
constitute the proper controllable actions. Improper controllable actions may also be called 
tester internal actions. A proper tester action is either a proper tester emission or proper tester 
reception, ie. either a proper controllable action or an observable action. 

The improper tester reception actions are in some sense special among the controllable 
actions. For example, due to the nature of choice in TeLa, there can be no minimal conflict 
involving an event labelled by an improper reception action. We therefore define the primary 
controllable actions to be the tester emissions together with the tester component-internal 
actions. 

1.6.1.4 CREATION AND DESTRUCTION ACTIONS 
Component creation can be described in two ways in TeLa test descriptions. The first way of 
describing creation is via a creation message sent by the creating component and received by 
the created component, similar to the UML sequence diagram notation. In the same way as 
for any other send or receive action, the sending port referred to by a send or receive action of 
a create message is always a base-level port. The receiving port (the port of the created 
component) is subject to the following restriction: if the snapshot before the creation is S and 

                                                 
6 Note that even in the case where this information is not available in the actual test, it may be available in the 
specification of the application and therefore useable by test synthesis. 
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in the creation action, the base-level component ccreator creates the component cnew of type α ∈ 
Χ, then:  

∃β ∈ Χ (  β <Χ type(cnew)   ∧   ∃c ∈ S ( type(c) = β ∧  c <S ccreator)  )    ⇒   c <S cnew. 
where a snapshot is a legal instance of a component model, ≤Χ denotes containment of 
component types and ≤S denotes containment of components. That is, if the creator 
component is properly contained in a component, c, whose type contains the type of the 
created component, the created component must also be properly contained in c. This means, 
in particular, that a tester component cannot create SUT components and an SUT component 
cannot create tester components. 

The second way is via a component-internal action. The first two arguments of this internal 
action are the sending port and the receiving port; these ports are those of subcomponents of 
the component owning the component-internal creation action and are subject to the same 
restrictions as are the ports involved in the send or receive actions of creation messages. 
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 Figure 5-1: The set of actions of TeLa. The semantics after projection contains only the tester actions: those of 
the left branch. 

Figure 5-1 shows the different TeLa actions, as described in this section. As in MSCs and 
UML 1.4 sequence diagrams, there is no disabling or destruction action apart from the 
termination action performed by a component itself. As in MSCs and UML 1.4 sequence 
diagrams, this action is denoted by a cross terminating the lifeline. Note that termination of a 
component involves the termination of all its subcomponents. 

1.6.2 Consistency of actions with an interaction framework 
We first assume that the TeLa sequence diagram contains no lifelines representing ports so 
that the set of lifelines defines an interaction framework. As already stated, the sub-case 
where the SUT is represented via multiple lifelines presupposes the existence of the SUT 
component model. 

Recall the definition of Reach(ℵ)|C, for a cut ℵ and a set of components C ⊆ C∆ of the 
component universe, and of the function ρℵ : C∆  ↦ Cℵ taking a component onto its 
representative element in an interaction framework. 
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An emission action, !s.r.m, or a reception action of the form ?s.r.m, is said to be consistent 
with an interaction framework ℵ1 if there exists a decomposition ℵ2 of ℵ1 s.t. cs, cr ∈ Cℵ2, 
where cs, cr are the owning components of s and r (i.e. cs = comportS(s), cr = comportS(r), for 
some S) respectively, and Cℵ2 is the characteristic set of ℵ2. This is iff: 
• Reach(ℵ1)|{cs, cr} ≠ ∅ 
• ∃ cs

ℵ1, cr
ℵ1 ∈ Cℵ1,  ρℵ1(cs) = cs

ℵ1 and  ρℵ1(cr) = cr
ℵ1 

For a tester emission action, cs is a tester component, and cr is a tester or SUT component, 
according to whether the action is improper or proper (i.e. to whether it is part of an inter-
tester coordination message or not). For a tester reception action, cr is a tester component and 
cs is a tester or SUT component, according to whether the action is improper or proper (i.e. to 
whether it is part of an inter-tester coordination message or not). For an SUT emission action, 
cs is an SUT component and cr is an SUT or tester component, according to whether the 
action is improper or proper (i.e. to whether it is part of an inter-SUT coordination message or 
not). For an SUT reception, cr is an SUT component and cs is an SUT or tester component 
according to whether the action is improper or proper (i.e. to whether it is part of an inter-
SUT coordination message or not). 

A proper tester reception of the form ?m.r is said to be consistent with an interaction 
framework ℵ1 if there exists a decomposition ℵ2 of ℵ1 s.t. SUT, cr ∈ Cℵ2, where SUT is the 
whole SUT component (which may, or may not, be a base-level component), cr is the owning 
component of r and Cℵ2 is the characteristic set of ℵ2.  This is iff: 
• SUT ∈ Cℵ1    (we assume that ℵ1 is not the trivial partition) 
• ∃cr

ℵ1 ∈ Cℵ1,  ρℵ1(cr) = cr
ℵ1 (this implies that Reach(ℵ1)|{cr} ≠ ∅) 

Clearly, cr is a tester component. Notice that if the system is such that proper tester receptions 
are of this form, the whole SUT component cannot be decomposed in TeLa sequence 
diagrams. 

A component-internal action (c, la) is said to be consistent with an interaction framework ℵ1 
if there exists a decomposition ℵ2 of ℵ s.t. c ∈ Cℵ2 where Cℵ2 is the characteristic set of ℵ2. 
This is iff:  
• ∃ cℵ1 ∈ Cℵ1,  ρℵ1(c) = cℵ1 (this implies that Reach(ℵ1)|{c} ≠ ∅) 
If the action is a creation action, c may be an SUT component or a tester component. 
Otherwise, c is a tester component. 

If, syntactically, “assert” and “asign” internal actions are permitted to straddle several 
lifelines, semantically, the corresponding component-internal actions can be considered to be 
consistent with any interaction framework.  

1.6.3 Consistency of actions with a generalised interaction framework 
We now assume that the TeLa sequence diagram contains lifelines representing SUT ports so 
that the set of lifelines defines a generalised interaction framework.  

Recall the definition of Reach(χ)|C, for a generalised partition χ and a set of components C ⊆ 
C∆, and of the function ρ taking a component onto its representative element in a generalised 
interaction framework. 

An improper tester emission or reception action, a proper tester reception of the form ?r.m 
and a tester component-internal action, are said to be consistent with a generalised interaction 
framework if they are consistent with its covering interaction framework. 
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A proper tester emission action, !s.r.m, or proper SUT reception action, ?s.r.m is said to be 
consistent with a generalised interaction framework χ1 if there exists an owned-ports 
preserving decomposition χ2 of χ1 s.t. cs ∈ Cχ2 and r ∈ Pχ2, where cs is the owning component 
of s, and Cχ2, Pχ2 are the characteristic sets of χ2. This is iff: 
• r ∈ Pχ1, so r is a port of the whole SUT component 
• ∃cs

χ1 ∈ Cχ1,  ρχ1(cs) = cs
χ1 (this implies that Reach(χ1)|{cs} ≠ ∅) 

A proper tester reception action of the form ?s.r.m, or a proper SUT emission action, !s.r.m, is 
said to be consistent with a generalised interaction framework χ1 if there exists an owned-
ports preserving decomposition χ2 of χ1 s.t. cr ∈ Cχ2 and s ∈ Pχ2, where cr is the owning 
component of r and Cχ2, Pχ2 are the characteristic sets of χ2. This is iff: 
• s ∈ Pχ1, so s is a port of the whole SUT component  
• ∃ cr

χ1 ∈ Cχ1,  ρχ1(cr) = cr
χ1 (this implies that Reach(χ1)|{cr} ≠ ∅) 

An improper SUT emission action !s.r.m is said to be consistent with a generalised interaction 
framework χ1 if: 
• s, r ∈ Pχ1, so r and s are ports of the whole SUT component 

1.6.4 Location of events in a (generalised) interaction framework 
An alphabet of actions is consistent with a (generalised) interaction framework of a 
component development if each individual action is consistent with that framework. The fact 
that the notion of interaction framework takes into account the dynamics (i.e. the component 
development) means that if an alphabet of actions is consistent with a (generalised) 
interaction framework, an action cannot occur on a port belonging to a component that has not 
yet been created on has already terminated. 

Let E be the set of events of a non-interleaving semantics test description, Σ be the alphabet of 
actions and ƒ : E → Σ be the labelling function. Let Σ be consistent with the interaction 
framework ℵ of that test description. Let cp denote the owning component of the port p. We 
define the location function ϑℵ: E ↦ Cℵ, taking an event to the element of the characteristic 
set of the interaction framework on which it is located, as follows: 
• For an emission event, e, s.t. ƒ(e) = !s.r.m :    ϑℵ(e) = ρℵ(cs) 
• For a reception, e, s.t. ƒ(e) = ?s.r.m or a = ?r.m :  ϑℵ(e) = ρℵ(cr) 
• For a tester component-internal event, e, s.t. ƒ(e) = c.la: ϑℵ(e) = ρℵ(c) 

Now let the alphabet of actions, Σ, be consistent with the generalised interaction framework χ 
of the test description, where χ is not an interaction framework (i.e. SUT lifelines represent 
ports). Let cp denote the owning component of the port p. We define the location function ϑχ: 
E ↦ Cχ ∪ Pχ, taking an event to the element of the characteristic sets of χ on which it is 
located, as follows: 
• For any tester event, e:     ϑχ(e) = ϑℵ(χ)(e) ∈ Cχ 
• For an SUT emission event, e, s.t. ƒ(e) = !s.r.m:  ϑχ(e) = s ∈ Pχ 
• For an SUT reception action, e, s.t. ƒ(e) = ?s.r.m: ϑχ(e) = r ∈ Pχ 

where ℵ(χ) is the covering interaction framework of χ 

We have thus defined the location function for all events and for all types of generalised 
interaction frameworks.  
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1.6.5 Structural consistency 
Recall that we assume that a TeLa diagram has an underlying component model, defined 
either by the test architecture on its own, or by the test architecture together with an SUT 
component model. 

A TeLa diagram is said to be structurally consistent if: 

• The creation/destruction behaviour of the diagram is consistent with the test description 
component model (e.g. respects the multiplicity constraints). In this case, the test 
description component model, the initial snapshot and the creation/destruction behaviour 
defines the test description component development. 

• Any diagram-cut represents a generalised partition of some snapshot of the test 
description component development. In this case, the set of lifelines of the diagram 
defines a generalised interaction framework χ. 

• The alphabet of actions Σ of the diagram is consistent with the interaction framework 
defined by the set of lifelines. In this case, the physical location of the actions on the 
diagram (i.e. which lifeline) conforms to that defined by location function ϑχ, see above. 

• The location function ϑχ is surjective (if it is not, this means that there are components or 
ports which are represented in the diagram but which have no actions located on them and 
are therefore redundant). 

In fact, consistency of a diagram should also take into account consistency between the 
alphabet of actions and the connectors of the component model. However, as we have not 
formalised this aspect of our component models, we do not include this condition in our 
definition of structural consistency. 

A TeLa sequence diagram can be decomposed into another TeLa sequence diagram as long as 
the generalised interaction framework denoted by the second diagram is a decomposition of 
that denoted by the first diagram and structural consistency is preserved. Evidently, in the 
decomposed diagram the location function is redefined. Given a TeLa test description, we 
denote by ϕ, the location function of the maximally-decomposed generalised-interaction 
framework. 
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2 Elements of behavioural semantics 

2.1 Outline of behavioural semantics for TeLa test descriptions 

2.1.1 Introduction 
In this section, we outline how a formal semantics can be defined for the TeLa language in 
terms of an alphabet of tester actions. In the general case, symbolic treatment of data is 
inevitable, firstly since a test description is usually parameterised (which we model via static 
variables), and secondly, since the data values contained in the parameters of messages sent 
by the SUT (which we model via anonymous variables and dynamic variables) cannot be 
known in advance, and some data types permit an unbounded number of possible data values. 

In order to introduce the inevitable complexity in a progressive manner, we first outline how 
to define an interleaving semantics with enumerated data, then a non-interleaving semantics 
with enumerated data, and finally an interleaving semantics with non-enumerated data. We 
leave the non-interleaving semantics with non-enumerated data for future work. In all cases, 
we deal with the semantics after projection onto tester instances, see Chapter 3, Section 1.4. 
The definitions given for each model are formulated in such a way as to facilitate their 
generalisation to the more complex and more generic models. 

Though we choose to use non-interleaving models that are classified in [SasNieWin96] as 
behavioural models, namely event structures, we choose to use non-interleaving models that 
are classified in [SasNieWin96] as system models, namely labelled transition systems. This is 
since we consider event structures to be the most natural abstract non-interleaving semantics 
for the TeLa language but we seek to generalise the conformance testing conceptual 
framework developed in the labelled transition system context [Jér02] [JarJér02]. 

2.1.2 Interleaving model with enumerated data 

2.1.2.1 LABELLED TRANSITION SYSTEM BASIS 
We base the following discussions on the representation of test descriptions as labelled 
transition systems (LTSs), similar to that of [Jér02] [JarJér02]. 

A labelled transition system is a quadruple M = (S, q0, Σ, →) where: 
• S is a finite non-empty set of states, 
• S0 is the set of initial states; we will use models with a single initial state s0, 
• Σ is the alphabet of actions, as discussed in Section 1.6.1, 
• → ⊆ S × Σ × S is the transition relation. 

Unlike most LTS models, in the LTSs of [Jér02] [JarJér02], it is not assumed that all internal 
actions are identical, in order to facilitate the use of LTSs for modelling test objectives that 
may include SUT internal actions. However, in [Jér02] [JarJér02] the LTS of the synthesized 
test does not contain any internal actions. The LTSs we use to model test descriptions can also 
contain internal actions of the tester. Hence, if we were also to perform TGV-style test 
synthesis, the specification would need to contemplate SUT internal actions, which would be 
hidden as part of the test synthesis, and SUT-environment internal actions, which would not 
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be hidden during the test synthesis but would become tester internal actions. This would also 
enable us to use test synthesis after having chosen an arbitrary component of a specification 
as the SUT. 

We will refer to an LTS derived from a test description via a projection onto tester lifelines as 
a test description LTS, or simply test description where no confusion can arise. Clearly, we 
are assuming that such an LTS can always be derived from a test description (though here we 
do not explore how). 

2.1.2.1.1 Definition of concepts required for TeLa semantics 
We say that a transition is enabled in its start state. By extension, if a transition labelled by an 
action a is enabled in state s we say that action a is enabled in state s. If the test description is 
deterministic, see Section 2.2.2.1, the enabled actions and enabled transitions are in 1-1 
correspondence. 

We consider that the tester has the initiative for firing enabled transitions labelled by 
controllable actions while the tester environment, i.e. the SUT, has the initiative for firing 
enabled transitions labelled by observable actions. 

A run through a test description is a sequence of transitions s.t.: 
• the start state of the initial element of the sequence is the initial state of the test 

description, 
• the start state of every element of the sequence other than the initial one is the end state of 

the previous element of the sequence. 

A maximal run through a test description is a run in which the last element is a terminal 
transition, that is a transition whose end state is a sink state. 

A trace is the sequence of actions defined by a run. 

An execution is a set of runs which is totally ordered by inclusion and where each element 
extends its predecessor in the ordering by a single transition. A maximal execution is an 
execution whose last element is a maximal run. 

2.1.2.2 VERDICT ANNOTATIONS ON TEST DESCRIPTION LTSS 
In order to define verdicts explicitly in the semantic domain, even if they are to remain 
implicit in the syntactic domain, we introduce the possibility of annotating terminal 
transitions – those leading to a sink state – of our test description LTSs with a verdict. We 
then call terminal transitions annotated with a verdict pass transitions, fail transitions or 
inconclusive transitions, according to the type of verdict. 

A state s is said to be complete w.r.t. the set of observable actions Σobs if, for all a ∈ Σobs, there 
is an enabled transition of s labelled by a. A test description is said to be test complete if all 
terminal transitions are annotated with a verdict, and all states having an enabled observable 
action are complete w.r.t. to Σobs. 

Given a test-complete test description, the last transition of each maximal run is necessarily 
annotated with a verdict so we can associate a verdict to each maximal run. We say that the 
test verdict of a maximal execution of a test description is the verdict associated to the last 
element of this execution.  

In order for verdicts to be consistently defined, we impose the condition that any two maximal 
runs of a test-complete test description which have the same trace must have the same 
associated verdict. Consistently-defined verdicts can be guaranteed by imposing determinism. 
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In the enumerated data case, only pass and fail verdicts are implicit so if there are no explicit 
verdicts, we need only impose minimal determinism along with the assumption that any non-
determinism is either resolved on a controllable action or leads to successful termination 
(implicit pass verdict) or the same explicit verdict on both branches. 

A semantically test-complete test description is achieved in TeLa by using syntactically-
implicit verdicts. In Section 2.3.2, we show how implicit pass and fail verdicts can be made 
explicit to give a semantically test-complete test description. Another way to achieve test 
completeness, representing a more low-level view, is to use explicit defaults as in [ETSI03a] 
or [UTP03]. 

2.1.3 Non-interleaving model with enumerated data 

2.1.3.1 EVENT-STRUCTURE BASIS 
As the notion of choice is important in defining controllability (see later), we base the 
following discussions on the representation of test descriptions as event structures, such as 
that of [HélJarCai02]. We do no deal with a parallel operator since, in the presence of loops, 
this operator introduces considerable complexity. 

In our models, events are labelled by atomic actions as discussed in the introduction to this 
section. Note that the notion of event used here is closer to the UML notion of event 
occurrence than the UML notion of event. An event structure [Win87] ε  is a tuple (E, ≤, #, ƒ ) 
where: 

• E is a set of events, 
• ≤ is a partial order relation (i.e. a reflexive, transitive and anti-symmetric relation) known 

as the causality relation s.t. {e1 | e1 ≤ e2} is finite for all e2 ∈ E, 
• # is an irreflexive, symmetric relation known as the conflict relation s.t. e1 # e2  ∧  e2 ≤ e3  

⇒  e1 # e3 , ∀ e1, e2, e3, ∈ E , that is, conflicts are inherited via the causality relation; two 
events that are in conflict cannot appear in the same execution, 

• ƒ : E → Σ is a labelling function from E to the alphabet of actions Σ. 
We will refer to an event structure derived from a test description via a projection onto tester 
lifelines as a test description event structure, or simply a test description where no confusion 
can arise. Clearly, we are assuming that such an event structure can always be derived from a 
test description (though here we do not explore how). 

We denote by ε ↾S the restriction of a test description event structure ε  to the set of events S 
⊆ E, that is, the event structure defined as (S, ≤S, #S, ƒS) where 
• ≤S = ≤ ∩ (S x S), 
• #S = # ∩ (S x S) 
• ƒS = ƒ ↾S 

2.1.3.1.1 Definition of concepts required for TeLa semantics 

A configuration of a test description event structure ε = (E, ≤, #, ƒ) is a subset C ⊂ E s.t. ε ↾C 
= (C, ≤C, #C, ƒC) satisfies: 
• C is causally closed, i.e. if e ∈ C and e′ ≤ e for e′ ∈ E, then e′ ∈ C 

(if an event is in C, all its predecessors in ε are also in C) 
• C is conflict free, i.e. #C = ∅  



Elements of behavioural semantics          171 

 

An event e ∈ E − C is enabled in a configuration C of event structure ε if C ∪ {e} is also a 
configuration. By extension, if an event labelled by an action a is enabled in configuration C 
we will say that action a is enabled in C. If the test description is deterministic, see Section 
2.2.3.1, the enabled actions and enabled events are in 1-1 correspondence. An event e ∈ C is a 
leaf of the configuration C of event structure ε if C − {e} is also a configuration. 
Two events are in minimal conflict if they are in the conflict relation but neither is in conflict 
with any of the predecessors of the other. Note that two events which are enabled in a 
configuration are either concurrent or in minimal conflict. A maximal configuration is a 
configuration for which there are no enabled events. Below we define the looser concept of a 
maximal test configuration. 

We consider that the tester has the initiative for executing enabled events labelled by 
controllable actions while the tester environment, i.e. the SUT, has the initiative for executing 
enabled events labelled by observable actions. 

An execution of a test description is a set of configurations which is totally ordered by 
inclusion, where each element extends its predecessor in the ordering by a single event. A 
maximal execution is defined as an execution whose last element is a maximal configuration. 
Below we define the looser concept of a maximal test execution. 

A run through a test description is a total ordering obtained by extending the partial ordering 
defined by a configuration (c.f. topological sorting of a poset).  

A maximal run through a test description is a run obtained by extending the partial ordering 
defined by a maximal configuration. Below we define the looser concept of a maximal test 
run. 

A trace or linearisation is the sequence of actions defined by a run. 

2.1.3.2 VERDICT ANNOTATIONS ON TEST DESCRIPTION EVENT STRUCTURES 
In order to define the pass and fail verdicts explicitly in the semantic domain, even if they are 
to remain implicit in the syntactic domain, we introduce the possibility of annotating terminal 
events – those with no successors – of our test description event structures with a verdict. 
Such annotations correspond to local verdicts. We then call terminal events annotated with a 
verdict, pass events, fail events or inconclusive events, according to the type of verdict. 

A configuration C is said to be complete w.r.t. the set of observable actions Σobs if, for all a ∈ 
Σobs, there is an enabled event of C labelled by a. A test description is said to be test complete 
if all terminal events are annotated with a verdict, and all configurations having an enabled 
observable action are complete w.r.t. to Σobs. 

Given a test-complete test description, we associate a (global) fail verdict to a configuration 
which includes a fail event (fail is an existential notion) and call such a configuration a fail 
configuration. We associate a (global) pass verdict to a maximal configuration whose terminal 
events are all pass events (pass is a universal notion) and call such a configuration a pass 
configuration. We associate a (global) inconclusive verdict to a maximal configuration which 
includes a inconclusive event but does not include a fail event and call such a configuration an 
inconclusive configuration. We can also define a provisional inconclusive configuration as a 
non-maximal configuration which includes a inconclusive event but does not include a fail 
event (a provisional inconclusive verdict can degrade to a fail verdict). We then define a final 
test configuration as a pass configuration, a fail configuration or an inconclusive 
configuration. 
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We define a full test execution as an execution whose largest element is a final test 
configuration. We say that the test verdict of a full test execution of a test description is the 
verdict associated to the last element of this execution. 

A full test run through a test description is a run obtained by extending the partial ordering 
defined by a final test configuration in such a way as to ensure that if the configuration is a 
fail configuration, the last element is a fail event7. If we so wish, we could also impose this 
latter condition for a maximal test configuration that is an inconclusive configuration. 

In order for verdicts to be consistently defined, we impose the condition that isomorphic 
configurations of a test-complete test description must have identical verdict annotations. This 
then ensures that any two full test runs that have the same trace have the same associated 
verdict. Consistently-defined verdicts can be guaranteed by imposing determinism. In the 
enumerated data case, only pass and fail verdicts are implicit so if there are no explicit 
verdicts, we need only impose minimal determinism along with the assumption that any non-
determinism is either resolved on a controllable action or leads to successful termination 
(implicit pass verdict) or the same explicit verdict on both branches. 

A semantically test-complete test description is achieved in TeLa by using syntactically-
implicit verdicts. In Section 2.3.3, we show how implicit pass and fail verdicts can be made 
explicit to give a semantically test-complete test description. This is done to show that the 
notion of implicit verdict is well-defined. Another way to achieve test completeness, 
representing a more low-level view, is to use explicit defaults as in [ETSI03a] or [UTP03]. 

2.1.4 Interleaving model with non-enumerated data 
The outline of the model presented here does not yet treat creation actions and escape internal 
actions. 

2.1.4.1 SYMBOLIC LABELLED TRANSITION SYSTEM BASIS 
In this section we generalise the simple LTS definitions to the non-enumerated data, 
interleaving case. A novelty of the non-enumerated case is that, with any non-trivial data 
language, finding reachable states inevitably involves constraint solving. Thus, whether an 
execution is possible or not is something that cannot easily be decided statically. 

We base the following discussions on the representation of test descriptions as symbolic 
LTSs, similar to that of [RusBouJér00]. The main differences between the presentation given 
here and that [RusBouJér00] are the following. Firstly, we do not use message variables in 
emission actions. In [RusBouJér00], this is done in order to simplify the mirror operation of 
the test synthesis, by which synchronous inputs are changed into synchronous outputs and 
vice versa. Here, we are not directly concerned with test synthesis. Secondly, our treatment of 
tester internal actions is different due to the desire to cover the distributed context. Thirdly, 
we do not consider the assignments made on a proper reception as atomic with that reception, 
due to the desire to view the reception itself as an observable action, while the consequent 
assignments are to be viewed as a tester internal, and therefore controllable, action. One 
reason for this, is to facilitate the treatment of determinism of Section 2.2.4.1, in particular, 
the notion of minimal determinism. 

                                                 
7  For a given complete test run obtained by extending a given fail configuration, there exist other complete test 
runs differing only in the number of events they contain which are concurrent to the fail event and defined as 
runs through equivalent fail configurations. The smallest such run is called the equivalent minimal full test run. 
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In our models, a symbolic LTS is defined as a tuple (S, s0, Σ, T, V) where: 
• S is a set of states 
• s0 is the initial state 
• Σ is an alphabet of actions as described in the introduction to this section 
• T is a set of transitions as described below 
• V is a set of variables of three types: static variables, dynamic variables and message 

variables 

A transition is a triple (s, l, s′), where s, s′ are states called resp. the start state and the end 
state and l is a transition label. We say that a transition is an outgoing transition of its start 
state. A transition label is a tuple (guard, act, params, assign) where: 
• guard is a boolean expression over static, dynamic and message variables, 
• act is an element of Σ, with associated signature, 
• params is a (possibly empty) tuple of expressions over static, dynamic and message 

variables; there is one expression for each element of the signature of the action and the 
expression is of the corresponding type, 

• assign is a (possibly empty) list of assignments, i.e. a list of expressions of the form l.h.s. 
:= r.h.s., where the l.h.s. is a single dynamic variable and the r.h.s. is an expression 
involving static, dynamic and message variables of the same type as the l.h.s.. 

All variables have global scope. Static variables parameterise the whole symbolic LTS, that 
is, their value cannot change from state instance to state instance. The value of a dynamic 
variable can only change between one state instance and another if the two states are 
connected by a transition labelled by an “assign” component-internal action, and the variable 
appears on the l.h.s. of one of the assignments of this action. The value of a message variable 
can only change between one state instance and another if the two states are connected by a 
proper reception action of which that variable is a parameter. 

Each dynamic variable is owned by a base-level component (= object, in the usual case). Each 
message variable is owned by the component which owns the target port of the proper 
reception which is the most recent local predecessor. The ownership of dynamic and message 
variables has no significance here and is only introduced with a view to generalising to the 
non-interleaving case. 

We impose the following well-formedness conditions on the transition labels used in a test 
description: 

Guards 
We will assume that all guards are well-formed in the sense that each individual guard is 
satisfiable. 
• For an emission action or a component-internal action, the guard is an expression over 

static and dynamic variables only. 
• For a proper reception action, we will prefer models in which the guard expressions 

constrain only the values of the message variables, any constraint on the values of the 
dynamic variables of the state instance being encoded by the use of a different state. We 
will assume this to be the case for symbolic LTSs derived from TeLa test descriptions. 

• For an improper reception action, the guard is trivial. 
Assignment list and coherence with structured action names 
• For an emission action or proper reception action, the list is empty. 
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• For an improper reception action, the dynamic variable on the l.h.s. of each assignment is 
owned by the component which owns the target port of that action or by one of its 
subcomponents. 

• For a component-internal action, the dynamic variable on the l.h.s. of each assignment is 
owned by the component which owns the action or by one of its subcomponents and the 
expression on the r.h.s. is over static and dynamic variables only. 

Parameter list and signature: 
• For an emission action or improper reception action, each expression is over static and 

dynamic variables only. 
• For a proper reception action, each expression comprises a single message variable; we 

further assume that the same message variable is always used in the same parameter 
position 

• For a component-internal action, the parameter list is empty. 

The set of possible tuples (a, value_list), where a is an action and value_list is a list of typed 
values conforming to the signature of a, is called the set of valued actions VA. A state 
instance is a pair where the first element is a state and the second is a valuation of the static, 
dynamic usual message variables. An initialised symbolic LTS is a symbolic LTS together 
with a valuation of the static variables, called the instantiation, and of the dynamic variables, 
called the initialisation. An initial state instance is a pair (initial state, instantiation + 
initialisation). 

Occurrences of the TeLa “assign” internal action are modelled as unguarded transitions 
labelled by the component-internal action “assign” with non-empty assignment list. 
Occurrences of the TeLa “assert” internal action are modelled as guarded transitions labelled 
by the component-internal action “assert” with empty assignment list. An internal 
communication of a tester component can either be viewed as a pair of actions, comprising a 
tester send action and a corresponding tester receive action, or as a component-internal action 
of that component. 

2.1.4.1.1 Instances of transitions labelled by controllable actions 
A valuation of a set of variables is a mapping associating a value (in the semantic data 
domain) to each element of V. Let v be a valuation of the static and dynamic variables and w 
be a valuation of the message variables. We say that a transition t = (s, l, s′ ) labelled l = 
(guard, act, params, assign) where act is an emission action, a component-internal action or 
an improper reception action is enabled and fireable in a state instance (s,v,w) if v(guard) = 
true (recall that for transitions labelled by improper receptions, the guard is trivial so such 
transitions are enabled in all instances of states for which they are outgoing transitions). 

In the case of an emission action, if t is fireable in (s,v,w), we say that t, together with the 
valuations v and w, defines a transition instance with start state instance (s,v,w) and end state 
instance (s′,v,w). We say that (act, values) ∈ VA is the action instance of the transition 
instance, where values is the tuple v(params), and write the transition instance as (s,v,w) 
→act(values) (s′, v,w). 

In the case of a component-internal action or improper reception action, if t is fireable in 
(s,v,w), we say that t, together with the valuations v, w and v′, defines a transition instance 
with start state instance (s,v,w) and end state instance (s′,v′,w), where v′  is a valuation of the 
static and dynamic variables defined as follows: 
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• v and v′ agree on all static variables and on any dynamic variable which does not appear 
on the l.h.s. of an element of the assignment list, 

• for each dynamic variable x for which x := Ex is an assignment of assign, v′ (x) = v⋅w (Ex) 
Note that the r.h.s. of the assignments can concern message variables. This facility is used to 
assign received values to dynamic variables. We will only use it for assignments that occur as 
a direct consequence of an observable action. 

In the case of an improper reception action, we say that (act, values) ∈ VA is the action 
instance of the transition instance, where values is the tuple v(params), and write the 
transition instance as (s,v,w) →act(values) (s′,v′,w). In the case of a component-internal action, 
since the signature is the empty list, there are no valued actions and we write (s,v,w) →act (s′, 
v′,w). If a transition is enabled / fireable in a state instance, by extension we say that the action 
of that transition is enabled / fireable in that state instance. If the test description is 
deterministic, see Section 2.2.4.1, the enabled actions and enabled transitions are in 1-1 
correspondence. 

2.1.4.1.2 Instances of transitions labelled by observable (= proper reception) actions 
Let v be a valuation of the static and dynamic variables and w be a valuation of the message 
variables. We say that a transition t = (s, l, s′) labelled l = (guard, act, params, assign) where 
act is a proper reception action is fireable for valuation w′ of the message variables in state 
instance (s,v,w) if v⋅w′(guard) = true. We say that such a transition is enabled in a state 
instance (s,v,w) if ∃ a valuation w′ of the message variables for which it is fireable. Thus, for 
observable actions, the guard can concern message variables. This facility is used to place 
conditions on received values. Notice that w (as opposed to w′) plays no role in the transition. 

If t is fireable in (s,v,w), we say that t together with the valuations v, w and w′ defines a 
transition instance with start state instance (s,v,w) and end state instance (s′,v,w′). 

We say that (act, values) ∈ VA is the action instance of the transition instance, where values is 
the tuple v⋅w′ (params) and write the transition instance as (s,v,w) →act(values) (s′,v,w′). If a 
transition is enabled and fireable for valuation w′ in a state instance, by extension we say that 
the action of that transition is enabled and fireable for valuation w′ in that state instance. If the 
test description is deterministic, the enabled actions and enabled transitions are in 1-1 
correspondence. 

2.1.4.1.3 Definition of concepts required for TeLa semantics 
The semantics of the symbolic LTS is the LTS defined as (SI, SI0, VA, TI) where SI is the set 
of state instances, SI0 the set of initial state instances, VA the set of valued actions and TI the 
smallest transition relation SI x VA x SI defined by the definition of transition instance above. 

The set of initial state instances is defined by an instantiation (assignment of values to the 
static variables) and an initialisation (assignment of values to the dynamic variables). We 
assume that the initialisations are constrained by an initial condition. Message variables do 
not need initialising as they are only used after being instantiated in an observable transition. 

We consider that the tester has the initiative for firing enabled transitions labelled by 
controllable actions while the tester environment, i.e. the SUT, has the initiative for choosing 
a w′ and firing transitions labelled by observable actions. 
We will refer to a symbolic LTS derived from a test description via a projection onto tester 
lifelines as a test description symbolic LTS or simply a test description where no confusion 
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can arise. Clearly, we are assuming that such a symbolic LTS can always be derived from a 
test description (though here we do not explore how). 

A run through a test description is a sequence of transition instances s.t. 
• the start state instance of the first element of the sequence is the initial state instance of the 

instantiated and initialised test description, 
• the start state instance of every element of the sequence other than the initial one is the 

end state instance of the previous element. 

A state instance (s,v) is reachable from the initial state instance, i.e. for a given instantiation 
and initialisation, if there exists a run in which the last element has end state instance (s,v). 

A maximal run through a test description is a run in which the last element is an instance of a 
terminal transition, that is, a transition whose end state is a sink state. 

A trace is the sequence of action instances defined by a run. 

An execution is a set of runs which is totally ordered by inclusion, where each element 
extends its predecessor in the ordering by one transition instance. A maximal execution is an 
execution whose last element is a maximal run. 

The assumption on the guards of transitions labelled by observable actions says that if an 
observable action guard is satisfied for the valuations v, w and w′, where (s,v,w) is a reachable 
state instance for some instantiation and initialisation, it is also satisfied for valuations v′, w′′ 
and w′, for any valuations v′ and w′′ s.t. (s,v′,w′′) is also a reachable state instance for some 
instantiation and initialisation. We could simply the implementation by removing the 
reachability criterion from this assumption. 
We then add the following assumption on the guards of transitions labelled by observable 
actions. For any allowed instantiation and initialisation: 
• for any guard on an outgoing transition of a state s labelled by an observable action, ∃ v, 

w, w′ valuations s.t. (s,v,w) is reachable for some instantiation and initialisation and 
v.w′(guard) = true. 

The two assumptions on the guards of observable transitions then give that if a state has an 
outgoing transition labelled by an observable action, this transition is enabled in all reachable 
instances of that state for any instantiation and initialisation. 

2.1.4.2 VERDICT ANNOTATIONS ON TEST DESCRIPTION SYMBOLIC LTSS 
In order to define verdicts explicitly in the semantic domain, even if they are to remain 
implicit in the syntactic domain, we introduce the possibility of annotating terminal 
transitions – those leading to a sink state – of our test description symbolic LTSs with a 
verdict. We then call terminal transitions annotated with a verdict pass transitions, fail 
transitions or inconclusive transitions, according to the type of verdict. 

A state instance (s,v,w) is said to be complete w.r.t. the set of observable actions Σobs if, for all 
a ∈ Σobs and for all valuations w′ of the message variables there is a transition labelled by a 
which is fireable for w′ in (s,v,w′). A state s is said to be input complete if all instances of s 
are complete w.r.t. Σobs. 

A test description is (strictly) test complete if all terminal transitions are annotated with a 
verdict, and for all instantiations and initialisations, all reachable state instances having an 
enabled observable action are complete w.r.t. Σobs. With the assumptions on the guards of 
observable transitions, the second condition reads: for all instantiations and initialisations, all 
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reachable instances of any state having an outgoing transition labelled by an observable action 
are complete w.r.t. Σobs. If we relax the second condition slightly by removing the reachability 
constraint we obtain the definition of universally test complete. We can relax the condition a 
bit further to say that all states having at least one instance which has an enabled observable 
action are complete w.r.t. Σobs. By the assumptions on observable action guards, this is 
equivalent to saying that all states with an outgoing transition labelled by an observable action 
are complete w.r.t. Σobs, giving the definition of statically test complete. 
Note that: 

statically test complete ⇒ universally test complete ⇒ test complete 

As stated in the outline of this semantics, we will generally assume that the guard expressions 
on transitions labelled by observable action constrain only the message variables. Assuming 
this is the case, if an observable action is enabled in one reachable instance of a state for some 
instantiation and initialisation, it is enabled in all reachable instances of that state for all 
possible instantiations and initialisations. If, in addition, an observable action being enabled in 
one instance of a state implies it is enabled in all instances of that state (i.e. without the 
reachability condition), then: 

statically test complete ⇔ universally test complete 
Given a test-complete test description, the last element of each maximal run is necessarily an 
instance of a transition which is annotated with a verdict so we can associate a verdict to each 
maximal run. We say that the test verdict of a maximal execution of a test description is the 
verdict associated to the last element of this execution.  

In order for verdicts to be consistently defined, any two maximal runs of a test-complete test 
description that have the same trace must have the same associated verdict. Consistently-
defined verdicts can be guaranteed by imposing determinism. Evidently, consistency of fail 
verdicts is of greatest importance. This can be guaranteed by imposing minimal determinism 
along with the assumption that any non-determinism is either resolved on a controllable 
action or leads to successful termination (implicit pass verdict) or the same explicit verdict on 
both branches. 

A semantically test-complete test description is achieved in TeLa by using syntactically-
implicit verdicts. In Section 2.3.4, we show how implicit pass, fail and inconclusive verdicts 
can be made explicit to give a semantically test-complete test description. Another way to 
achieve test completeness, representing a more low-level view, is to use explicit defaults as in 
[ETSI03a] or [UTP03]. 

2.2 Determinism and controllability in TeLa 

2.2.1 Introduction 
In this section we discuss notions of determinism. The essence of the notion of determinism 
can be expressed as follows: a deterministic abstract machine is an abstract machine that 
never has more than one behavioural option so that its behaviour is completely determined by 
its inputs. That is, for an identical set of inputs, the machine´s behaviour is identical. 

We base the discussions on the TeLa semantics outlined in the Section 2.1. As in these 
sections, in order to introduce the inevitable complexity in a progressive manner, we first 
outline how to define controllability and determinism in an interleaving semantics with 
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enumerated data, then in a non-interleaving semantics with enumerated data, and finally in an 
interleaving semantics with symbolic data. We leave the non-interleaving semantics with 
symbolic data for future work. In all cases, we deal with the semantics after projection onto 
tester instances, see Chapter 3, Section 1.4. 

According to the classification of [SasNieWin96], we now handle a non-interleaving, system, 
linear-time model (deterministic labelled transition systems), a non-interleaving, system, 
branching-time model (labelled transition systems), an interleaving, behavioural, linear-time 
model (deterministic event structures) and a interleaving, behavioural, branching-time model 
(event structures). 

2.2.1.1 INPUT-OUTPUT INTERLEAVING MODELS 
A standard automaton is said to be deterministic if no state has two outgoing transitions with 
the same label. When the labels are viewed as describing the inputs and the set of states 
through which the automata passes on receiving these inputs is viewed as describing the 
behaviour, the automata definition of determinism is seen to correspond closely to the 
essential definition of determinism described above. If a distinction between observable and 
internal transitions is introduced, as in process algebra models, this definition of determinism 
can be refined to exclude automata in which there is a state which has an outgoing transition 
with a given label but which also has an outgoing internal transition followed by an outgoing 
transition with that same label. We refer to these definitions as the standard and refined 
deterministic automata definitions. 

As stated in Chapter 2, Section 2.2, input-output models have proved particularly useful in 
testing, particularly asynchronous testing. In these models the set of transition labels is 
divided into three distinct subsets: input actions, output actions and internal actions. If we 
apply the standard definition of automata determinism to these input-output models, ignoring 
the distinction between the three different kinds of label, the resulting definition no longer 
corresponds to the essential notion of determinism. For example, a deterministic model may 
contain a state with two different outgoing transitions labelled by output actions and leading 
to different states, as long as the two output actions are distinct. However, the intuition here is 
that, since these actions are outputs, the machine described by this model has more than one 
behavioural option, independently of its inputs. 

In the input-output model context in which the internal actions are hidden (tau-reduction), a 
definition of determinism which is closer to the essential one is the standard automata 
definition together with the following extra condition: if a state has an outgoing transition 
labelled by an output action it has no other outgoing transitions. If internal actions are not 
hidden, we can either use the same definition, supposing that internal actions have priority 
over external actions, or substitute “output actions” by “internal actions or output actions” in 
the extra condition. The extra condition ensures that for an identical input trace (abstraction of 
a trace to the input actions), the behaviour is identical. 

In fact, in the input-output model context, both the simplistic application of the standard 
automata definition, and the definition with the extra condition, are of interest. This is since 
models which are deterministic in the former sense but not in the latter are also useful, e.g. the 
“test graphs” of [Jér02] [JarJér02]. We follow [Jér02] [JarJér02] and use the term determinism 
for the former sense and the term controllability for the latter sense. 

Let us look a little more closely at models which are deterministic in the standard automata 
sense but not in the essential sense; in our terminology, models which are deterministic but 
not controllable. These models may contain two types of controllability conflicts. The first 
type represents an auto-controllability conflict. It occurs when a state has an outgoing 
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transition labelled by one (internal or) output action and another outgoing transition labelled 
by another (internal or) output action (e.g. an indefinite choice between controllable actions). 
The second type represents a race condition controllability conflict between the tester and the 
SUT. The second type occurs when a state has an outgoing transition labelled by an (internal 
or) output action and another outgoing transition labelled by an input action. It could be 
resolved by using a priority policy or a queueing policy. 

For the interleaving, enumerated data case, we present a slightly different formulation of the 
notions of determinism and controllability to that of [Jér02] [JarJér02] for several reasons. 
Firstly, we wish to extend the set of controllable actions of the tester to include internal 
actions which are not hidden, in order to have models which are more suited to a distributed 
context. In our models, the internal actions are either component-internal actions or actions 
which are part of message exchanges between tester components. Furthermore, in the 
distributed context, the policy of giving priority to internal actions over outputs may not 
always be the most appropriate, so our definition of controllability applies to both internal 
actions and outputs. Secondly, we wish to include treatment of data. Thirdly, we wish to 
present the different concepts in such as way as to facilitate their generalisation to the non-
interleaving context. 

We note in passing that in the testing field, the term non-determinism is sometimes also used 
for a test description containing states where the tester is waiting for a message from the SUT 
and several possible messages are acceptable (e.g. an indefinite choice between tester inputs). 
This notion of non-determinism, which we call observable non-determinism, really concerns 
the SUT rather than the tester itself; it corresponds to the external behaviour of the SUT being 
non-deterministic. 

2.2.1.2 INPUT-OUTPUT NON-INTERLEAVING MODELS 
In non-interleaving models it is possible to distinguish between concurrency and alternative 
behaviour. This possibility suggests other definitions of determinism and of controllability. 

2.2.1.2.1 Several possible notions of determinism 
We introduce a weaker notion of determinism than that which we call determinism above for 
non-interleaving models used as test descriptions, referring to this notion as minimal 
determinism. This notion was introduced in Chapter 3, Section 1.4.4.3. Minimal determinism 
allows non-deterministic choices, but not non-deterministic concurrency, between identical 
controllable actions, but not between identical observable actions. Minimal determinism, 
together with the property that any non-determinism is either resolved on a controllable action 
or leads to successful termination (implicit pass verdict) or the same explicit verdict on both 
branches, is sufficient to be able to discuss the property of correctness. Minimal determinism 
is also the part of the definition of determinism (as defined above) which is not included in 
the definition of controllability, that is, minimal determinism + controllability ⇒ 
determinism. 

2.2.1.2.2 Several possible notions of controllability 
We also introduce five new notions of controllability for non-interleaving models used as test 
descriptions. Rough definitions for these concepts are as follows. Recall that the set of 
observable actions comprises the set of input actions, and that the set of controllable actions 
comprises the set of output actions and the set of internal actions. A model is essentially 
controllable if it has no alternatives (minimal conflicts) involving an observable action and a 
controllable action. A model is properly concurrently controllable if it is essentially 
controllable and has no concurrency between observable actions and output actions. A model 
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is concurrently controllable if it is essentially controllable and it has no concurrency between 
observable actions and controllable actions. A model is properly (centrally) controllable if it 
is essentially controllable and it has no concurrency between observable actions and 
controllable actions, nor between output actions. A model is (centrally) controllable if it is 
essentially controllable and it has no concurrency between observable actions and controllable 
actions, nor between controllable actions (i.e. if a controllable action is never jointly enabled 
with any other action). 

2.2.1.2.3 Local controllability 
In the non-interleaving semantics case, it would also be of interest to define local notions of 
controllability, concurrent controllability etc. i.e. notions that are relative to an interaction 
framework, that is, w.r.t. a set of tester components. For example, a possible definition of 
locally controllable would be that no two outputs or internal actions owned by the same 
component can be enabled in any configuration. We leave further exploration of this 
interesting possibility to future work. 

2.2.2 Interleaving model with enumerated data 
Since in the interleaving case, choice and concurrency are confused so that choice points are 
not defined, it does not seem appropriate to discuss minimal determinism. However, while it 
is true that a trace semantics is deterministic by definition, we are using an LTS semantics. 
Minimal determinism can be discussed in this context by supposing that any non-determinism 
does not arise due to non-deterministic concurrent events (this being easily detected 
syntactically if the language does not include a parallel operator). 

2.2.2.1 DETERMINISM 
With a view to generalisation, we will use a definition of determinism that depends on a 
notion of local determinism which, in turn, depends on a notion of overlapping transitions. 

Derivation of a deterministic automata from a test description can be ensured by imposing 
syntactic restrictions, in which case we speak of the test descriptions being deterministic, or 
by stipulating that the semantics is always that of the corresponding deterministic automata, in 
which case we speak of test descriptions being determinised (c.f. the delayed choice operator 
of the process algebra MSC semantics). 

2.2.2.1.1 Local determinism 
Two transitions are said to overlap in state s if: 
• they are labelled by identical actions 
• they are both enabled in s 
We say that a test description is minimally deterministic at s if no overlapping transitions have 
either of the following properties: 
• the transitions are concurrent (as choice and concurrency are not distinguished in the 

semantics, we must assume that such transitions can be eliminated by syntactic 
restrictions). 

• the transitions are non-concurrent and are labelled by an observable action. 
So a test description which is minimally deterministic at s allows non-concurrent transitions 
labelled by a controllable action to overlap in s. 

We say that a test description is deterministic at s if there are no overlapping transitions in s. 
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2.2.2.1.2 Global determinism 

2.2.2.1.2.1 Minimal determinism 
As stated in Section 2.2.1.2.1, we allow the possibility of using test descriptions which are not 
fully deterministic. However, they must at least be minimally deterministic, that is, a test 
description which is not minimally deterministic is not well-formed. A test description is said 
to be minimally deterministic if it is minimally deterministic at all states. 

2.2.2.1.2.2 (Full) determinism 
A test description is said to be deterministic if it is deterministic at all states8. A test 
description is deterministic if and only if no two runs through it have the same trace. 

In a well-formed test description we assume that isomorphic transitions – overlapping 
transitions between the same two states – and isomorphic states – those with identical possible 
futures (i.e. run suffixes beginning in that state) – are identified (i.e. not distinguished). This 
being the case, the above definitions are equivalent to ones in terms of the uniqueness of the 
state reachable from any state via any transition labelled by a given action. 

2.2.2.2 CONTROLLABILITY 
With a view to generalisation, we use a definition of controllability that depends on a notion 
of local controllability which, in turn, depends on a notion of controllability conflict. 

2.2.2.2.1 Local controllability 
A test description is said to have a controllability conflict at state s if two actions are enabled 
in s and one of the two is a controllable action. We say that a test description is controllable at 
s if it has no controllability conflict at s. 

2.2.2.2.2 Global controllability 
A state of a minimally deterministic test description in which the only enabled action is a 
single controllable action is called a controlling state. A state of a minimally deterministic test 
description in which the only actions enabled are observable actions is called an observing 
state.  

A minimally deterministic test description is said to be controllable if it is controllable at all 
states9. The controllability property of minimally-deterministic deterministic test descriptions 
simply says that all tester states having enabled actions are either controlling or observing. 
Clearly: 

minimal determinism + controllability ⇒ determinism 

We say that a controllable test description defines a test case. 

2.2.3 Non-interleaving model with enumerated data 
In this section we generalise the simple automata definitions to the enumerated data, non-
interleaving (distributed) case where choice and concurrency are clearly distinguished.  

                                                 
8 To be more exact, the definition could demand determinism at reachable states only, however, this would make 
the property more difficult to verify. Similarly for minimal determinism. 
9 To be more exact, the definition could demand controllability at reachable states only, however, this would 
make the property more difficult to verify. 
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2.2.3.1 DETERMINISM 
With a view to generalisation, we will use a definition of determinism that depends on a 
notion of local determinism which, in turn, depends on a notion of overlapping events. Our 
definition of determinism is that termed “operational determinism” in [Ren96]. 

If we wish to impose determinism syntactically in TeLa, we must disallow, firstly, choices 
involving alternatives with minimal events labelled by identical actions10 and, secondly, 
coregions whose scope includes two events labelled by identical actions. Alternatively, we 
could impose the condition semantically and interpret that the semantics is given by 
determinising (though this may be complex), using a kind of partial-order version of the 
delayed choice operator. In the former case, we speak of deterministic test descriptions and in 
the latter case, determinised test descriptions, though determinisation is not necessarily 
possible. 

2.2.3.1.1 Local determinism 
Two events are said to overlap in configuration C if: 
• they are labelled by identical actions, 
• they are both enabled in C 
We say that a test description is minimally deterministic at C if no overlapping events have 
either of the following properties: 
• the events are concurrent (if two such events exist then ∃ an auto-concurrent 

configuration), 
• the events are in minimal conflict and labelled by an observable action. 
So a test description which is minimally deterministic at C allows non-concurrent events 
labelled by a controllable action to overlap in C. 

We say that a test description is deterministic at C if there are no overlapping events in C. 

2.2.3.1.2 Global determinism 

2.2.3.1.2.1 Minimal determinism 
As stated in Section 2.2.1.2.1, we allow the possibility of using test descriptions which are not 
fully deterministic. However, they must at least be minimally deterministic, that is, a test 
description which is not minimally deterministic is not well-formed. A test description is said 
to be minimally deterministic if it is minimally deterministic at all configurations. Minimal 
determinism allows minimal conflicts between events labelled by the same controllable 
action. 

2.2.3.1.2.2 Full determinism 
A test description is said to be deterministic if it is deterministic at all configurations. A test 
description is deterministic if and only if no two runs through it have the same trace. 

Also of interest are the following results, see [Ren96]. If two events of a deterministic test 
description share the same label either they are causally related or they are in a non-minimal 
conflict. The less restrictive concept of causal determinism can be defined as the absence of 
causally indistinguishable events, i.e. distinct events that share the same label and have the 
same immediate predecessors. 

                                                 
10 We assume that there is no parallel operator. 
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2.2.3.2 CONTROLLABILITY 
With a view to generalisation, we use a definition of controllability that depends on a notion 
of local controllability which, in turn, depends on a notion of controllability conflict. 

In the partial order case, controllability has two aspects due to the distinction between choice 
and concurrency, namely, restrictions on allowable choices and resolution of all tester 
concurrency except that between observable events. It is of interest to introduce these two 
aspects separately. 

2.2.3.2.1 Local controllability 
Given a configuration C, a test description is said to have an: 
• essential controllability conflict at C if two events, one of which is labelled by a 

controllable action, are enabled and in conflict in C,  
A test description is said to have a race-condition controllability conflict at configuration C if 
two events, one of which is labelled by a controllable action and one by an observable action, 
are enabled in C.  A test description is said to have an auto-controllability conflict at 
configuration C if two events, both of which are labelled by controllable actions, are enabled 
in C. 

Given a configuration C, a test description is said to have a: 
• alternation controllability conflict at C if it has an essential or race-condition 

controllability conflict at C, 
• controllability conflict at C if it has an essential, race-condition or auto-controllability 

conflict at C.  

Note that a test description has a controllability conflict at C if two events, one of which is 
labelled by a controllable action, are enabled in C. 

Given a configuration C, we say that a test description is: 
• essentially controllable at C if it has no essential controllability conflict at C. 
• concurrently controllable at C is if has no alternation controllability conflict at C 
• (centrally) controllable at C if it has no controllability conflict at C 

In a configuration at which a test description is essentially controllable, two enabled events 
can be in conflict only if both are labelled by observable actions and concurrent only if both 
are labelled by observable actions, both by controllable actions, or one by a controllable 
action and one by an observable action. 

In a configuration at which a test description is concurrently controllable, two enabled events 
can be in conflict only if both are labelled by observable actions and concurrent only if both 
are labelled by observable actions or both by controllable actions. 

In a configuration at which a test description is centrally controllable, two enabled events can 
be in conflict or concurrent only if both are labelled by observable actions. 

2.2.3.2.1.1 Taking into account internal actions 
By distinguishing between proper and improper controllable actions and assuming that tester 
internal actions are not hidden, we can distinguish two more degrees of controllability. The 
first is intermediate between essential controllability and concurrent controllability while the 
second is intermediate between concurrent controllability and (central) controllability. 

A test description is said to have a proper race-condition controllability conflict at 
configuration C if two events, one of which is labelled by a proper controllable action and one 
by an observable action, are enabled in C.  A test description is said to have a proper auto-
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controllability conflict at configuration C if two events, both of which are labelled by proper 
controllable actions, are enabled in C. 

Given a configuration C, a test description is said to have a 
• proper alternation controllability conflict at C if it has an essential or proper race-

condition controllability conflict at C.  
• proper controllability conflict at C if it has an essential, race-condition or proper 

controllability conflict at C. 

Given a configuration C, we say that a test description is: 
• properly concurrently controllable at C is if has no proper alternation controllability 

conflict at C. 
• properly (centrally)  controllable at C if it has no proper controllability conflict at C. 
In a configuration at which a test description is properly concurrently controllable, two 
enabled events can be in conflict only if both are labelled by observable actions and 
concurrent only if both are labelled by tester input actions, both by tester output actions, or 
one by a tester output action and one by a tester internal action. 

In a configuration at which a test description is properly (centrally) controllable, two enabled 
events can be in conflict only if both are labelled by observable actions and concurrent only if 
both are labelled by tester input actions, both by tester internal actions, or one by a tester 
output action and one by a tester internal action. 

2.2.3.2.2 Global controllability 
A configuration of a minimally deterministic test description in which the set of enabled 
actions contains: 
• only concurrent controllable actions is called a concurrent controlling configuration. 
• only concurrent controllable actions, but a single proper controllable action, is called a 

proper controlling configuration. 
• only a single controllable action is called a controlling configuration. 
• only observable actions and improper controllable actions concurrent with them is called a 

proper observing configuration. 
• only observable actions is called an observing configuration. 
A minimally deterministic test description is essentially controllable if it is essentially 
controllable at all configurations. That is, there are no minimal conflicts in which one of the 
events is labelled by a controllable action. Clearly: 

minimal determinism + essential controllability ⇒ determinism 
A minimally deterministic test description is  
• properly concurrently controllable, PConC, if it is PConC at all configurations, 
• concurrently controllable, ConC, if it is ConC at all configurations,  
• properly (centrally) controllable, PCenC. if it is PCenC at all configurations, 
• (centrally) controllable, CenC, if it is CenC at all configurations. 
If internal actions are hidden, properly concurrently controllable = concurrently controllable 
and properly (centrally) contollable = (centrally) controllable. 

Note that, assuming minimal determinism: 
• concurrent controllability ⇔ all tester configurations having enabled transitions are either 

concurrent controlling or observing 
• (central) controllability ⇔ all tester configurations having enabled transitions are either 

controlling or observing. 



Elements of behavioural semantics          185 

 

Taking tester internal actions into account and, again, assuming minimal determinism: 
• proper concurrent controllability ⇔ all tester configurations having enabled transitions are 

either concurrent controlling or proper observing 
• proper (central) controllability ⇔ all tester configurations having enabled transitions are 

either proper concurrent controlling or observing. 

2.2.3.2.2.1 Test cases and degree of parallelism 
We say that: 
• an essentially-controllable test description defines a parallel test case 
• a concurrently controllable test description defines a coherent parallel test case 
• a centrally controllable test description defines a centralisable test case. 
Taking tester internal actions into account, we say that: 
• a properly concurrently controllable test description defines a externally-coherent parallel 

test case 
• a properly controllable test description defines an externally-centralisable test case 

A parallel test case can be interpreted as defining one or several externally-coherent parallel 
test cases. An externally-coherent parallel test case can be interpreted as defining one or 
several coherent parallel test cases. A coherent parallel test case can be interpreted as defining 
one or several externally-centralisable test cases. An externally-centralisable test case can be 
interpreted as defining one or several centralisable test cases. 

In each case, a more restrictive test case is obtained from a less-restrictive test case by adding 
non-local causality relations to resolve tester concurrency: 
• from parallel to externally-coherent parallel by resolving concurrency between events 

labelled by proper controllable actions and observable actions 
• from externally-coherent parallel to coherent parallel by resolving concurrency between 

events labelled by improper controllable actions and observable actions 
• from coherent parallel to externally-centralisable by resolving concurrency between 

events labelled by proper controllable actions 
• from externally centralisable to centralisable by resolving concurrency between events 

labelled by proper or improper controllable actions 

Due to the fact that the tester does not control events labelled by observable actions, any 
orderings added to resolve concurrency between an event labelled by an observable action and 
an event labelled by a controllable action should ensure that the former precedes the latter and 
not vice versa. 

Notions of controllability at each component, relative to a partition of the tester into a set of 
components, could also be defined as refinements of a parallel test case, as mentioned in 
Section 2.2.1.2.3.  

In the same way as for the mechanisms implementing the extra ordering relations between 
tester actions added by the SUT lifelines, or for resolving non-local choices, or for 
implementing verdicts in the presence of non-local choices between observable actions, the 
mechanisms by which concurrency is resolved will depend on whether the actual 
implementation is distributed or not. 

2.2.3.3 RELATED WORK 
[Mit01] deals with deterministic MSCs with no alternatives or loops. Verdicts are implicit, 
though the mechanisms are not explained and there is no discussion of test completeness. 
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Property 2, resp. property 3, of the “tightly-coupled” partial-orders of [Mit01] prohibits 
concurrency between controllable events, resp. between controllable and observable events. 
The derivation of a “concurrent test” from an MSC without choices in [Mit01] corresponds to 
the derivation of what we define as a centralisable test case from a parallel test case by 
resolution of unwanted concurrency. A “viable test” derived from an MSC in [Mit01] is 
simply a test in which the resolution of concurrency between observable and controllable 
actions obeys the restriction given in the preceding section; the formulation is slightly 
different due to the fact that [Mit01] does not pre-suppose a semantics by projection onto 
tester lifelines. [Mit01] does not address the question of non-local choices in an MSC. 

[DeuTob02], on the other hand, use a projection semantics in terms of pomsets (equivalence 
classes of prefixes of maximal partial orders; to each such equivalence class corresponds a 
configuration of the corresponding event structure). They deal with alternatives, coregions 
and finite iteration. Verdicts are explicit, though in the absence of TTCN-style defaults, it is 
difficult to see how test completeness could be obtained. Note that [DeuTob02] use the term 
“tester observable actions” for the set of tester actions, where these are proper or improper 
emissions or receptions, and the term “determinism” in its essential sense, that is 
controllability. 

The well-formedness condition WF1 of [DeuTob02]´s “test purposes” together with the 
restriction of no auto-concurrency (concurrency of events with the same label) given earlier in 
the article, corresponds to what we define as determinism of test descriptions, see [Ren96]. 
How pomsets are derived from MSCs is not fully specified; for this, the authors refer to the 
semantics of [KatLam98]. However, the latter semantics is a linear-time semantics, i.e. only 
deterministic pomsets are derived from MSCs so the need for condition WF1 is not clear. 

The well-formedness condition WF2 of [DeuTob02]´s “test purposes” corresponds to what we 
define above as essential controllability of test descriptions. Incidentally, the definition of 
choice point used by [DeuTob02] for this definition is overkill, given the determinism 
assumption: WF1 + no auto-concurrency. The derivation of a valid test case from a well-
formed test purpose in [DeuTob02] corresponds to the derivation of what we define as a 
centralisable test case from a parallel test case by resolution of unwanted concurrency. 
However, in [DeuTob02]´s approach to controllability issues, it is not clear whether proper 
and improper receptions are distinguished. Furthermore, the validity relation between test 
cases and “test purposes” does not take into account the direction of added causality relations 
between observable and controllable actions ([Mit01]´s “viability”). Finally, they do not 
address the question of non-local choices in a “test purpose”. 

Clearly, the use of an event-structure semantics makes it easier to discuss these concepts. 

2.2.4 Interleaving model with non-enumerated data 
In the presence of non-enumerated data, the properties of determinism and controllability, if 
defined in an analogous way to the enumerated data case, become run-time properties 
concerning “fireable” transitions, rather than outgoing transitions. Deciding either of these 
two properties statically implies deciding statically the mutual satisfiability of boolean 
expressions, for which there can be no general algorithm if the data language is non-trivial. 

One approach is to abandon controllability and instead use priority of observable actions over 
controllable actions to resolve race-condition controllability conflicts, i.e. controllability 
conflicts between observable and controllable actions. In practice, the tester waits a certain 
time to see if an observable action occurs before performing any controllable actions which 
are enabled. However, this does not generalise well to the non-interleaving case. Furthermore, 
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this approach does not deal with indefinite-choice controllability conflicts, i.e. indefinite 
choices between controllable actions. We will therefore seek to define weaker notions of 
determinism and controllability, that can be more easily verified. 

2.2.4.1 DETERMINISM 
We will use a definition of determinism that depends on a notion of local determinism which, 
in turn, depends on a notion of overlapping of transitions. In the non-enumerated data case, 
different definitions of when two transitions are overlapping can be defined. The more easily 
verifiable, less discriminating notions define more transitions as overlapping and thus define a 
smaller class of test descriptions as deterministic. 

The strongest possible notion of determinism of a test description is a notion that is relative to 
the instantiation and initialisation and to a valuation of the message variables for each 
observable action in each state instance. However, as it is the tester environment, i.e. the SUT, 
which is responsible for the valuation w, this notion of determinism is execution-dependent. 
We do not consider this notion of execution-dependent determinism useful, so the strongest 
notion we use is determinism for all valuations of the message variables, that is independently 
of the values of the parameters of the valued observable actions.  

In the non-enumerated data case, the derivation of a deterministic, or even universally 
deterministic, symbolic LTS from a general symbolic LTS is an undecidable problem for any 
non-trivial data language. 

2.2.4.1.1 Local determinism 
Below, we define some examples of overlap relations and consequent local definitions of 
determinism.  

2.2.4.1.1.1 Signature-overlap 
Two transitions are said to signature-overlap in state s if: 
• they are both outgoing transitions of s, 
• they are labelled by identical actions (recall that each action has an associated signature) 

2.2.4.1.1.2 Overlap for transitions labelled by observable actions 
Two transitions that signature-overlap in state s and that are labelled by an observable action 
(we will use the term observable transitions) are said to overlap for the valuation w′ of the 
message variables in a state instance (s,v,w) if: 
• both transitions are enabled in (s,v,w) and fireable for valuation w′. 
Two observable transitions that signature-overlap in state s are said to potentially overlap in a 
state instance (s,v,w) if they overlap for some valuation w′ of the message variables (i.e. their 
guards are jointly satisfiable in (s,v,w)). With the usual assumption on the guards of 
observable transitions, joint satisfiability of guards at one reachable instance of s ⇒ joint 
satisfiability of guards at all reachable instances of s. 

We could also have defined a notion of overlap of observable transitions in a state instance 
(s,v,w) if they signature-overlap in s and are both enabled in (s,v,w) (i.e. their guards are 
satisfiable in (s,v,w) but not necessarily jointly). However, with the usual assumption on the 
guards of observable transitions and the usual assumptions on guards, observable transitions 
are always enabled in any reachable instance of a state for which they are outgoing 
transitions. 
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2.2.4.1.1.3 Overlap for transitions labelled by controllable actions 
We now deal with transitions labelled by controllable actions (we will use the term 
controllable transitions). We define the following properties of pairs of controllable signature-
overlapping transitions p and q in state instance (s,v,w): 

C1. Joint satisfaction of guards under v: both transitions p and q are enabled in (s,v,w) 

C2. Equality of action parameters under v: the values of the action parameters of the two 
transitions p and q under v are pairwise equal 

C3. Compatibility of assignment lists under v: the variables on the l.h.s. of the assignments 
are the same pairwise and if the assignment lists are as follows  {xp

i := Ex
p

i} 
i∈{1.. j}  and  {xq

i := 
Ex

q
i} 

i∈{1.. j}  then  { v⋅w(Ex
p
i) = v⋅w(Ex

q
i) } 

i∈{1.. j} 

Two transitions that signature-overlap in state s and that are labelled by an emission action 
(we will use the term emission transitions) are said to overlap in a state instance (s,v,w) if 
properties C1 and C2 hold. Two emission transitions that signature-overlap in state s are said 
to almost overlap in state s if property C2 holds for all valuations v of the static and dynamic 
variables. 

Two transitions that signature-overlap in state s and that are labelled by an improper reception 
action (we will use the term improper reception transitions) are said to overlap in a state 
instance (s,v,w) if property C2 and C3 hold (C1 holds trivially). Two improper reception 
transitions that signature-overlap in state s are said to almost overlap in state s if properties C2 
and C3 hold for all valuations v of the static and dynamic variables. 
Two transitions that signature-overlap in state s and that are labelled by a component-internal 
action (we will use the term component-internal transitions) are said to overlap in a state 
instance (s,v,w) if property C1 and C3 hold (C2 holds trivially). Two component-internal 
transitions that signature-overlap in state s are said to almost overlap in state s if property C3 
holds for all valuations of the static and dynamic variables. 

Notice that our definition of overlap for observable transitions does not take into account 
compatibility of assignment lists whereas our definition of overlap for controllable transitions 
does take into account this property. 

2.2.4.1.1.4 Superdeterminism 
We say that a test description is minimally superdeterministic at s if: 
• there are no concurrent almost-overlapping controllable transitions at state s (as choice 

and concurrency are not distinguished in the semantics, we must assume that concurrent 
transitions can be eliminated by syntactic restrictions), 

• there are no almost-overlapping observable transitions at any instances of state s 
So a test description which is minimally superdeterministic at s allows non-concurrent 
transitions labelled by a controllable action to almost-overlap at s. 

We say that a test description is superdeterministic at s if there are no almost-overlapping 
transitions at s. 

2.2.4.1.1.5  (Strict) determinism 
We say that a test description is minimally (strictly) deterministic at (s,v,w) if 
• there are no concurrent overlapping controllable transitions at state instance (s,v,w) (as 

choice and concurrency are not distinguished in the semantics, we must assume that 
concurrent transitions can be eliminated by syntactic restrictions), 
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• there are no potentially-overlapping observable transitions at state instance (s,v,w) 
So a test description which is minimally (strictly) deterministic at (s,v,w) allows non-
concurrent transitions labelled by a controllable action to overlap in (s,v,w). We say that a test 
description is minimally (strictly) deterministic at s if it is minimally deterministic at all 
instances of state s. 

We say that a test description is (strictly) deterministic at (s,v,w) if there are no overlapping 
controllable transitions and no potentially-overlapping observable transitions at state instance 
(s,v,w). We say that a test description is (strictly) deterministic at s if it is deterministic at all 
instances of state s. 

2.2.4.1.2 Global determinism 
As stated in Section 2.2.1.2.1, we allow the possibility of using test descriptions which are not 
fully deterministic. However, they must at least be minimally deterministic, that is, a test 
description which is not minimally deterministic is not well-formed. 

2.2.4.1.2.1 Minimal determinism 
A test description is said to be minimally deterministic, if, for all instantiations and 
initialisations, it is minimally deterministic at all reachable state instances. 

A test description is said to be universally minimally deterministic if it is minimally 
deterministic at all states (i.e. at all instances of all states). The important aspect of this 
definition is that it removes the need to check reachability. 

A test description is said to be minimally superdeterministic if it is superdeterministic at all 
states. The important aspect of this definition is that it removes the need to check reachability 
and joint satisfiability of guards. However, it is not very discriminating. 

2.2.4.1.2.2 (Full) determinism 
A test description is said to be deterministic, if, for all instantiations and initialisations, it is 
deterministic at all reachable state instances. 

A test description is said to be universally deterministic if it is deterministic at all states11 (i.e. 
at all instances of all states). The important aspect of this definition is that it removes the need 
to check reachability. 

A test description is said to be superdeterministic if it is superdeterministic at all states. The 
important aspect of this definition is that it removes the need to check reachability and joint 
satisfiability of guards. 

Showing determinism involves checking for the absence of statically-overlapping transitions 
with the following properties: 
• In the case of observable transitions, joint satisfiability of guards in any reachable state 

instance (with the usual assumptions on observable transition guards, we have 
satisfiability in one reachable state instance⇒satisfiability in any reachable state instance). 

• In the case of emission transitions, joint satisfaction of guards and pairwise equality of 
action parameter values in any reachable states instances. 

                                                 
11 One could instead use only nominally reachable states, that is, states which are reachable in the underlying 
LTS obtained by removing all variables, action parameters, pre- and post-conditions and valuations; however, 
this would make the properties more difficult to verify. 
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• In the case of component-internal transitions, joint satisfaction of guards and compatibility 
of assignment lists in any reachable state instances. 

• In the case of improper reception transitions, pairwise equality of action parameter values 
and compatibility of assignment lists in any reachable state instances. 

Showing universal determinism involves checking for the absence of statically-overlapping 
transitions with the following properties: 
• In the case of observable transitions, joint satisfiability of guards. 
• In the case of emission transitions, joint satisfiability of guards and pairwise equality of 

action parameter values in any state instance for which the guards are jointly satisfied. 
• In the case of component-internal transitions, joint satisfiability of guards and 

compatibility of assignment lists in any state instance for which the guards are satisfied. 
• In the case of improper reception transitions, pairwise equality of action parameter values 

and compatibility of assignment lists in any state instance. 

Showing superdeterminism involves checking for the absence of statically-overlapping 
transitions with the following additional properties: 
• In the case of observable transitions, no additional properties. 
• In the case of emission transitions, pairwise equality of action parameter values in any 

state instance. 
• In the case of component-internal transitions, compatibility of assignment lists in any state 

instance. 
• In the case of improper reception transitions, pairwise equality of action parameter values 

and compatibility of assignment lists in any state instance. 

For the definition of determinism (minimal or otherwise), in a well-formed test description we 
assume that isomorphic transitions – overlapping (controllable) or potentially-overlapping 
(observable) transitions between the same two state instances – and isomorphic state instances 
– those with identical possible futures (i.e. run suffixes beginning in an instance of that state) 
– are identified (i.e. not distinguished). This being the case, the above definitions are 
equivalent to ones in terms of the uniqueness of the state instance reachable from any state 
instance via any transition instance labelled by a given action instance. 

2.2.4.2 CONTROLLABILITY 
We use a definition of controllability that depends on a notion of local controllability which, 
in turn, depends on a notion of controllability conflict. In the non-enumerated case, different 
definitions of controllability are possible. The more easily verifiable, less discriminating 
notions define a smaller class of test descriptions as controllable. 

Similarly for determinism, we are not interested in execution-dependent notions of 
controllability, that is, controllability for certain instantiations and intialisations. 

2.2.4.2.1 Local controllability 
A state is said to have a static controllability conflict if it has two outgoing transitions, one of 
which is labelled by a controllable action. Here, we wish to distinguish the two types of static 
controllability conflict. A state s is said to have an indefinite-choice static controllability 
conflict if it has two outgoing transitions labelled by controllable actions. A state s is said to 
have a race-condition static controllability conflict if it has two outgoing transitions, one of 
which is labelled by an observable action and one of which is labelled by a controllable 
action. 
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2.2.4.2.1.1 Local quasi-controllability 
A state is said to have a quasi-controllability conflict if one of the following is true: 
• it has a race-condition static controllability conflict, 
• it has an indefinite-choice static controllability conflict in which at least one of the 

transitions is trivially guarded, 

A test description is said to be quasi-controllable at s if s has no quasi-controllability conflict. 
Note that improper receptions are unguarded controllable actions so quasi-controllability 
means that s can have no static controllability conflict involving an improper reception12. 

Though not very discriminating, this notion has the advantage of being easily verified 
statically. 

2.2.4.2.1.2 Local controllability 
A state instance (s,v,w) is said to have an indefinite choice controllability conflict if two 
controllable actions are fireable in (s,v,w). A state instance (s,v,w) is said to have a race-
condition controllability conflict for valuation w′ of the message variables if a controllable 
action is enabled in (s,v,w) and an observable action is fireable in (s,v,w) for valuation w′. 
In a test-complete test description, if a reachable state instance has a race condition 
controllability conflict for one valuation of the message variables, it has such a conflict for all 
such valuations. We say that a state instance (s,v,w) of a test-complete test description has a 
controllability conflict if it has two enabled actions and one of them is a controllable action.  

A test-complete test description is said to be controllable at (s,v,w) if (s,v,w) has no 
controllability conflicts. A universally test-complete test description is said to be controllable 
at s if it is controllable at all instances of s. 

2.2.4.2.2 Global controllability 
A state instance of a minimally-deterministic test description in which the only actions that 
are enabled are the complete set of observable actions is called an observing state instance. A 
state instance of a deterministic test description in which the only action that is enabled is a 
single controllable action is called a controlling state instance. 

A state of a minimally-deterministic test description in which the only actions labelling 
outgoing transitions are observable actions is called a statically-observing state. A state of a 
deterministic test description in which the only actions labelling outgoing transitions are 
controllable actions and, if there is more than one such transition, all such transitions are non-
trivially guarded, is called a quasi-controlling state. 

A minimally deterministic test description is (strictly) controllable, if, for all instantiations 
and initialisations, it is test-complete and controllable at all reachable state instances. The 
controllability property of deterministic test descriptions simply says that for all instantiations 
and initialisations, any reachable state instance having an enabled action is either controlling 
or observing. Clearly: 

minimal determinism + controllability ⇒ determinism 
A universally minimally deterministic test description is universally controllable if it is 
universally test-complete and it is controllable at all states (i.e. at all instances of all states). 
The universal controllability property of universally deterministic test descriptions simply 
                                                 
12 Note that in the TeLa semantics, improper reception actions cannot be minimal actions for a choice so any 
indefinite-choice static controllability conflict invovling such an action is due to concurrency. 
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says that any state instance having an enabled action is either controlling or observing. The 
important aspect of this definition is that it removes the need to check reachability. Clearly: 

universal controllability ⇒ controllability 
universal minimal determinism + universal controllability ⇒ universal determinism 

Under the assumptions discussed in the section where test completeness is defined, we can 
substitute “statically test-complete” for “universally test-complete” in the definition of 
universally controllable. Furthermore, we can define an observing state instance of a 
minimally deterministic test description as an instance of a statically-observing state. The 
controllability, resp. universal controllability, property of deterministic test descriptions now 
says that all states with a reachable instance, resp. all states, are either statically observing or 
are such that any reachable instance, resp. any instance, having an enabled controllable action 
is a controlling state instance. 

A deterministic test-description is quasi-controllable if it is quasi-controllable at all states. 
The quasi-controllability property of deterministic test descriptions simply says that all states 
with outgoing transitions are either statically observing or quasi-controlling. Note that due to 
the fact that the guards on the outgoing transitions of a quasi-controlling state are not 
necessarily mutually exclusive: 

quasi-controllability ⇏ controllability 

However, the important aspect of this definition is that it is easily verified statically. 
Furthermore, a test description which is quasi-controllable can be made universally 
controllable by: 
• assuming that improper reception actions have priority over other controllable actions 
• explicitly assigning a different priority to each outgoing transition that is labelled by a 

primary controllable action, in each state where there are several such outgoing transitions 
(effectively implementing a “case” statement). 

However, this is not always desirable, so in TeLa we provide a mechanism to do this when 
required. 

2.3 Semantics of implicit verdicts 

2.3.1 Introduction 
In the semantic domain, we must be able to model the default behaviour explicitly. As stated 
above, the situation we wish to describe with an implicit fail verdict is an unspecified 
reception from the SUT. In the non-enumerated data case, and for a restricted class of test 
descriptions (those that are essentially controllable), we also have the implicit inconclusive 
verdict. The situation we wish to describe with this implicit verdict is the evaluation of a 
guard or set of guards to false by the tester (other inconclusive verdicts must be specified 
explicitly). 

We base the following discussion on the TeLa semantics outlined in Section 2.1. Recall that, 
in this section, we have already introduced the notion of annotating transitions or events with 
verdicts. As in this section, in order to introduce the inevitable complexity in a progressive 
manner, we first outline how to define implicit verdicts in an interleaving semantics with 
enumerated data, then in a non-interleaving semantics with enumerated data, and finally in an 
interleaving semantics with symbolic data. We leave the non-interleaving semantics with 
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symbolic data for future work. In all cases, we deal with the semantics after projection onto 
tester instances, see Chapter 3, Section 1.4. 

2.3.2 Interleaving model with enumerated data 

2.3.2.1 IMPLICITLY-DEFINED VERDICTS 
For a minimally deterministic test description the implicit pass verdict can be informally 
defined as: 

The occurrence of an action labelling a terminal transition, that is, one that leads to a 
sink state of the test description. 

For a minimally deterministic test description the implicit fail verdict can be informally 
defined as: 

The occurrence of an unspecified proper message reception at the tester, that is, the 
occurrence of an observable action which is not the label of any of the enabled 
transitions in that state and is therefore not allowed. 

If we also have controllability, no observable action is allowed in a state that is not an 
observing state, so fail can only occur in observing states. 

We do not discuss here implicit fail verdicts on timing properties such as lack of a timely 
response etc. 

2.3.2.2 MAKING THE IMPLICIT VERDICTS EXPLICIT 
In this section we show how to construct an LTS in which the implicit verdicts are explicit. 
This is done in order to show that the implicit verdicts are well-defined. It is not our intention 
to imply that any implementation of this semantics would construct an LTS in which these 
verdicts were represented explicitly.  

In order for the implicit pass and fail verdicts to be made explicit in a coherent manner, we 
need only minimal determinism and the condition that all non-determinism is either resolved 
on a controllable action or leads to successful termination (implicit pass verdict) or the same 
explicit verdict on both branches. 

We annotate all existing terminal transitions of the test description with pass verdicts before 
extending the test description with new terminal transitions annotated with verdicts as 
explained below. By construction, the last transition of each maximal run is then annotated 
with a verdict as required for a test-complete test description. 

In the interleaving case with enumerated data we reify the implicit fail verdicts by completing 
w.r.t. observable actions, extending the test description with new terminal transitions 
annotated with a fail verdict as follows: 

Let Obs(s) denote the set of enabled observable actions in state s. In each state s: 
• for each element a ∈ Σobs − Obs(s) (the complement in the set of observable actions), add 

a terminal transition annotated with a fail verdict and labelled by action a. 

We assume that observable actions have the structure ?x.m where x is a tester port (in some 
systems ?y.x.m where y is an SUT port) and m is a message. We can then structure the set of 
enabled observable actions in the following way: 

Obs(s) = { { ?x.m  |  m ∈ Ms
x } | x ∈ P } 
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where M is the set of messages, Ms
x ⊆ M is the set of messages allowed on tester port x in 

state s and P is the set of tester ports. Note that for some s and x, Ms
x may be empty. 

In terms of this structure, the complement is as follows: 
Σobs − Obs(s)  =  { { ?x.m  |  m ∈ M - Ms

x } |  x ∈ P } 

Note that, in the interleaving case, the structure of the actions labelling the added fail 
transitions plays no role in placing them in the automata. However, as we see below, it plays 
an important role in the non-interleaving case. 

In the enumerated-data, interleaving case, the meaning of the “otherwise fail” notion is well-
defined, and can thus be left implicit, for minimally deterministic test descriptions. 

2.3.3 Non-interleaving model with enumerated data 

2.3.3.1 IMPLICITLY-DEFINED VERDICTS 
For a minimally deterministic test description the implicit pass verdict can be informally 
defined as: 

The occurrence of each and every one of the actions labelling terminal events, that is, 
events with no successors. 

For a minimally deterministic test description the implicit fail verdict can be informally 
defined as: 

The occurrence of an unspecified proper message reception at the tester, that is, the 
occurrence of an observable action which is not the label of any of the enabled events in 
that configuration and is therefore not allowed. 

If, in addition, the test description is essentially controllable, no event labelled by a 
controllable action is allowed to be in minimal conflict with any other event. If, in addition, 
the test description is concurrently semi-controllable, no observable action is allowed in a 
configuration that is not semi-observing so a fail verdict can only be derived in a semi-
observing configuration. If, in addition, the test description is concurrently controllable or 
centrally controllable, no observable action is allowed in a configuration that is not an 
observing configuration so a fail verdict can only be derived in an observing configuration. 

We do not discuss here implicit fail verdicts on timing properties such as lack of a timely 
response etc. 

2.3.3.2 MAKING THE IMPLICIT VERDICTS EXPLICIT 
In this section we show how to construct an event structure in which the implicit verdicts are 
explicit. This is done in order to show that the implicit verdicts are well-defined. It is not our 
intention to imply that any implementation of this semantics would construct an event 
structure in which these verdicts were represented explicitly.  

In order for the implicit pass and fail verdicts to be made explicit in a coherent manner, we 
need only minimal determinism and the condition that all non-determinism is either resolved 
on a controllable action or leads to successful termination (implicit pass verdict) or the same 
explicit verdict on both branches. 

We annotate all existing terminal events of the test description with pass verdicts, before 
extending it with new terminal events annotated with verdicts as explained below. 
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In the non-interleaving case with enumerated data we reify the implicit fail verdicts by 
completing w.r.t. observable actions, extending the test description with new terminal events 
annotated with a fail verdict as follows: 

Let Obs(C) denote the set of enabled observable actions in configuration C. As for the 
interleaving case, each configuration C which is not a pass configuration must be extended 
with a terminal event annotated with a fail verdict, for each action of Σobs − Obs(C), the 
complement in the set of observable actions. However, in the non-interleaving case, placing 
these new events in the event structure is not as simple as placing the new transitions in the 
automata in the interleaving case. 

As mentioned in the introduction to this section, we assume that observable actions have the 
structure ?x.m where x is a tester port (in some systems ?y.x.m where y is an SUT port). We 
can then structure the set of enabled observable actions in the following way: 

Obs(C) = { { ?x.m  |  m ∈ MC
x }  |  x ∈ P } 

where M is the set of messages, MC
x ⊆ M is the set of messages allowed on tester port x in 

configuration C and P is the set of tester ports. Note that for some C and x, MC
x may be 

empty. 

In terms of this structure, the complement is as follows: 
Σobs − Obs(C) = { { ?x.m  |  m ∈ M – MC

x }  |  x ∈ P } 

The new event labelled by a given element ?x.m ∈ Σobs − Obs(C) and annotated with a fail 
verdict must be added to the test description event structure so as to satisfy the following 
conditions, unless doing so would introduce non-determinism (the same fail event may be 
shared by different configurations): 

3. Local conflict: for each enabled observable event e′ of C on the same port x as the new fail 
event e add the conflict relation  e′ # e. 

4. Local causality: for each event e′ of C on the same port x as the new fail event e, add the 
predecessor relation: e′ ≤ e. 

5. Non-local causality due to test non-local choices: if ∃e′′ ∈ E s.t. e′′ is in non-local 
(otherwise already dealt with in rule 2) minimal conflict with a leaf event e′ of C, e′′ is 
enabled in C − {e′} and ƒ(e′′) = a for some a ∈ Σobs − Obs(C), add an immediate 
predecessor relation between e′ and the new fail event e labelled by a: e′ ≤ e (other 
causality relations given by transitivity). In a distributed implementation, this non-local 
causality may be implemented by adding tester coordination messages. 

Note that, by the existential nature of the fail verdict, we do not need to add conflict nor 
causality relations between fail events. 

Thus, in the enumerated-data, non-interleaving case, the meaning of the “otherwise fail” 
notion is well-defined, and can thus be left implicit, for minimally deterministic test 
descriptions. 

2.3.4 Interleaving model with non-enumerated data 

2.3.4.1 IMPLICITLY-DEFINED VERDICTS 
For minimally deterministic test descriptions, the implicit pass verdict can be defined as any 
occurrence of a terminal transition, that is, one that leads to a sink state of the test description. 
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Similar to [RusBouJér00], a test fails if a certain reception occurs and the disjunction of the 
guards on outgoing transitions labelled by the corresponding action evaluates to false; if there 
are no outgoing transitions labelled by the corresponding action, an outgoing transition 
labelled by this action whose guard is false is considered to be present. For a minimally 
deterministic, test description, the implicit fail verdict can be informally defined as: 

the occurrence of an unspecified message reception at the tester, that is, the occurrence 
of a observable action instance which is not the label of any of the fireable transition 
instances in that state instance and is therefore not allowed. 

If we also have controllability, no observable action instance is allowed in a state instance that 
is not an observing state instance so fail can only occur in an observing state instance. 

We also want to derive a verdict if the evaluation of the guards on outgoing transitions 
labelled by controllable actions leaves the tester with no enabled transitions. We would like to 
derive a verdict in this case since it is not always practical to exactly specify all the conditions 
required of a value received from the SUT at the time of reception, in order to derive a fail 
verdict if these conditions are not satisfied. These conditions on acceptable values are, in 
practice, often defined by subsequent use of these values e.g. in the guard of a subsequent 
component-internal action. However, an unsuitable response from the SUT is not the only 
possible cause of the tester being left with no enabled transitions, so we cannot derive a fail 
verdict in this case. In such cases, therefore, we derive an inconclusive verdict, moreover, we 
only derive it in quasi-controlling states of quasi-controllable test descriptions. 
For a quasi-controllable test description, the implicit inconclusive verdict can be informally 
defined as: 

the condition that the tester has no fireable transitions in a quasi-controlling state. 
Note that the evaluation of a TeLa “assert” internal action may give rise to such an 
inconclusive verdict13. 

We do not discuss here implicit fail verdicts on timing properties such as lack of a timely 
response etc. 

2.3.4.2 MAKING THE IMPLICIT VERDICTS EXPLICIT 
In this section we show how to construct a symbolic labelled transition system in which the 
implicit verdicts are explicit. This is done in order to show that the implicit verdicts are well-
defined. It is not our intention to imply that any implementation of this semantics would 
construct a symbolic labelled transition system in which these verdicts were represented 
explicitly.  

In order for the implicit pass and fail verdicts to be made explicit in a coherent manner, we 
need only minimal determinism and the condition that all non-determinism is either resolved 
on a controllable action or leads to successful termination (implicit pass verdict) or the same 
explicit verdict on both branches. However, in the non-enumerated data case, we also have 
implicit inconclusive verdicts. To make these verdicts explicit in a coherent manner, we need 
either determinism, or controllability; the latter, together with minimal determinism, implies 
the former. 

We annotate all existing terminal transitions of the minimally deterministic test description 
with pass verdicts before extending the test description with new terminal transitions 

                                                 
13 In the non-interleaving case, we would want to derive this verdict if none of a set of alternative controllable 
transitions are fireable.  
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annotated with verdicts as explained below. By construction, the last transition of each 
maximal run is then annotated with a verdict as required for a test-complete test description. 

Let Obs denote the set of observable actions, Con denote the set of controllable actions. Let 
trans(s, a) denote the set of outgoing transitions of state s labelled by action a and trans(s, A) 
denote ∪{a∈A} trans(s, a) for any A ⊆ ∑. Let guardt denote the guard of a transition t.  
In the interleaving case with enumerated data we reify the implicit fail verdicts by completing 
w.r.t. observable actions, extending the test description with new terminal transitions 
annotated with a fail verdict as follows. In each state s: 
• For each a ∈ Obs, add a terminal transition annotated with a fail verdict and labelled by 

action a. The guard of this transition is ∧{t∈Obs(s, a)} ¬ guardt, if trans(s, a) is non-empty, or 
is trivial otherwise. As for other transitions labelled by observable actions, each 
expression of the parameter list of these new transitions comprises a single message 
variable. The assignment list of the new fail transition is empty. 

Recall that quasi-controllability means that in each state s: 
trans(s,Con) ∩ trans(s,Obs) = ∅     
and   if  #(trans(s, Con)) > 1  then  ∀t ∈ trans(s, Con),  guardt ≠ true 

For a quasi-controllable test description, we reify the implicit inconclusive verdicts by 
extending the test description with new terminal transitions annotated with an inconclusive 
verdict as follows. In each state s: 
• If #(trans(s, Con)) > 1, add a terminal transition annotated with an inconclusive verdict 

and labelled by the assert action. The guard of this transition is ∧{t∈trans(s,Con)} ¬ guardt. 
The assert action parameter list and assignment list are empty. 

In the non-enumerated data, interleaving case, the implicit verdicts are well-defined. We will 
say that a controllable test description defines a test case. We will also say that a quasi-
controllable test description defines a quasi- test case. However, this latter notion of test case 
cannot be guaranteed to be fully executable without assigning priorities, due to the 
undecidability of the problem of joint satisfiability of guards. In TeLa, improper receptions 
are assumed to have priority over other controllable transitions and priorities can be explicitly 
assigned between these other controllable transitions. 
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3 Incorporating a more restrictive behavioural semantics 

3.1 Partially-ordered messages from partially-ordered events 

For a restricted class of diagrams, we can obtain a partially-ordered message style semantics 
(conforming to the maximalist interpretation) while remaining in the context of a partially-
ordered event semantics (conforming to a maximalist interpretation) by adding extra 
orderings between the events. A reasonable physical interpretation of the addition of these 
orderings is that they correspond to the assumption that the time of transit of messages is 
negligible, see Chapter III, Section 2.5 for more details. 

We say that a message emission event and its corresponding message reception event define a 
communication pair and we refer to each as being the paired event of the other. Let ↦ denote 
the restriction of the transitive reduction of ≤ to non-local orderings (i.e. for which ϕ(e1) ≠ 
ϕ(e2) ) where ≤ is the partial ordering obtained from a TeLa expression. We write e1 ↦ e2 for 
(e1, e2) ∈ ↦ and e1 ≤ e2 for (e1, e2) ∈ ≤.

To simplify the treatment, we first suppose that ≤ is s.t. all non-local causality is via 
messages, that is, there is no MSC-style general ordering between non-local pairs of events. 
We then suppose that the TeLa diagrams contain no crowns, in the sense of [ChaMatTel96], 
that is, no causal overtaking and no causal crossing (and, of course, no causal loops). Fig. 5-2 
shows three examples of crowns. 

B CA A BB CA

 

Figure 5-2: Examples of so-called “crowns” 

The resulting class of sequence diagrams is that defined by [ChaMatTel96] as RSC 
(“Realizable with Synchronous Communication”) and corresponds to the non-buf weakly 
implementable MSCs of [EngMauRen02] characterised by the existence of a trace which is 
implementable on an architecture with no communication buffers. As stated by the authors of 
the latter article, this is a necessary condition for MSCs to be interpreted as synchronous 
interworkings [MauWijWin93]. In fact, the semantics we require for our partially-ordered 
messages is exactly that of synchronous interworkings. 

Notice that, the condition that if e1, e2 ∈ E are ordered, communication events, their paired 
events e1′, e2′ ∈ E cannot be inversely ordered, that is:  

e1 ≤ e2   ∧  (e1 ↦ e1′  ∨  e1′ ↦ e1)   ∧   (e2 ↦ e2′  ∨  e2′ ↦ e2)  ⇒  ¬  (e2′ ≤ e1′) 
is a strictly weaker condition than RSC, as can be deduced from a cursory glance at the 
middle diagram of Fig. 5-2. This latter condition defines the class of sequence diagrams 
which are denoted MO (“Message Ordered”) or CO (“Causally Ordered”) in [ChaMatTel96]. 
It is easily seen that both MO/CO and RSC are, in turn, stronger conditions than simply 
assuming that communication channels between the components represented by lifelines are 
FIFO. 



Incorporating a more restrictive behavioural semantics          199 

 

On a TeLa description which is RSC, let ↓ denote the transitive reduction of the restriction of 
the partial ordering ≤ to local orderings (i.e. for which ϕ(e1) = ϕ(e2)). In the absence of 
decomposition of diagrams and of coregions, ↓ relates adjacent events on the same lifeline. 
Let → = ↓ ∪ ↦, so → is the immediate predecessor relation. We write e1 ↓ e2 for (e1, e2) ∈ ↓ 
and e1 → e2 for (e1, e2) ∈ →. 

For ≤ the partial order obtained from a TeLa scenario structure, define the relation << as 
follows (we write e1 << e2 for (e1, e2) ∈ <<). Events e and e′ satisfy e << e′  iff one of the 
following is true: 
1. e << e′  or  e = e′ 

2. e << e1 ∧ e1 << e′  

3. ¬∃e2 s.t. e ↦ e2 (i.e. e is not a send event) 
∧ ∃e1 s.t. e′ ↦e1 (i.e. e′  is a send event and e1 is the corresponding receive event) 
∧ e ↓ e1 

4. ¬∃e2 s.t. e2 ↦ e′  (i.e. e′ is not a receive event) 
∧ ∃e1 s.t. e1 ↦ e (i.e. e is a receive event and e1 is the corresponding send event) 
∧ e1↓ e′ 

5. ∃e1, e2 s.t. e1 ↦ e and e′ ↦ e2 (i.e. e is a receive event and e′ is a send event) 
∧ e1 ↓ e2 

Clearly, << ⊇ ≤. The relation << also defines a partial-order on the set of events and 
effectively implements the semantics of synchronous interworkings while maintaining an 
event-based, rather than a message-based approach. The semantics obtained by inferring the 
relation << instead of the relation ≤ from test descriptions (which necessarily must satisfy the 
RSC constraint) will be referred to as the partially-ordered messages interpretation. 

The cases of points 3, 4 and 5 of the definition of the relation << are illustrated in Fig 5-3, 
where the added immediate causality relations are represented by discontinuous-line arrows. 
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Figure 5-3: Illustration of the extra immediate-causality relations added by the relation << w.r.t. the relation ≤ 

The definition of << ensures that if e is a communication event with paired event e′ : 
e1 << e << e2   ⇒   e1 << e′  << e2 

If we denote by 4a the condition of point 4 of the above definition extended to include cases 
when e′ is a receive event, then points 1, 2 and 4a define a relation which is equivalent to 
supposing that every message is acknowledged. However, the required semantics is a single-
flow-of-control type semantics equivalent to supposing that every message is acknowledged 
and that MSC race conditions are resolved as follows: the sender of the message which is to 
arrive after a certain event waiting to receive notification that this event has indeed occurred 
before sending. The intermediate “synchronous realisation semantics” defined by points 1, 2 
and 4a of the above definition could also be useful but we do not explore this point here. Note 
that conditions 3 and the part of condition 5 that is not contained in condition 4a are 
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concerned with resolving race conditions. We suppose that if this semantics is required, it can 
be specified with the means at the disposal of the specifier by explicitly using synchronous 
invocations. 

3.2 Partially-ordered messages and explicit concurrency 

For messages in the scope of a coregion, the extra orderings of the << relation w.r.t. the ≤ 
relation are illustrated in Figure 5-4, where here we use the MSC notation for coregions. 

The case where two messages are in the scope of a coregion at emission and not in the scope 
of a coregion at reception or vice versa was mentioned in Chapter 3, Section 1.4.3.2 as being 
a problem for a partially-ordered messages semantics (see also Fig. 3-1). With the partially-
ordered message style semantics defined above via the << relation, in such cases, it is the 
ordering between messages defined by events not in a coregion, rather than the lack of it 
defined by the events in a coregion, which predominates. Thus, the addition of the extra 
orderings results in the cancellation of the effect of any such problematic uses of the explicit 
concurrency operator. This is illustrated by the messages m1 and m2 and by the messages m5 
and m6 of Figure 5-4. 

m6

e1 e2

m1
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m5
m4

m3

m2

e3

e′1 e′2 e′3  

Figure 5-4: Illustration of the extra immediate-causality relations added by the relation << w.r.t. the relation ≤ in 
the presence of explicit concurrency on lifelines 

3.3 Implementation of partially-ordered message semantics 

The way we have illustrated the extra causality relations, makes it clear how these can be 
implemented in an asynchronous context using coordination messages, see Fig 5-5 and Fig. 5-
6. It is clear from the second of these figures that in the presence of explicit concurrency on 
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lifelines, coordination messages will not be enough and extra local ordering relations will also 
be needed. 
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Figure 5-5: The extra causality relations of Fig 5-3 implemented via synchronization messages  

Let !m, resp. ?m, denote the event corresponding to the emission, resp. reception, of the 
message m. In Fig 5-6, the synchronisation message labelled u1, resp. u3, represents the extra 
immediate causality relations between event e2, resp. e3, and the events !m1, and !m3. The 
synchronisation message labelled u4, resp. u5, represents the extra immediate causality 
relations between event e1 and the event !m4, resp !m5. The synchronisation message labelled 
u2, together with the local ordering, represents the extra immediate causality relation between 
the events ?m1 and !m2. The synchronisation message labelled v5, together with the local 
ordering, represents the extra immediate causality relation between the events ?m5 and !m6. 
The synchronisation message labelled v1, resp. v3, represents the extra immediate causality 
relation between the events ?m2, resp. ?m3, and event e′1. Finally, the synchronisation 
messages labelled v4, resp. v6, represents the extra immediate causality relations between the 
events ?m4 and ?m6, and event e′2, resp. e′3. 
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Figure 5-6: The extra causality relations of Fig. 5-4 implemented via synchronization messages  

As stated in Chapter 4, the synchronization messages of TeLa do not denote any events; they 
correspond to MSC general orderings between existing events located on different lifelines. If 
we suppose, on the contrary, that synchronization messages do denote new events, due to 
transitivity, a simpler way of specifying the synchronizations necessary for the partially-
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ordered messages semantics exists, albeit using a larger number of synchronization messages. 
This is simply accomplished by adding a synchronisation message before and after every non-
synchronization message, making use of extra coregions where appropriate in the case where 
the non-synchronization messages are in the scope of a coregion. 

3.4 Trace formulation of partially-ordered message semantics 

Clearly, the set of linearisations conforming to the partially-ordered messages interpretation is 
a subset of the set of linearisations according to the partially-ordered events interpretation. An 
equivalent way of deriving this subset would be to place constraints on the set of possible 
traces conforming to the partially-ordered events interpretation. It is of interest to know what 
these constraints are. 

[EngMauRen02] suggest that “an interworking can be considered as the restriction of the 
semantics of an MSC to only the nobuf-implementable traces”. It would seem then that this is 
the constraint we require on traces. However, the authors’ definition of nobuf-implementable 
traces does not take into account concurrency. This fact does not affect the authors’ definition 
of the weakly nobuf-implementable requirement for a diagram to be interpreted as a 
synchronous interworking, since this is an existential property. However, it does affect the 
above definition of the interworking semantics. With the authors’ definition of non-buf 
implementable, the above definition of the interworking semantics is incorrect. The required 
definition, not on individual traces but on the set of traces defining the semantics, is as 
follows 

A set of traces, Λ, is said to be nobuf-implementable if and only if for all pairs of labels (!a, 
?a) labelling the paired events of a communication, 

σ1 = σpre ⋅ !a ⋅ x ⋅ ?a ⋅ σpos ∈ Λ      ⇒       σ2, σ3  ∈ Λ 
where σ2 = σpre ⋅ x ⋅ !a ⋅ ?a ⋅ σpos    and   σ3 = σpre ⋅ !a ⋅ ?a ⋅ x ⋅ σpos 

That is, the traces of the partially-ordered messages interpretation satisfy the property that the 
only actions that can occur between those of a communication pair, are actions labelling 
events which are concurrent with the events of the communication pair. 

3.5 Partially-ordered message semantics for a component 

We have presented the partially-ordered messages interpretation of TeLa test descriptions. 
However, we could also apply the partially-ordered messages interpretation to parts of TeLa 
test descriptions. The existence of a hierarchical component model, and the notion of 
cut/partition of a snapshot, enables us to specify a level of components for which intra-
component communication conforms to the partially-ordered messages interpretation, while 
inter-component communication conforms to the partially-ordered events interpretation. This 
possibility may be applied to the whole test system, to the whole tester component, or to 
individual tester components. 

The definition of the partially-ordered messages semantics is in terms of the transitive 
reduction of the restriction of the partial ordering ≤ to local orderings. The notion of “local” in 
this definition is crucial to the compatibility of diagram decomposition and the partially-
ordered messages interpretation. We have defined “local orderings” as those between events 
for which the location function for the structurally-consistent maximal decomposition returns 
the same value. The limitation on whether this maximal decomposition is one involving only 
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base-level components is imposed principally by the ports referenced in the message arrow 
labels of the diagram. 

The definition of the relation << on a component c is as follows. We suppose that the RSC 
property holds for inter-component messages and that the MO property holds for messages 
sent from the component to its environment (but not for messages in the other direction). The 
former assumption is essential and the latter enables what appears to be a more useful 
semantics. 

The definition proceeds as for the definition of << on the whole test description except for the 
stipulation that rules 3-5 only apply to events e, e′ such that ϕ(e), ϕ(e′) are both 
subcomponents of c, and the addition of rule 3a as follows: 
3a.  ∃e2 s.t. ϕ(e2) is a subcomponent of c and e2 ↦ e (e2 is a send event) 
 ∧ ϕ(e′) is a subcomponent of c ∧ ∃e1 s.t. e′ ↦ e1 (e′ is a send event) 
 ∧  e ↓ e1 

The three cases of Fig. 5-3 now apply only to the situation where both e and e′ are events on 
subcomponents of c. Rule 3a is a special case of rule 2 of the general definition but with the 
messages being sent from inside the component in question and received outside of it. This 
rule is illustrated in Fig. 5-7, where we suppose that c1 and c2 are subcomponents of c and d is 
a peer component of c (that is another member of the generalised interaction framework used 
for the diagram). 
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Figure 5-7: Illustration of the extra immediate-causality relations described in rule3a 
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The work reported on in this chapter was carried out in the context of the COTE project 
[JarPic01] of the French national research programme RNTL (Réseau National des 
Technologies Logicielles). A short version was presented in [PicJarTra02]. 

The initial work on developing the test synthesis method with Umlaut/TGV is reported on in 
[JézGuePen98], [JérJézGue98] and [Gue01]. The first article proposes a validation framework 
for integrating formal validation and verification technology in the OO lifecycle. The second 
presents this framework in more detail, describing the overall scheme for generating a 
simulation API from a UML model in order to be able to use verification and validation tools, 
in particular, the TGV test synthesis tool. The third describes how this scheme was 
implemented in the Umlaut simulator. 

Here, we complete the original method and suggest how it could be generalised. In the case of 
the Umlaut simulator, we also refine the tool support and suggest improvements to it, while at 
the same time clarifying both the semantics and the constraints the derivation of this 
semantics imposes on the UML model. To do so, we have benefited from the evaluation and 
testing of the method & tool that we have undertaken jointly with the partners playing the role 
of users in the COTE project, one of the main aims of this project being to investigate 
applicability of the approach to test synthesis in the UML domain. 

We also extend the method in order to achieve full integration in UML, firstly, through the 
use of UML scenario-based test objectives and UML scenario-based test cases and, secondly, 
through the XMI model exchange with commercial UML CASE tools. We provide all the 
mechanisms and underlying concepts needed for this integration and, again in the context of 
the COTE project, have participated in the partial implementation of these extensions and of 
the connection with the Objecteering tool. 

We recapitulate the main proposals for improving the current method at the end of each of the 
main sections. In doing so, we also briefly discuss the impact any proposed changes would 
have on the current semantic basis and current tool support, where we include in the latter not 
only the Umlaut UML simulator but also the TGV test synthesis tool. One of our main 
concerns in this regard is in extending the method from system testing to general component 
testing. 

The present article also aims to document both the original method & tool and the extensions 
to it, laying out clearly the different phases and the different semantic and implementation 
choices in each phase. Throughout the document, there are implementation notes concerning 
the current prototype tool. These notes pinpoint the places where the current implementation 
is incomplete or where there are difficulties in implementing the method as presented. In this 
way, the present article can also serve as the technical manual for the tool. 

In the following section we provide the definitions of the additional terms that will be be 
needed in this chapter and an overview of the method, dividing it into four main parts. The 
first of these parts, concerning the derivation of a formal model (a labelled transition system) 
from the UML model of the application is presented in Section 2. The next part, concerning 
the derivation of a formal model (a labelled transition system) from a UML representation of 
a test objective - in the O-TeLa language - is presented in Section 3. The kernel of the method 
and tool, the test synthesis on the formal models, is presented in Section 4. Section 5 presents 
the last part, the mapping from the labelled transition system representation of the resulting 
test case to a UML representation of that test case - in the TeLa language. 

We illustrate the method described in this document by referring throughout to an example 
involving a simplified Air Traffic Control system. 
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1 Introduction 

In this section we provide the background and motivation for the work on test synthesis from 
UML models and define the terms we will use in the rest of the document. We finish the 
section with an overview of the test synthesis method which, at the same time, provides us 
with the structure of the rest of the document. 

1.1 Background 

The need for the automatic synthesis of functional test cases from UML specifications is 
increasingly being felt in industry. Furthermore, UML is being used in an ever wider range of 
contexts, in particular, that of distributed system development. The testing of distributed 
applications has to take into account their use of asynchronous communication and their 
inherent concurrency.  

When dealing with many real-world applications, in particular those involving a significant 
degree of concurrency, testing of all possible invocation orderings is unrealistic due to a 
combinatorial explosion in the number of such orderings permitted by the specification. Thus, 
in applications involving concurrency, user-defined test objectives constitute a way of 
limiting the number of test cases to be produced by test synthesis from a specification. These 
test objectives serve to guide the test synthesis process. They can be described in the form of 
high-level test scenarios which are then easily understood as behavioural test patterns by 
developers.  

Other advantages of using test case synthesis according to test objectives for both centralised 
and distributed applications are the following:  
• Ease of use: test objectives are independent of low-level design and implementation 

choices. While defining a high-level test scenario is not difficult when the main classes are 
identified, refining and adapting it to the final software product is an arduous process. 
However, the details of the low-level design are contained in the UML specification; 
completing the test objective with these details is therefore a task which can be left to the 
automatic synthesis. Allowing test designers to work at the test objective level rather than 
the test case level thus frees them from the need to specify the low-level detail, enabling 
them to concentrate on the essential aspects of the test. 

• Coherent development process: the main expected behaviours can easily be represented as 
test objectives. Such test objectives can be derived from the use-case scenarios, thus 
contributing to the overall coherence of the development process. 

• Version/product independence: test objectives can be chosen to be independent of 
software versions and variants. This is particularly important in a product-line context 
[AtkBayBun02], since generic test objectives may be defined for an entire product line 
[NebPicTra02]. 

In this document we present a method for the automated synthesis of test cases (with built-in 
oracle in the form of test verdicts) from test objectives described as high-level scenarios. The 
method is supported by a prototype tool. The inputs to the method are: 
• a set of test objectives, in a UML sequence diagram based notation, 
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• a UML model of the application, comprising at least a class diagram and a state diagram 
for each of the classes and actors (in fact, the method could also be used with fewer state 
machines, see later), 

• a description of the initial state of the application in the form of a UML object or 
deployment diagram. 

It should be noted that test objectives may be defined before the UML model of the 
application is completed: only the main interfaces of classes and actors are needed. A set of 
test cases – to be represented in a UML sequence diagram based notation [PicJarHeu01] – 
exactly defining the ordering of call sequences and associated test verdicts, as well as any 
required object creation, is then automatically synthesised. In defining our method, we have 
addressed the following issues concerning conformance testing in a UML framework: 
• the definition of a complete process with a formal basis to synthesize test cases from UML 

specifications according to test objectives, 
• the definition of a formal operational semantics for UML specifications, 
• the definition of a scenario-based language within the UML framework to express test 

objectives and test cases. 
Though the user only deals with UML, our approach to testing is a formal one and we 
therefore have a precise notion of what is being tested and what is the meaning of a verdict. 
The underlying formal basis of the method is the synchronous product of Input-Output 
Labelled Transition Systems (IOLTS). The tool implementing this method results from the 
incorporation of the TGV tool into the Umlaut UML environment. Umlaut [HoJézGue99] is a 
CASE tool that manipulates the UML meta-model, enabling automatic model transformation. 
TGV [JarJér02] is a test synthesis tool based on an on-the-fly and partial traversal of the 
enumerated labelled transition system of the specification. It was chosen here for its formal 
basis, for the desirable properties which its test synthesis algorithms can be proven to possess 
and for the ability to treat systems of significant size which its on-the-fly approach confers. It 
has already demonstrated its capabilities on large SDL [ITU-T02] and Lotos [ISO89] 
specifications. 

In this document we concentrate on black-box system testing; we derive test cases which 
concern only the interface between the system under test (SUT) and the external actors. As a 
consequence, our method does not rely on the implementation under test being derived from 
instrumented code, unlike other approaches to system testing from UML descriptions. Our 
synthesis method could also be usefully applied in testing individual components or in testing 
the integration of different components. However, in the absence of adequate support for 
components in UML 1.4 and with the current implementation of Umlaut, it is not easily 
applied to a model which may contain communications between the different entities of the 
SUT environment. If these entities are actors, as in system testing, such communication 
cannot appear in the model since it is not allowed by UML, see Section 2.4.1. 

1.2 Definition of behavioural concepts 

In this section, we extend the definitions of Chapter 2, Section 1, adding those needed for 
discussing test synthesis. To the general definitions of this chapter we add those of test 
objective and SUT boundary. We then give additional versions of the definitions of Chapter 2, 
Section 1 and of the new definitions; for each concept we give one definition adapted to an 
LTS-based semantics and another definition adapted to a scenario-based semantics. These 
separate definitions help us to define the relationship between the concepts at the different 
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levels of our test synthesis method, which requires translating from scenarios to LTSs and 
back. 

1.2.1 General formulation 
To the concepts defined in Chapter 2, Section 1, we add two more of importance for test 
synthesis. 

1.2.1.1 TEST OBJECTIVE 
A test objective is a generic behaviour specification representing an abstract view of some 
behaviour of the SUT that we wish to test. In test synthesis, the intention is to derive a test 
case by using the test objective as a criterion for selecting the behaviour to be tested from 
among the behaviours permitted by the specification (c.f. a property). The test objective will 
usually include communications between the system and its environment or an abstract view 
of such communications. 

We suppose that in the derived test cases, the SUT environment role will be played by the 
tester. A test case derived from a test objective specifies how to stimulate any SUT 
implementation via the SUT component interface and in function of its responses at this 
interface in such a way as to cause it, if it conforms to its specification, to execute a scenario 
which fulfils that objective. 

1.2.1.1.1 Preamble, test body and postamble 
A test case is sometimes divided into three stages with respect to a test purpose: 
• The test case preamble is the part of the test case taking the SUT from its initial state to a 

state in which the test purpose can be achieved. 
• The test case body is the part of a test case containing all the events essential to achieving 

the test purpose. 
• The test case postamble is the part of a test case taking the SUT from the state in which it 

was left by the test body to a state in which a global verdict can be assigned. The first part 
of the postamble may consist of invocations whose aim is to determine observable aspects 
of the state in which the CUT was left by the test body, information which may be needed 
in order to reach a verdict. 

We distinguish the term “test objective” from the term “test purpose” since, in order to reduce 
the calculations carried out by the test synthesis tool, our test objectives may be also select 
part or all of the preamble and postamble (though similar entities are still called test purposes 
in [SchEbnGrab00]). 

1.2.1.2 THE SUT BOUNDARY IN TEST SYNTHESIS 
Though we require the tests derived from a test objective to be of a black-box nature, that is, 
their description cannot involve events labelled by SUT actions, in the general case, there is 
no fundamental reason to similarly limit the test objectives to behaviours which do not 
involve arbitrary SUT actions, including SUT-internal actions, that is, SUT actions which are 
not shared actions between the SUT and its environment in the synchronous communication 
sense (see Section 1.2.2.6). In test synthesis, this can be accomplished by parameterising the 
test synthesis method by the SUT boundary.  

The need to represent SUT actions, even SUT-internal actions, in test objectives may arise 
from a desire to test certain behaviour of a component which is embedded inside the SUT. A 
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prime example is the case where we are in fact testing a CUT properly contained in the SUT. 
The meaning of SUT actions in a test objective is that if the SUT implementation conforms to 
its specification, the execution by the tester of the controllable actions of the derived test will 
cause the SUT implementation to execute the actions of the test objective and produce the 
observable actions of the derived test. 

1.2.2 LTS-based formulation 

1.2.2.1 LABELLED TRANSITION SYSTEM (LTS) 
An LTS is a quadruple M = (QM, q0

M, ΣM, →M) where: 
• QM is a finite non-empty set of states, 
• q0

M is the initial state, 
• ΣM is the alphabet of actions (or Σ-actions1), 
• →M ⊆ QM × ΣM × QM is the transition relation. 
Note that, in contrary to usual practice, our labelled transitions systems do not have internal 
actions; we will only have need for such actions in input-output labelled transition systems. 

1.2.2.2 INPUT OUTPUT LABELLED TRANSITION SYSTEM (IOLTS) 
An IOLTS is a quintuple M = (QM, q0

M, ΣM, →M, ℵM) where: 
• QM (QM, q0

M, ΣM, →M) is an LTS, 
• ℵM is a function from ΣM to the set {i, o, τ}, partitioning the set of actions into input 

actions, ΣI
M = ℵM

-1(i), output actions, ΣO
M = ℵM

-1(o), and internal actions Σint
M = ℵM

-1(τ). 
Thus, an IOLTS is a labelled transition system in which a notion of system boundary is 
defined by distinguishing the external actions – those on this boundary – from the internal 
actions, and the external actions are partitioned into inputs at the system boundary and outputs 
at the system boundary. In testing, the inputs of the SUT will be the outputs (controllable 
actions) of the tester and the outputs of the system will be the inputs (observable actions) of 
the tester. 

It is important to note that the concept of IOLTS defined here (that used by the test synthesis 
tool) does not allow for external actions which are neither inputs nor outputs. That is, the 
system boundary contains all the external actions; external actions which are internal to the 
system environment are not contemplated2. It is also significant that there is not one unique 
internal action. This allows us to use test objectives which include internal actions of the 
specification (the actions are hidden after, rather than before, the synchronous product 
operation in test synthesis). 

                                                 
1 We will prefix the term action with Σ when referring to the actions in the LTS case whenever confusion may 
arise with the actions of the “action language” making up UML “action expressions”, which we refer to as UML-
actions. As we will see later, in the LTS representing the semantics of a UML specification, a single Σ-action 
may be composed of several UML action expressions, each composed of UML-actions. 
2 The possibility of including such actions would be very useful (see the guidelines for the specification of actor 
state machines in Section 2.1.2) so that an extension of the basis of the TGV tool in this sense is desirable. In an 
extended test synthesis mirror operation, the SUT-env internal actions would become tester-internal actions. 
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1.2.2.3 TEST RESULT (LTS VERSION) 
The test result is the sequence of external actions actually performed in a test execution 
together with the verdict for that test execution. The actions of this sequence are either 
executed by the tester (controllable actions) or executed by the SUT and observed by the 
tester (observable actions), during the execution of a test. 

1.2.2.4 (CONFORMANCE) TEST CASE (LTS VERSION) 
A test case is a deterministic, controllable IOLTS specifying the stimulation of the SUT by 
the tester via the SUT component interface, the observation of its responses at this interface, 
and the assignment of a verdict by the tester. The verdict is assigned in function of whether 
the test result is consistent with a trace of communications between the SUT and its 
environment which is permitted by the SUT specification. The consistency is defined via a 
conformance relation; in test synthesis using the TGV tool, the ioco relation is used3. The 
IOLTS has three distinct sets of sink states corresponding to the three verdicts pass, fail and 
inconclusive, a verdict being accessible from every state. It also satisfies the condition that 
each state either has one outgoing transition which is a single tester output or has an outgoing 
transition for every possible tester input (see Section 4.1.3 and Chapter 5, Section 2.1.2.2). 

1.2.2.5 TEST OBJECTIVE (LTS VERSION) 
A test objective is a generic LTS representing an abstract view of traces the SUT may 
execute, according to its specification, and that we wish to test. Test synthesis then works by 
using this LTS as a criterion (c.f. property) for selecting the behaviour to be tested from 
among the traces permitted by the specification. All the transitions of the test objective LTS 
are labelled by actions of the specification LTS; in the usual case, some or all of these 
transitions are labelled by actions describing the emission or reception of invocations between 
the system and its environment. The genericity enabling the test objective LTS to be used as a 
selection criterion on the specification LTS is obtained in three ways: 
• by abstraction on the actions labelling transitions (using regular expressions), 
• by providing a facility for specifying the completion w.r.t. the alphabet Σ of the 

specification LTS (the asterisk, see Appendix A) 

• by implicitly completing all states w.r.t. the alphabet Σ of the specification LTS via a loop 
transition; in the synchronous communication context, this allows the specification to 
perform actions which are not specified in the test objective when matching the two. 

The test objective contains two types of special states, accept states and error states which are 
here known as reject states. Both must be sink states. Since the states of an LTS contain no 
information and are therefore all identical, these two types of sink state are actually modelled 
as states having a single appropriately-labelled outgoing transition. 

The transitions leading to a reject state in the test objective LTS specify the parts of the 
specification LTS which do not need to be explored in order to synthesize a test case; they can 
greatly improve the efficiency of test synthesis. They may be used to exclude messages which 
are known to actively interfere with the purpose of the test. Perhaps the most common use, 
however, is to help minimise the synthesized test case by excluding messages which are 

                                                 
3 This states that ∀ traces of visible actions σ in the IOLTS of the specification, 

outputs_after_σ (Impl) ⊆ outputs_after_σ (Spec), 
that is, the outputs of the implementation after σ are included in the outputs of the specification after σ (locks 
being considered as a particular type of output, detectable via the use of timers). 
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known to be superfluous for the purposes of the test. This reduction of “noise” is particularly 
useful for synthesizing tests of concurrent applications in the interleaving-model context. 

1.2.2.6 THE SUT BOUNDARY IN TEST SYNTHESIS (LTS VERSION) 
As in the general formulation, we wish to allow internal actions to be represented in test 
objectives and parameterise the test synthesis with the SUT boundary. 

In the IOLTS framework, communication is modelled through shared actions i.e. synchronous 
communication in the sense of CCS [Mil89] or CSP [Hoa85]. In the shared-action 
communications of the IOLTS framework, one of the two parties performs an input while the 
other performs an output. In accord with this notion of communication, the actions on the 
SUT boundary are those which are shared between the SUT and its environment, where, in 
the test case, the tester takes the place of this environment. Recall that with the definition of 
IOLTS currently used, the set of actions on the SUT boundary is assumed to be the same set 
as the set of SUT-external actions (i.e. there are assumed to be no actions internal to the SUT 
environment). 

In IOLTS-based test synthesis, see Section 4, a test case for the SUT, represented as an 
IOLTS, is synthesized from the following three elements: 

• a closed-system specification of the SUT and its environment, represented as the LTS, S, 
with alphabet ΣS 

• a function ℵS, as defined above, that makes an IOLTS of the specification LTS by 
partitioning the actions of its alphabet ΣS according to the SUT boundary: ΣS = ΣI

S ∪ ΣO
S 

∪ Σint
S, 

• a test objective, represented as an LTS with alphabet ΣTO, where ∃ a name mapping: 
is_abstraction_of : ΣTO  → ℘(ΣS) 

taking actions of the test objective LTS to non-empty sets of actions of the specification 
LTS, defined by the regular expressions embedded in the names of the actions of ΣTO. 

In the simplest approach to test synthesis, in the calculation of the synchronous product, the 
range of the is_abstraction_of  function is restricted to ℘(ΣI

S ∪ΣO
S) so that the elements of 

ΣTO are matched with elements of ΣI
S ∪ΣO

S. That is, the elements of ΣTO can only represent 
SUT-external actions of the specification; with the definition of IOLTS currently used, these 
are necessarily communications between the SUT and its environment. In the approach used 
in the TGV tool, however, in the calculation of the synchronous product, the range of the 
is_abstraction_of  function is all of ℘(ΣS), i.e. ℘(ΣI

S ∪ΣO
S ∪Σint

S), so that the elements of 
ΣTO are matched with elements of ΣI

S ∪ΣO
S ∪Σint

S. That is, elements of  ΣTO can also represent 
SUT-internal actions of the specification 

The use of (abstract versions of) SUT-internal actions in test objectives is accomplished by 
parameterising the synthesis method by the function ℵ of the IOLTS definition above: SUT-
internal actions are not hidden, using the information provided by the function ℵ, until after 
the calculation of the synchronous product of the test objective LTS and the system 
specification LTS (see Section 4.1.2). This is the reason why in the IOLTS definition, 
contrary to usual practice, it is not assumed that all internal actions are identical. 

The issue of defining the SUT boundary in system test synthesis using the LTS generated 
from a UML specification by the Umlaut simulator is discussed in Section 2.4. 
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1.2.3 Scenario-based formulation 

1.2.3.1 EVENTS, ACTIONS AND MESSAGES 
We define the event4 as the basic behavioural unit, each event being labelled by an action (or 
Π-action5). These actions are one of the following: 
• the emission or the reception of a synchronous or asynchronous invocation between two 

components 
• the emission or the reception of a synchronous invocation reply between two components, 
• a component-internal action (we include timer manipulations in the component-internal 

actions). 
We define a message6 as an ordered pair comprising a send and a receive event whose labels 
concern the same invocation and the same two components. 

1.2.3.2 SCENARIOS AND SCENARIO-STRUCTURES 
A scenario is a partially-ordered set of events involving messages being sent between 
different components, each event being labelled by an action. A scenario structure is a 
(possibly infinite) number of (possibly infinite-length) alternative scenarios. 

In the approach described here, both test cases and test objectives, will be described as 
scenario structures (though the use of alternatives may be restricted in test objectives); in both 
cases, the notation used will be referred to as a scenario language. The syntax used, both for 
the test objective scenario structures and the test case scenario structures, extends the UML 
1.4 sequence diagram syntax in order to be able to describe a full range of behaviours7. 

1.2.3.3 TEST RESULT (SCENARIO VERSION) 
The test result is the scenario of external events actually actually performed in a test execution 
together with the verdict for that test execution. The events of this scenario are either executed 
by the tester (in which case they are labelled by controllable actions) or executed by the SUT 
and observed by the tester (in which case they are labelled by observable actions), during the 
execution of a test. 

1.2.3.4 (CONFORMANCE) TEST CASE (SCENARIO VERSION) 
A test case is a scenario structure specifying the stimulation of the SUT by the tester via the 
SUT component interface, the observation of its responses at this interface, and the 
assignment of a verdict by the tester. The verdict is assigned in function of whether the 
observed test result is consistent with a scenario involving the SUT and its environment which 
                                                 
4 The notion of event used here corresponds to the UML 2.0 notion of  “event occurrence”. 
5 We will prefix the term action with Π when referring to the actions in the partial order case whenever 
confusion may arise with the actions of the “action language” making up UML “action expressions”, which we 
will refer to as UML-actions. The relation between the Π-actions and UML-actions may not be one-to-one, 
notably concerning the processing in auto-invocations or concerning other actions which are internal to a 
component. 
6 The term message was used ambiguously in UML 1.4; in some parts of the document a synchronous invocation 
is treated as being composed of two messages and in other parts of only one message. For clarity, we state that in 
our use of the term message, a synchronous invocation is composed of two messages. 
7 Our syntax and semantics are broadly compatible with the upcoming UML 2.0 sequence diagrams, both our 
diagrams and theirs being largely inspired by the ITU-T MSC standard. 
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is permitted by the SUT specification. The consistency is defined via a conformance relation. 
In the approach presented in this document, test synthesis is performed by translating to LTSs; 
the conformance relation is therefore given by this translation and the conformance relation 
on LTSs. 

1.2.3.5 TEST OBJECTIVE (SCENARIO VERSION) 
A test objective is a set of generic scenario structures (though the use of alternatives may be 
more limited than in a test case) representing an abstract view of scenarios that the SUT may 
execute, according to its specification, and that we wish to test. Test synthesis then works by 
using these scenario structures as a criterion (c.f. property) for selecting the behaviour to be 
tested from among the scenarios permitted by the specification. The test objective will usually 
include messages exchanged between the SUT and its environment or an abstract view of 
such messages. The genericity enabling the set of scenario structures defining the test 
objective to be used as a selection criterion on the specification scenario structure is obtained 
in two ways: 
• By abstraction on component names, method names or on method parameters using 

wildcards: in the approach presented in this document, test synthesis is performed by 
translating from scenario structures to LTSs; wildcards are simply translated to regular 
expressions. 

• By allowing the specification to perform actions which are not specified in the test 
objective when matching the two: in the approach presented in this document, test 
synthesis is performed by translating from scenario structures to LTSs so that the 
genericity is defined by this translation and the automata completion described in the LTS 
case. 

Concerning the first point, the abstraction discussed above is to be resolved by matching the 
actions labelling the events of the test objective with those labelling the events of the 
specification during the test synthesis; the test objective thus selects a single test case. In 
[BonMauBou01] and [BonPot03], the same abstractions are used but here the intention is to 
resolve them by matching the actions labelling the events of the test objective with those 
labelling the events of the specification prior to test synthesis, in a kind of pre-compilation 
phase. This pre-compilation generates a set of more concrete test objectives so the end result 
is that the original abstract test objective selects a set of test cases, each selected by a more 
concrete test objective. [BonPot03] uses the term “test strategy” for an test objective specified 
with this intention. Note that in [BonPot03], the matching is performed using only the 
external actions, i.e. it is supposed that test objectives cannot contain internal actions, though 
this restriction does not seem to be fundamental. Though much genericity can be resolved in 
either of these two ways, genericity that is exclusive to the tester must be resolved in pre-
compilation. 

Concerning the second point, it may be desirable to use a more distinguishing definition in the 
partial-order case than in the LTS case, even if this distinction is lost in the translation to 
LTSs. Thus, the abstraction relation between a test-objective scenario structure and a 
corresponding test-case scenario structure could be defined to conserve the distinction 
between choice and concurrency as in [Jar02]. 

In the most general formulation of the method we have developed, a test objective comprises 
two parts, each part specified as a set of scenario structures (restricted, as mentioned above): 
• the specification of the (external or internal) SUT behaviour that the test designer wants to 

test; the accept scenarios are used as positive criteria for selecting scenario structures of 
the specification which are relevant for the test case; 
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• the specification of the (external or internal) SUT behaviour that the test designer wants to 
avoid in the test; the reject scenarios are used as negative criteria to avoid selecting 
scenario structures of the specification which are irrelevant for the test case; 

Regarding the role of the reject part of the test objective, since in the approach presented in 
this document, test synthesis is performed by translating to LTSs, this role is given by this 
translation and the role of the reject element in the LTS case. However, a major use of the 
reject element in the LTS case is simply to deal with unwanted interleavings, so that the role 
of the reject in a fully partial-order test synthesis method such as that defined in [Jar02] is 
likely to be reduced. 

1.2.3.6 THE SUT BOUNDARY IN TEST SYNTHESIS (SCENARIO VERSION) 
As in the general formulation, we wish to parameterise the test synthesis with the SUT 
boundary. In the approach presented in this document, test synthesis is performed by 
translating to LTSs; the SUT boundary for the partial-order representation is therefore given 
by this translation and the SUT boundary in the LTS case. 

How the SUT boundary used for system test synthesis with TGV/Umlaut is reflected in the 
scenario-based test-objectives used for this test synthesis is discussed in Section 3.2.3. It will 
depend firstly on the relation between the Π-actions of the scenario-based representation of 
the test objective and the Σ-actions of the LTS generated by Umlaut. We try to ensure there is 
a one-to-one correspondence between actions at the two levels, at least for those Π-actions 
which are to be mapped onto external actions, though even in the latter case, it is not always 
possible. The influence of the atomicity of the LTS generated by Umlaut on the test objectives 
is discussed in Section 3.2.2. 

1.2.3.7 CURRENT PROTOTYPE: IMPLEMENTATION NOTES 
The test objectives which can be specified in sequence diagram form in the prototype 
developed in the COTE project [JarPic01] are more limited. Firstly, they use only a single 
accept behaviour scenario structure. The expressiveness of the reject scenario structures is 
partially recovered via messages annotated reject that can be used inside the accept scenario, 
leading to more compact representations in some cases. Secondly, the scenario structures are 
supposed totally ordered. 

1.3 Overview of the approach 

Based on a UML specification, a real implementation of the system can be derived. However 
we can never be 100% sure that the real system works as expected. One way to improve 
confidence in the system is to check its conformance with respect to the specification - which 
we assume to be correct - using an appropriate suite of test cases. A test driver is then used to 
execute the test on the implemented system by simulating its environment. 

1.3.1 The method 

Fig. 6-1 gives an overview of the method for synthesising test cases from a UML 
specification, according to test objectives. The inputs of the method are a UML specification 
(class diagram, state diagrams and object/deployment diagram) and a test objective in the 
form of scenario structures described in the O-TeLa language. The output is an abstract test 
case in the form of a scenario structure described in the TeLa language from which an 
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executable test case can be generated for a given platform (Corba, Java/RMI, .Net …). Both 
the O-TeLa and TeLa language are based on UML sequence diagrams but may also make use 
of UML activity diagrams and UML class diagrams, and may also refer to the class diagrams 
of the specification. Both input and output can be provided as XMI files enabling the initial 
modelling, as well as the visualisation of the derived test case, to be done with any UML case 
tool. In the COTE project, the Objecteering tool is used. 

The method itself is divided into four main parts: 

1. Formal specification derivation, in which a simulation API is derived from the UML 
specification, thereby enabling the LTS defining its semantics to be built incrementally on 
demand (termed “on the fly”), see Section 2. The atomicity of the transitions of this LTS 
define the atomicity of the simulation steps. In system test synthesis, we also derive the 
specification of the SUT boundary (which Σ-actions are internal and which are external to 
the SUT) and the direction of the external Σ-actions (which are inputs and which are 
outputs). The partition of the Σ-actions of the specification LTS into input Σ-actions, 
output Σ-actions and internal Σ-actions, which enables IOLTSs to be defined from the 
LTSs of the method is also discussed in this section. 

2. Formal objective derivation, in which an LTS is derived from the test objective, see 
Section 3. Though currently the whole LTS is built, this part of the method could 
conceivably also be done via an API enabling “on the fly” treatment of the test objectives 
as well as of the UML specification.  

3. Test synthesis on the formal models, in which an IOLTS representing the test case is 
derived on-the-fly, see Section 4. 

4. UML test case derivation, in which a UML representation is derived from the resulting 
IOLTS test cases, see Section 5. 
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Figure 6-1: The synthesis method. 

1.3.1.1 CURRENT PROTOTYPE: IMPLEMENTATION NOTES 
Two-tier TeLa diagrams, i.e. those composed of sequence diagrams linked by activity 
diagrams, are not used so that there is no exchange of activity diagrams between Objecteering 
and Umlaut. In addition, the passage from an IOLTS test case to TeLa test case has not been 
fully automated. 

1.3.2 The tools implementing the method 

1.3.2.1 OBJECTEERING 
Objecteering is a commercial UML case tool which can generate an XMI representation of a 
UML model from its internal representation of that model and, conversely, can read an XMI 
representation of a UML model, generating an internal representation of that model. 

1.3.2.2 UMLAUT  
Umlaut [HoJézGue99] is a framework dedicated to the manipulation of UML models. The 
Umlaut module of interest here is the simulation module, which generates a simulation API 
from the UML specification. The semantics of the UML specification is the LTS which would 
be created by using this API to explore all possible states. However, this LTS is not created 
explicitly, instead, the API is used by the test synthesis tool (and other tools which we do not 
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discuss in this paper) to explore the part of the LTS of interest (that is, the state graph is 
created on-the-fly). 

1.3.2.3 TGV 
TGV [JarJér02] is a test synthesis tool which has been integrated into the Umlaut 
environment. We leave any further description to Section 4. 

1.3.2.4 U-CASTING AND TOBIAS 
U-Casting [AerJen03] and Tobias [BonMauBou01] are tools for generating test objectives 
from OCL constraints (U-Casting) or from more abstract test objectives (Tobias), termed test 
strategies. 

1.3.3 Using the prototype integrated tool 
For the procedure to be followed in order to use: 

• Objecteering to create a UML model and generate its XMI representation 
• U-Casting and Tobias to derive test objectives in the form of LTSs either from a UML 

model or from an O-TeLa expression specified using Objecteering, 
• the Umlaut simulator to import an XMI representation of a model created using 

Objecteering and to derive a simulation API from this model, 
• TGV and a simulation API derived by the Umlaut simulator in order to synthesize a test 

case, in the form of an IOLTS, from a test objective in the form of an LTS 
• Objecteering to display TeLa test cases 
see the documents of the COTE project [JarPic01] (in particular Livrable 4.6). 

As already stated, the derivation of the formal test case, that is, the translation of the IOLTS 
resulting from test synthesis into a TeLa diagram, has not been automated. Also as already 
stated, the principles involved in this translation are treated in Section 5 of the present 
document. 
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2 Derivation of LTS from UML model 

The semantics of a UML specification is defined as its accessibility graph in the form of a 
labelled transition system (LTS). The division of the transitions of this LTS into external and 
internal, and the division of the external transitions into inputs and outputs then defines the 
IOLTS required for the test synthesis algorithms. In this section, we first discuss the 
production of a “simulatable” UML specification and its importation in Umlaut in XMI form. 
We then show how this model is transformed and how a simulation API is generated from the 
transformed model. Next we show how the SUT boundary which parameterises test synthesis 
is defined for this API; in the system testing case, the SUT boundary is automatically derived 
from the UML specification. Figure 6-2 shows the part of the method that is presented in this 
section. 

Finally, we show how the formal specification derivation proceeds for the ATC application 
example and we give some possible enhancements to this part of the method. 

Formal spec derivation

LTS specification model
 via simulator API

visible actions (.hide)
inputs/outputs (.io)

UML Specification
(class diagram, object

diagram, statecharts,…)

XMI import

 

Figure 6-2: Formal specification derivation part of the method. 

2.1 Prerequisites for the derivation of an LTS 

The minimum requirements placed on the application model by the test synthesis method are 
that it contain a class diagram, an object or deployment diagram and a state machine for each 
of the classes (with a particular syntax for the action expressions of the state-machine 
transitions)8.  Inevitably, however, there are also some restrictions on the use of these 
diagrams in order for a model to be “simulatable”, that is, in order for the Umlaut simulator to 
be able to derive a simulation API from it. This is since, as a general-purpose language, UML 
is too permissive in some respects, in which cases it must be restricted, and is incomplete in 
other respects, in which cases information must be added. It also contains some ambiguities 
which must be resolved. The “simulatable” model edited in an external case tool and exported 
in XMI form must then be imported into Umlaut. 

2.1.1 Specifying static aspects through UML class diagrams 
Static aspects of Umlaut-simulatable UML models are described using class diagrams. The 
derivation of a simulation API from a UML model imposes some restrictions on the class 
diagrams defining the static aspects of that model. These are mainly due to the semantic 
                                                 
8 Any OCL present in these diagrams is not taken into account when generating the LTS. 
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choices which the simulator inevitably makes, in particular those concerning inter-object 
communication. See Section 2.3 for more details. 

2.1.1.1 SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS 
In Umlaut-simulatable models, invocations must be synchronous or asynchronous according 
to whether the corresponding operation is declared with a return type or not. Thus, we say that 
the corresponding operation itself is synchronous or asynchronous according to whether or 
not it is declared with a return type. Signals must be modelled as asynchronous invocations. 

2.1.1.2 ACTIVE AND PASSIVE OBJECTS 
Since an invocation to an active object passes via a FIFO queue, see Section 2.3.2, objects 
which are declared to be active are not allowed to have synchronous operations. This is to 
ensure that all objects are in a well-defined state of their associated state machines at the end 
of a simulation step, i.e. that the set of action expressions belonging to the state-machine 
transitions that have fired have all been completely executed. The situation in which, at the 
end of a simulation step, a caller is blocked between two states of its state machine waiting for 
a reply, cannot then arise. 

2.1.1.3 USE OF ASSOCIATIONS 
Another restriction concerns whether invocations can be made to objects of classes which are 
not connected via an association. This point it not clear in UML and different policies are 
sometimes taken on it. For clarity, we state here that the policy of the Umlaut simulator is that 
an invocation cannot be made unless the corresponding association has been explicitly 
specified between the two classes. Similarly, in order for an object of a class to create objects 
of another class, the two classes must also be linked via an association. 

2.1.1.4 ALLOWING FOR DYNAMIC CREATION OF OBJECTS 
A further restriction concerns dynamic creation of objects during simulation. As explained in 
Section 2.1.2.4, there may be a need to declare additional attributes in the class diagram in 
order to store dynamically-created objects. 

2.1.1.5 CURRENT PROTOTYPE: IMPLEMENTATION NOTES 
The implementation of inheritance is incomplete so that, currently, problems may arise if 
models involving inheritance are used.  

2.1.2 Specifying dynamic aspects through UML state diagrams 
The dynamic aspect of UML is a key part to giving a UML specification an operational 
semantics. A state machine attached to a class specifies the life cycle of objects of that class, 
that is, it describes how objects respond when another object sends them a message or when a 
given event occurs. The derivation of a simulation API from a UML model imposes some 
restrictions on the state machines defining the dynamic aspects of that model. These are 
mainly due to the semantic choices which the simulator inevitably makes, in particular those 
concerning inter-object communication, see Section 2.3 for more details. 

2.1.2.1 STATE MACHINES FOR THE EXTERNAL ACTORS 
The synthesis method requires a closed system, see Section 2.3.3, and therefore also requires 
that state machines be associated to the external actors. The behaviour of the system as a 
whole is given by the combined execution of the state machines contained in the system and 
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the state machines that model its environment (modulo certain assumptions about inter-object 
communication). 

2.1.2.2 UNSPECIFIED RECEPTION 
The behaviour of UML state machines on unspecified reception is described in the UML 1.4 
standard in the following terms: 

"If no transition is enabled and the event is not in the deferred event list of the current 
state configuration, the event is discarded and the run-to-completion step is completed" 

UML 1.4, §2.12.4. 
and again: 

“If an event does not trigger any transition, it is discarded”, 

UML 1.4 §3.78.1 

From these quotes it is clear that, semantically speaking, each state contains a default loop 
transition for each operation or signal which does not trigger any of the other outgoing 
transitions in that state; these implicit transitions have no effect apart from simply removing 
the corresponding event from the input queue. We consider that an invocation to an operation 
which is not declared in the class diagram (or sending a signal not so declared) is an error that 
can be detected statically, so that our UML state machines need only be semantically 
completed with respect to the set of operations/signals defined in the corresponding class 
diagram. 

2.1.2.3 THE ACTION LANGUAGE USED IN UMLAUT STATE MACHINES 
UML state machines are parameterised by action expressions, which can be placed on 
transitions or in states. Thus to make a UML state machine executable, an operational 
semantics is needed for the language used to describe the UML-actions. The action expression 
of a UML state machine transition may be quite complex since the granularity of transitions in 
UML state machines is often quite coarse. Until quite recently [OMG03] no language was 
prescribed for these expressions, so that in UML 1.4 any text can be used. The current version 
of the Umlaut simulator therefore uses an ad-hoc action language to describe the 
creation/destruction of objects and links, the assignment of values to attributes, the invocation 
of methods, etc. 

In fact, a sublanguage of the Eiffel programming language is chosen in order to avoid parsing 
action expressions, since this is the language used to implement the simulation API which is 
derived from the executable UML specification9. The syntax of this language must therefore 
be used in the action expressions of the model defined in Objecteering, where it is treated 
simply as text, see Fig. 6-3 for examples. The identifiers for the elements of the model 
(objects, roles, attributes etc.) are used directly in this action language. 

The fact that action expressions are not compiled but simply copied whole to the appropriate 
place in the simulation code restricts the action language to a sublanguage of Eiffel, due to the 
Eiffel scoping rules. For example, local variables cannot be declared in action expressions 
since to do so would lead to the Eiffel syntax not being respected in the resulting simulation 
code (local variables cannot be declared at any point in Eiffel code). Therefore, the only 
variables that can be used in an action expression are either formal parameters of the 

                                                 
9 In a similar way, in the Agedis project [1], where the UML specification is compiled to the IF language, IF is 
also used as the action language. Similarly, in the Rhapsody tool, the action language is C++. 
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operation whose invocation is the trigger of the transition or attributes of the object itself 
(however, concerning the attributes, see Section 2.3.7). Use of loop indexes, for example, 
requires that they be declared as attributes. This problem could perhaps be solved using 
procedure declarations. 

In order to use the action language, we need to know how an object is to refer to other objects 
of the model. In the Umlaut simulator, each object has an implicit attribute for each 
association in which it is involved, and the identifier of this attribute is the role name at the 
other end of the association. In the case of an association with multiplicity greater than one, 
all objects of the same class linked via an instance of the same association play the same role. 
In such cases, rather than identifying a simple attribute, the role name identifies an array in 
the Umlaut simulator action language (Eiffel). Thus an object at one end of a set of links 
distinguishes between multiple objects playing the same role at the other end of the links by 
using the features of the Eiffel array class, in particular the item feature. 

2.1.2.4 MODELLING OBJECT CREATION 
A predefined creation procedure (or, in C++ terms, constructor) called make exists for 
creating objects of any given UML class in the Umlaut action language. If a user-defined 
creation procedure is to be used, this procedure should call the pre-defined one. However, 
there are some limitations in the treatment of user-defined creation procedures. To which 
transition of the state-machine of the class of the created object is the creation procedure to be 
associated? The UML stereotype «create» is described in the following terms in the standard: 

Create is a stereotyped call event denoting that the instance receiving the event 
has just been created. For state machines, it triggers the initial transition at the 
topmost level of the state machine (and is the only kind of trigger that may be 
applied to an initial transition). 
UML 1.4, §2.12.2.1 

Apparently, then, the invocation of the creation procedure is the trigger for the transition from 
the initial pseudo-state to the first proper state and the action expression of this transition 
expresses the content of the creation procedure. However, UML state machines are limited to 
a single initial pseudo-state from which there can be only one outgoing transition with only 
one trigger. It would seem, therefore, that UML classes cannot have multiple creation 
procedures! If a user-defined creation procedure is to be used in a model to be simulated with 
the Umlaut simulator, it must be stereotyped «create». 

Another problem with dynamic creation concerns the fact that the syntax of the action 
language used (Eiffel) demands that such objects be assigned to a variable on creation. 
However, as stated above, local variables cannot be declared in action expressions. In 
consequence, when object creation is to take place via an association of multiplicity greater 
than one, a temporary variable to which the created objects can be assigned must already exist 
since, in the multiplicity-greater-than-one case, the role name identifies an Eiffel array. 

One solution to this problem is to declare, in the creating class, an attribute whose type is the 
class of the object(s) to be created. This attribute can then be used to temporarily store the 
references to newly-created objects. After creation, the new object reference can then be 
added to the array identified by the role in the corresponding association. This addition can be 
done either by using the add feature of Eiffel arrays, or by using a special-purpose feature of 
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the arrays used by the Umlaut action language: add_<rolename>10. An alternative solution is 
to declare a separate attribute, whose type is the class of the created object, for each object 
which is to be created dynamically in the course of simulation. 

2.1.2.5 GUIDELINES FOR THE SPECIFICATION OF PASSIVE-OBJECT STATE MACHINES 
Passive object state machines are currently not allowed to contain triggerless transitions. The 
use of such transitions in passive-object state machines would imply that the state from which 
this transition is an outgoing transition is locally unstable in the sense that the object could 
never remain in such a state awaiting some external event. We require all state machine states 
to be locally stable. 

If it is required that a decision be reflected in the structure of the state machine rather than 
being contained in an action expression of a single transition, it can be modelled using a 
conditional branch via a choice pseudo-state. This possibility then removes any need for 
guarded triggerless transitions in passive objects. 

2.1.2.6 GUIDELINES FOR THE SPECIFICATION OF ACTIVE-OBJECT STATE MACHINES 
The atomicity of the transitions of the LTS generated by the Umlaut simulator means that 
several UML-actions, such as the sending and receiving of synchronous or asynchronous 
invocations or of synchronous invocation replies, may be subsumed in a single LTS transition. 
Furthermore, the  Σ-action used to label such a transition will only contain information about 
the first of these UML-actions to occur, The other UML-actions are not explicitly represented 
in the LTS semantics so that all information concerning them will be inaccessible. See Section 
2.3.5 for details of this labelling function. Therefore, the atomicity of the transitions of the 
LTS dictates the need for guidelines for the specification of active-object state machines. 

Information concerning the value returned as the result of a synchronous invocation of an 
operation by an active object will be inaccessible in the LTS generated by Umlaut. Therefore, 
if a value sent to an active object is to figure explicitly in the generated transition system, it 
must be sent via an asynchronous invocation. This visibility problem sometimes obliges what 
is more naturally modelled as a synchronous invocation to be specified as two asynchronous 
invocations. 

To be fully conformant to the object paradigm, all processing should be by method 
invocation. This implies that the action expression of a triggerless transition of an active-
object state machine should contain only invocations. In fact, in order to generate LTSs which 
are well-adapted to simulation, ideally, the action expression of a triggerless active-object 
transition should contain exactly one invocation and nothing else. This stronger restriction 
also ensures that the labels on the transitions of the LTS generated by Umlaut all have a very 
simple form. A triggerless transition of any other form can be converted into two transitions, 
one of which is an auto-invocation – a triggerless transition of the required form – and the 
other of which contains the required processing in its action expression and is triggered by 
this auto-invocation. Clearly, an operation whose body is represented by the action expression 
containing the required processing must be declared, in order for its auto-invocation to be 
used as the trigger of this second transition. 

                                                 
10 Previously, the array itself was not created until the first use of the add_<rolename> feature, so the first 
use of this feature was not equivalent to a use of the array feature add. However, the array is now created in the 
predefined creation procedure of the owning object. 
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Due to the granularity of the LTS generated from the specification by the Umlaut simulator, 
see Section 2.3.2, and the treatment of auto-invocations in active-objects, see Section 2.3.7, in 
an auto-invocation, the state-machine transition invoking the operation and the state-machine 
transition executing its body are part of the same LTS transition of the global system. This 
LTS transition will be labelled by the action expression of the triggerless transition, i.e. by the 
auto-invocation, see Section 2.3.5. 

Note that these guidelines concerning auto-invocation ensure that no internal processing is 
visible. The test objectives used in test synthesis cannot therefore refer to any such internal 
processing and it will not be visible in any synthesized test case. With the current granularity 
of the LTS generated by Umlaut, this is not in any way a drawback, but it might be considered 
as such in a simulator with a finer semantics. 

2.1.2.7 GUIDELINES FOR THE SPECIFICATION OF ACTOR STATE MACHINES 
The atomicity of the transitions of the LTS generated by Umlaut, see Section 2.3.2, and the 
need to relate the synchronous-communication architecture required by TGV to the 
communication architecture assumed by Umlaut, dictate the need for guidelines for the 
specification of actor state machines. 

Concerning the visibility problem for values sent to active objects mentioned above, in the 
case where the active objects are actors and the values in question are sent by the system, the 
guidelines are of great importance for system test synthesis. As regards the need to use two 
asynchronous invocations to model the synchronous invocation of a passive system object 
operation by an external actor, this is currently obligatory, see the implementation notes at the 
end of this section. If the reception by an external actor of such an asynchronous invocation is 
not to trigger the execution of an action expression, there is no need to explicitly specify a 
transition triggered by this reception. This is because, due to the UML state machine 
behaviour on unspecified reception described above, if no such transition is specified, a 
transition with an empty action expression triggered by the invocation is implicit. However, 
leaving such transitions implicit is not necessarily good practice. 

It is stated above that the action expression of a triggerless active-object transition should 
contain exactly one invocation. In the specific case of the external actors, in order to generate 
transition systems which are optimal for test synthesis (and, in particular, for test objective 
specification), the action expression of any transition of their state machines should contain 
no more than one invocation. In general, an invocation of an actor to the system will be 
contained in a triggerless (and usually spontaneous, i.e. unguarded) transition. In some cases, 
however, such an invocation may be contained in the action expression of a transition which 
is invoked by the actor itself (but never by the system), see the active-object guidelines 
concerning auto-invocations above. 

Currently, actor auto-invocations are not properly taken into account by the test synthesis 
algorithms11; they lead to Σ-actions which are internal to the system environment but which, 
in test synthesis, will be treated as SUT inputs, see Section 2.4.2. However, in most cases, if 
the present guidelines are followed, the action expression of the transition triggered by the 
auto-invocation of the actor operation, <op_actor>, will indeed contain a single invocation to 
an SUT operation, <op_SUT>, i.e. an SUT input. To facilitate the use of test objectives, we 
here propose the naming convention <op_actor> = <op_SUT> , i.e. we use the same name for 

                                                 
11 As already stated, the tool assumes that all transitions labelled by external actions describe communications 
between the SUT and its environment so that all external transitions are either system inputs or system outputs. 
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the actor operation invoked by the auto-invocation as for the system operation whose 
invocation is contained in the action expression constituting the body of that actor operation. 

It is very ill-advised to specify a transition in an actor state-machine whose action expression 
contains an actor-to-system invocation but which is triggered by a system-to-actor invocation. 
If such transitions are used, the atomicity of the LTS generated by Umlaut will make it 
impossible to partition the external Σ-actions into system inputs and system outputs, this 
being crucial for meaningful test synthesis. 

When specifying actor state machines, care should be taken with loops which involve object 
creation. This is since such loops may currently lead to infinite branching, see also Section 
2.3.1. 

2.1.2.8 DEFAULT “DAISY” STATE MACHINES 
For actors where a state machine is not provided, a sender “daisy” state machine – a machine 
having one state and a set of spontaneous loop transitions, each invoking one of the operations 
to which the actor is associated – could be assumed. Due to the behaviour of UML state 
machines on unspecified reception, see above, transitions with empty action expressions and 
triggered by invocations to any of the actors’ operations do not need to be specified. Of 
course, use of “daisy” machines for the external actors instead of explicitly-specified state 
machines would increase the size of the LTS generated by Umlaut. 

For system classes where a state machine is not provided, a receiver “daisy” state machine – a 
machine having one state and a set of loop transitions with an empty action expression, each 
triggered by one of its operations – could be assumed. In fact, due to the behaviour of UML 
state machines on unspecified reception, see above, these transitions exist by default even if 
not specified explicitly. Instead of a “daisy” state machine, therefore, a state machine with one 
state (apart from the initial pseudo-state) and no outgoing transitions could be used. The 
transitions of the LTS generated from the specification will be the same whether these 
transitions are left implicit or not. 

For applicable test synthesis, strictly speaking, such system-object “daisy” machines can only 
be used for objects which do not contribute to the observable behaviour which is to be tested. 
However, this restriction does not apply to interactive simulation. 

2.1.2.9 SOME SIGNIFICANT RESTRICTIONS 
Hierarchical state machines, that is, ones with composite states, are not yet dealt with so that 
all state machines must be flat. However, dealing with hierarchical state machines is not 
trivial, and in extending the current implementation to deal with them, restrictions will need to 
be imposed in order to guarantee that they can always be flattened (i.e. that an equivalent non-
hierarchical state machine can always be derived). 

Other significant restrictions are that action expressions in states (including entry and exit 
actions) are not treated; nor are deferred events or history pseudo-states. 

2.1.2.10 CURRENT PROTOTYPE: IMPLEMENTATION NOTES 
In the current implementation, an attribute to temporarily store the references to newly-
created objects must also be used, not only when object creation is to take place via an 
association of multiplicity greater than one, but also when object creation is to take place via 
an association of multiplicity equal to one. This is since the Eiffel class corresponding to a 
UML class accessed via an association for which no object exists in the initial state is 
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currently a deferred (abstract) class whereas the Eiffel class corresponding to a UML class 
which is the type of an attribute is always an effective (concrete) class. 

In the current prototype, the implementation of synchronous operations of passive system 
objects by external actors is incomplete. Currently, external actors can only invoke operations 
of system objects asynchronously. 

Whether or not conditional branches are fully taken into account in the current prototype 
remains to be verified. Conditional branches are an important feature, particularly in passive 
object state machines, helping to avoid overly large action expressions, as mentioned in the 
guidelines for the specification of passive-object state machines. 

The special-purpose add_<rolename> feature is of limited use without similar features to 
delete an object from the set of objects linked to a given object O and perhaps also to navigate 
from O to one of these objects (instead of using the item feature of Eiffel arrays). A more 
satisfactory solution would be for the simulation API generator to define a specific subclass of 
collections with all the desired features (add, remove, etc.) and to use this instead of Eiffel 
arrays. 

In the current prototype, if a class or actor of the model does not have an associated state 
machine, a “daisy” state machines is not generated in any circumstances so that, with the 
current implementation, a state machine must be given for each of the classes and actors of 
the model. 

The simple use of copy-paste of action expressions in order to avoid parsing them leads to 
other problems besides those mentioned above concerning the use of temporary variables. In 
particular, the use of carriage return characters or double quote characters in the actions 
expressions of triggerless transitions leads to the generation of incorrect Eiffel code and Eiffel 
compilation problems. However, if the guidelines for the specification of active objects given 
in this section are followed, this problem should never arise. A problem which is more 
difficult to avoid is that, even in the parameters of an operation call of an action expression 
(more precisely, in all but the last parameter of such an operation call), the use of double 
quote characters can cause problems, though in this case at simulation time rather than 
compilation time. 

In the current prototype, guards on triggerless transitions of active objects have no effect, that 
is, they are assumed to be always true, see Section 2.3.4. 

In the state diagrams of Objecteering, the action expression of a transition appears explicitly 
in the transition label. As a consequence, when the action expression becomes large, the 
diagrams become unreadable. In the context of the COTE project, FT R&D have developed 
an Objecteering module to specify action expressions in a UML note rather than on the 
transition itself. This is a very practical way to avoid having transitions with extremely long 
labels. 

2.1.3 Specifying the initial configuration through a UML object diagram 
Class diagrams describe the possible configurations of objects in the system. However, 
calculation of the possible ways in which the configuration can evolve, i.e. simulation, 
requires the specification of an initial configuration. The derivation of a simulation API from 
a UML model imposes some restrictions on the object diagram defining the initial state of that 
model. These are mainly due to the semantic choices which the simulator inevitably makes, in 
particular those concerning inter-object communication. See Section 2.3 for more details. 
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In a simulator which cannot treat data symbolically, all attributes and links which are to be 
used before being assigned to must either be instantiated in the initial state or be defined to 
have a default value. In the Umlaut simulator, an object diagram or, if we also wish to show 
the localisation of each object in a distributed application, a deployment diagram, is used for 
specifying initially-existing objects and initial values of their attributes. 

Clearly, it is not possible to specify an arbitrary global state (see Section 2.3.2) of the system 
using a UML object or deployment diagram, since the original UML model does not provide 
a means to specify the current control state of the state machines, the current state of the input 
queues, etc. In consequence, the test preamble can rarely be obviated by a judicious choice of 
the initial state of a model to be used in test synthesis. 

2.1.3.1 DISTINGUISHING OBJECTS OF THE SAME CLASS 
Though an array-type solution is clearly necessary for dynamically-created objects, it would 
be convenient to be able to use “role-instance names” to distinguish links to objects of the 
same class that exist in the initial state. However, there is no means to do so in UML object 
diagrams. 

If an object linked to different initially-present objects of the same class (with different initial 
values) needs to distinguish between them before receiving any invocation from them, it must 
first navigate to them to read a distinguishing attribute, or invoke a method which returns the 
value of a distinguishing attribute, and then store the value of <role_name>.item(<number>) 
in a way that associates it to the distinguishing value (N.B. item is the feature of the Eiffel 
array class that is used to access individual elements of an array). 

In the case where an object linked to different initially-present objects of the same class needs 
to distinguish them after receiving an asynchronous invocation from them, a predefined 
constant, “self”, containing the value of the identifier of the particular object, together with 
variables ranging over object identifiers in order to send this value as that of such a variable, 
would be useful. However, such a self-referencing constant does not exist in UML, only in 
OCL (in spite of this fact, the value “self” is used as a parameter of an invocation in the 
diagrams shown in Figs. 3-24 and 3-59 of the UML 1.4 standard!). Since the action language 
of the Umlaut simulator is a sublanguage of the Eiffel language, the Eiffel keyword Current 
can be used for this purpose. Such a predefined constant will also need to be part of the test 
objective language. 

2.1.3.2 CURRENT PROTOTYPE: IMPLEMENTATION NOTES 
The current implementation is incomplete in that there cannot be more than one link between 
any two given objects in the object diagram describing the initial state. If there are several 
associations between the corresponding classes, the implementation associates this unique 
link to one of them according to criteria which are not semantically meaningful. As a 
consequence, other links must be instantiated explicitly in action expressions, assigning the 
appropriate object to the action language variable with the appropriate role name in the other 
object (in both directions if the association is navigable in both directions). 

2.1.4 Importing the XMI representation of the “simulatable” model 
The only part of the model exchange via XMI that is fully implemented in the prototype is the 
passage of the UML specification from Objecteering to Umlaut. 

A UML model is represented in XMI as an instance of the UML meta-model and the XMI file 
therefore refers to objects which are instances of UML meta-classes. The parsing of the XMI 
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representation of the UML model can only be done in one pass by explicitly storing an 
accumulating a list of pending additions to the model being constructed. The need for this list 
arises since model additions involving a given UML meta-model object may refer to a super-
class of this object rather than its leaf class. Thus, though the first time a UML meta-model 
object appears in the XMI file it is given an identifier, its leaf class may not actually be known 
until later in the XMI file. For example, the trigger of a transition of a UML state-machine 
may be given as an object of type Event with identifier id, but only later in the file is the 
information provided as to what is the leaf type of id, i.e. what type of Event is being referred 
to, CallEvent, SendEvent, etc. 

Another difficulty with the use of XMI is the variety of possible representations due to the 
evolution of the UML standard: UML 1.3, UML 1.4 etc. and of the XMI standard: XMI 1.0, 
XMI 1.1, XMI 1.2 etc.  

2.1.4.1 CURRENT PROTOTYPE: IMPLEMENTATION NOTES 
We have used the UML1.3 and XMI 1.0 output of Objecteering, in spite of the fact that XMI 
1.0 leads to particularly verbose descriptions. The parser also serves as an adapter between 
UML 1.3 and the version of UML used by Umlaut. This latter version of UML could mostly 
be classified as a UML1.1++ or UML1.3−− except for the treatment of expressions and 
multiplicity which conforms neither to UML 1.1 nor to UML 1.3. 

The XMI parser currently also contains an ad-hoc solution to a problem arising with the 
Umlaut metamodel representation. Though the links in the UML metamodel are navigable in 
both directions, in the XMI files, normally one direction is given, in the interests of space 
economy. In the Umlaut interface, the links between objects of a metamodel are reified so 
consistency is easily managed; it is easy to ensure that if a link is instantiated in one direction, 
the link in the other direction is also instantiated. However, in the Umlaut core used by the 
simulator, links between objects are not reified and the links in the two directions are not 
easily related. The reason for this lack of reification appears to be in order to permit an object 
to reference another object in the simulator action language by directly using the role name 
from the model. 

A model produced via the Umlaut interface is consistent in this regard by construction. 
However, the same is not true of a model imported from an XMI file. Currently, then, this is 
resolved rather unsatisfactorily on a case-by-case basis in the XMI parser. 

2.2 Transforming the UML specification 

To ease the task of giving a formal semantics to a UML specification, it is automatically 
transformed into an equivalent one using a much simpler subset of UML, consisting mainly of 
classes and operations. Most of this transformation deals with UML state machines, merging 
them into UML's type system, using dynamic multiple classification (i.e. where the type of a 
given object can change dynamically). 

A state machine comprises a set of states, an event queue, and a thread that dispatches events 
taken from the queue. The event queue and the thread are reified (i.e. represented explicitly as 
classes) in the transformed model. The emission of an asynchronous invocation by an active 
or passive object to an active object is transformed into the placing of an event corresponding 
to this invocation in the event queue of the receiving object. The reception of an asynchronous 
invocation by an active object from an active or a passive object is transformed into the 
removal of an event corresponding to this invocation from the event queue of the receiving 
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object and the execution of the action expression of the transition triggered by this invocation 
(i.e. the body of the corresponding method). 

The states of the state machines are also reduced to the simpler concept of class: each state 
can indeed be seen as a specific subtype of the class to which the state machine is attached 
(the state machine's context). This subtype has the same interface (signature) as the context: 
this interface comprises one operation for each event that the state machine can react to. If a 
given state has an outgoing transition triggered by a given event, then the subtype 
corresponding to this (sub-)state implements an operation corresponding to that event with a 
method whose body contains the effect of the transition (that is, the set of UML actions to be 
executed when the transition is fired). Note that in UML state machines, inner transitions have 
priority over outer ones, which fits perfectly with this scheme: the priority policy directly 
maps to the classical dynamic binding of object-oriented languages. Fig. 6-3 illustrates the 
transformation, which is similar in nature to the state design pattern [GamHelJoh94]. Under 
this scheme, a transition between states of an objects state machine is transformed into a 
change from one type to another (UML supports dynamic and multiple classification so the 
transformed model is still a UML model). 

Region1 Region2
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S12

S21

S22

 
«type»

C_In_TopState

«type»
C_In_Region1
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Figure 6-3: Illustration of the transformation of UML state machines. 

Of course, the initial configuration described in the object or deployment diagram must also 
be transformed so as to include the objects representing communication queues and event 
dispatchers. 

2.2.1.1 TRANSITIONS WITH NO TRIGGER 
The state-pattern transformation procedure mentioned above does not deal with state-machine 
transitions having no trigger. There are only two cases to consider, since triggerless transitions 
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in passive objects are not allowed as explained in Section 2.1.2.5: guarded or unguarded 
transitions of active-object state machines. Spontaneous transitions (i.e. those with neither 
trigger nor guard) of active-object state machines are transformed into default operations of 
the appropriate class (there may be several). Such transitions are commonly found in the state 
machines of the external actors. Guarded transitions are similarly transformed but the guard 
must be evaluated each time the operation is chosen and the body only executed in the case 
where the guard evaluates to true. 

2.2.1.2 NON-DETERMINISM DUE TO OVERLAPPING GUARDS 
Another feature of this transformation is that it assumes that the state machines are 
deterministic in the sense that a set of outgoing transitions of a state sharing the same trigger 
(or a set of guarded outgoing transitions of a state without a trigger) must have mutually-
exclusive guards. Based on this assumption, the guards of such a set of transitions are 
transformed into an if-then-else ladder. Of course, with any reasonably-expressive data 
language, mutual exclusivity of guards is undecidable, so this simplification is significant. 

2.2.1.3 CURRENT PROTOTYPE: IMPLEMENTATION NOTES 
The current implementation is incomplete in that guards in triggerless active-object transitions 
are not taken into account. They are thus always treated as spontaneous active-object 
transitions. See Section 2.3.4.1 for a workaround. In addition, hierarchical state machines are 
not yet dealt with so that all state machines must be flat. 

2.3 Generating the simulation API 

From the transformed specification, Umlaut generates a simulation API with which to 
construct a labelled transition system (LTS) defining the semantics of the UML specification. 
This API can then be used by TGV (or other tools) to construct all or part of this LTS as 
required, enabling on-the-fly treatment. 

2.3.1 Structure of the simulation API 
The simulation API provides functions for: 
• the calculation of the initial global state, 
• the calculation of the fireable transitions in a given global state, 
• the calculation of the successor state, given a global state and a transition which is fireable 

in that state, 
• the comparison of global states. 
In a given global state, the set of fireable transitions are calculated by enumerating the control 
states of the active objects in the system (recall that after the transformations described in the 
previous section, a control state is represented as a type), and checking which state-machine 
transitions are enabled in these local control states, see Section 2.3.2 for more details. The 
global states are stored using a deep copy of the whole structure of objects.  

The comparison function between global states enables cycles and confluences in the LTS to 
be detected. This comparison function relies on local state comparison functions for each 
class of objects. 
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Concerning the implementation language of the simulator, the simulation API is generated in 
an object-oriented programming language (Eiffel), firstly, to facilitate the handling of 
dynamic creation and destruction of objects and, secondly, to facilitate the implementation of 
dynamic reclassification. 

2.3.1.1 CURRENT PROTOTYPE: IMPLEMENTATION NOTES 
To reduce the size of the states of the state space, the local comparison functions could be 
redefined so as to abstract away from those properties of the system that we are not interested 
in. However, currently, no interface is provided for redefining them. 

The current implementation of the state comparison function uses a notion of state which is 
too fine, distinguishing between global states which only differ in their object identifiers. As 
this distinction can easily lead to infinite branching in the part of the LTS generated from a 
loop involving object creation, a more sophisticated implementation is needed in which such 
isomorphic global states are not distinguished. What is required for this implementation is a 
notion of equality between object graphs. 

2.3.2 Atomicity of derived LTS transitions 
The execution of an LTS transition defines a simulation step. As we see below, in the current 
implementation of Umlaut, the granularity of the transitions in the generated LTS (and thus of 
the Σ-actions which can be used in test synthesis) is rather coarse: global states correspond to 
“stable” configurations of the UML system, that is, ones in which each object of the system is 
in a well-defined state of its associated UML state machine. 

More precisely, the following gives all the configuration information used to define our 
notion of global state:  
• the control state of the state machine of each of the objects 
• the values of the attributes of each of the objects, 
• the existing navigable links between objects, 
• the state of the communication queues of the active objects. 

Recall that after the transformations described in the previous section, the control state of the 
state machine of an object is represented by the dynamic type of that object. This definition of 
global state avoids the structure of the derived LTS (but not necessarily the labels on the 
transitions) being dependent on the action language which parameterises UML state 
machines. 

It is further assumed that: 
• calls to active objects are asynchronous and pass via FIFO queues (one queue per object) 
• calls to passive objects can be synchronous or asynchronous but do not pass via queues 
These suppositions are consistent with the style of distributed system modelling in which all 
non-local calls are implemented as asynchronous calls to active objects. Recall that we do not 
distinguish between asynchronous invocations and signals so there is a single event queue. 
This means that synchronous calls to active objects are not treated. 

Recall also that the emission of an asynchronous invocation to an active object corresponds to 
the placing of an event in the event queue of that object and the reception of an asynchronous 
invocation by an active object corresponds to the removal of an event from the event queue of 
that object together with the execution of the corresponding action expression. With this in 
mind, we see that the above restrictions ensure that each LTS transition is associated to a run-
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to-completion step of an active object state machine. As our state machines have no hierarchy, 
each LTS transition corresponds to one of the following: 
• the execution of the action expression of an active-object state-machine transition 

triggered by the reception of an asynchronous invocation (from an active or a passive 
object); this action expression may contain assignments, creation of objects, invocations to 
other objects etc., 

• the execution of the action expression of an active-object state-machine transition with no 
trigger; in the general case, this action expression may also contain assignments, creation 
of objects, invocations to other objects etc.; if it contains the latter, it is thus the start of a 
causal chain or a set of causal chains, 

In both cases, if the action expression contains invocations to passive objects, these may in 
turn contain nested invocations, so a single LTS transition may involve the execution of 
action expressions from many different objects. Any other UML-action must already be part 
of an LTS transition which necessarily commences with one of the above two types of events. 
Recall that an external actor is treated by Umlaut as an active object. 

Recall that UML state machines are complete in the sense that they have a transition triggered 
by each of the operations of their class diagram. This completeness is due to the presence of 
implicit transitions realising the behaviour of UML state machines on unspecified reception, 
see Section 2.1.2.2. Implicit state machine transitions are treated in the same way as explicit 
state machine transitions in the generation of the simulation API by the Umlaut simulator. 

The granularity of transitions of the LTS which can be built using the simulation API 
generated by the current Umlaut simulator, together with the suppositions concerning passive 
and active objects, have significant consequences on the style of UML model which can be 
used for test synthesis. For example, if the returned value of a call from an external actor to 
the model is needed for the test, this call cannot be modelled as a synchronous call and must 
be modelled as two asynchronous calls, as mentioned in Section 2.1.2.7. 

2.3.3 The need for a closed specification 
Recall that the system can receive stimulation from its environment and the external actors are 
modelled as active objects that can send messages to objects (either passive or active) residing 
in the system, see Section 2.1.2.1. A purely reactive system will not have any spontaneous 
behaviour if it is not sent any stimulus by the environment. To simulate such a system 
exhaustively, one must also simulate an environment able to send the system any acceptable 
input. Therefore, the system must be closed. In the UML models accepted by the Umlaut 
simulator, the system is closed by providing the external actors with active-object state 
machines that send input to the system and receive output from it. 

As stated in Section 2.1.2.2, the UML state machine behaviour on unspecified reception 
means that transitions with an empty action expression need not be explicitly specified. This 
may often be the case for external actor state machines. However, for reasons of clarity, it is 
not necessarily a recommendable practice to omit these transitions. 

A common way to reduce the state-explosion problem arising due to modelling concurrency 
through interleaving, reducing unwanted interleavings when performing exhaustive 
simulation or model-checking with a simulator such as the Umlaut simulator, is to assume that 
the environment is “reasonable”. A reasonable environment sends stimuli to the system only 
when it is unable to continue execution without further input. Ideally, the tool would allow a 
choice of whether or not the “reasonable” environment assumption is to be used, when 
generating the simulation API. 
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2.3.3.1 CURRENT PROTOTYPE: IMPLEMENTATION NOTES 
The reasonable environment is not yet implemented in the prototype. However, the size of the 
queues used in the communication between the system and its environment (the actors) is 
parameterisable; in fact, the parameterisation applies to all active object queues, see Section 
2.3.6. The implementation is such that an LTS transition in which an actor sends an 
invocation to a queue which is full will not be enabled. With this implementation, restricting 
the size of the communication queues between the system and the external actors limits the 
possible interleavings to some extent and, at least as far as actor-to-system invocations are 
concerned, cannot lead to deadlock if the guidelines for specifying actor state machines given 
in Section 2.1.2.7 are followed. However, it is not as useful as the reasonable environment12. 

2.3.4 Transitions with no trigger 
Many transformations based on the state pattern do not take into account transitions which 
have no trigger. As already mentioned, there are only two cases to consider since passive-
object triggerless transitions are prohibited (and if used, will cause the state-machine to block 
in the current implementation). 

The simplest case is the unguarded, or spontaneous, transitions of active objects. If the current 
state of an active-object state machine has such an outgoing transition, a corresponding LTS 
transition is always generated. Such transitions commonly occur in the state machines of the 
external actors. In the case of guarded transitions, if the current state of an active-object state 
machine has such an outgoing transition, an LTS transition is generated if the guard evaluates 
to true. 

2.3.4.1 CURRENT PROTOTYPE: IMPLEMENTATION NOTES 
In the current prototype, guards on triggerless active-object transitions are not taken into 
account (they are always considered true). They are treated as spontaneous transitions and are 
thus enabled and can be executed even when their guard is not verified. This problem can 
sometime be avoided without the actor state machine becoming too cumbersome by using 
extra control states to represent the different values of the guards which can affect transitions. 

2.3.5 Labels of the derived LTS transitions 
The label of an LTS transition contains a representation of the UML actions which are 
executed on moving from the source “stable” configuration to the target “stable” 
configuration. The labelling function used by the Umlaut simulator is chosen to be as 
meaningful as possible since it not only dictates the labels on the transitions of the test cases 
which are the output of the test synthesis method, but also dictates the labels that must be used 
in the test objectives. The test synthesis needs to be able to match the labels on the transitions 
of the test objective LTS (which may include regular expressions) with those on the 
transitions of the system LTS. 

The format of the labels generated by the Umlaut simulator is as follows: 

1. Firing of an active-object state-machine transition triggered by reception of an 
asynchronous invocation: 
The LTS transition generated for 

                                                 
12 In test synthesis, the TGV option –outprior has an effect which is similar to that of a reasonable 
environment 
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• the reception at the active object <receiver> of an asynchronous invocation, with 
parameter values <val1>,…, <valn>, of the operation <opname>, 

• the execution of the action expression of the corresponding state machine transition, 
• the consequent execution of the action expression of any other state-machine 

transitions contained in the same simulation step, 
is labelled: 

<receiver>?<opname>(<val1>,… ,<valn>)

Notice that, as is the usual case in OO systems, on reception of an asynchronous 
invocation, there is no knowledge of the identity of the sender. This point is of some 
importance, see Sections 2.4.1, 3.4.2, 4.3.1 and 5.4.2. 

2. Firing of an active-object state machine transition with no trigger 
The LTS transition generated for 
• the execution of the action expression having the Umlaut action language textual 

description <action_expression_text> of the state-machine transition of the active 
object <sender> 

• the consequent execution of the action expression of any other state-machine 
transitions contained in the same simulation step 

is labelled: 
<sender>!<action_expression_text> 

The text of the action expression is copied as-is, so that any variables involved in it are not 
instantiated with their actual values. Whether or not the transition is guarded, the guard 
does not figure in the transition label (furthermore, as already stated in Section 2.3.4, in 
the current implementation, the guard is assumed to be true). 
In particular, if the action expression comprises a single asynchronous invocation of the 
operation <opname> belonging to the object playing the role <receiver_role> (at the 
other end of a link), with parameters <param1>,…, <paramn>, the transition label will 
have the following simple syntax: 

<sender>!<receiver_role>.<opname>(<param1>,… ,<paramn>) 

If the guidelines concerning active-object state machines given in Section 2.1.2.6 are 
followed, all LTS transitions corresponding to triggerless transitions of active objects will be 
labelled by the second type of label. Furthermore, due to the fact that synchronous invocations 
from actors to the system are not implemented, the UML-action described by the label is the 
only one executed on that LTS transition. In test synthesis, this property of the labels of LTS 
transitions generated from triggerless transitions in actor state machines greatly facilitates the 
specification of test objectives, see Sections 3.2.2 and 3.2.3. 

The grammar for the Aldebaran-format representation [FerGarKer96] of the test objective 
LTS, and of the test case IOLTS, used in system test synthesis with Umlaut/TGV – including 
the grammar for the transition labels – is given in Appendix A. 

2.3.5.1 TREATMENT OF DYNAMICALLY CREATED OBJECTS 
An internal representation is used for the names of dynamically-created objects (that is, those 
not present in the initial state) appearing in the labels of the derived LTS. This internal 
representation is based on a root name which is the name of the class of the object.  

Currently, objects passed as parameters in invocations are not flattened, in the sense that the 
value of their attributes does not appear on the transition label. Consequently, in test 
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synthesis, the value of attributes of objects passed as parameters cannot be used in test 
objectives and will not appear in the labels of a synthesized test case. 

2.3.5.2 CURRENT PROTOTYPE: IMPLEMENTATION NOTES 
Thorough testing of the prototype on models involving dynamic creation of objects has 
revealed weaknesses which are of some interest, since the use of simulation techniques in the 
context of dynamic creation is a field which has not been explored to any great extent. One of 
these weaknesses, namely that concerning the implementation of the state comparison 
function, has already been mentioned in Section 2.3.1.1. 

The main weakness of the current implementation in this regard concerns the naming of 
dynamically-created objects. The algorithm currently used leads to the name of one and the 
same dynamically-created object changing from global state to global state. In the case where 
none of the LTS transitions differ only in that the actions used to label them refer to truly 
different dynamically-created objects of the same class, this unintended feature simply creates 
unwanted non-determinism. In the case where two or more LTS transitions differ only in that 
the actions used to label them refer to truly different dynamically-created objects of the same 
class, the possibility of distinguishing the labels on these transitions is lost and the generated 
LTS is therefore incorrect. 

When the simulator is used with the TGV tool, the unwanted non-determinism of the former 
case can be removed by using the renaming option of the tool, –rename, where the renaming 
options are usually specified in a file with suffix .rename. Each label which involves a 
dynamically-created object and which appears on a external transition must be renamed to a 
similar label by substituting a given string for the name of all dynamically-created objects of 
the same class. 

2.3.6 Parameterisation of active-object queue sizes 
In the Umlaut simulator, the size of the queues of the active objects can be parameterised. 
This is done by changing the value returned by the message_queue_capacity feature of the 
active_state_machine class13. The queue size affects the simulation in the following manner: 
if the execution of a transition is found to increase the size of any of the active-object queues 
beyond the specified limit, this transition is not enabled. 

While this policy is clearly useful to restrict the interleaving and the size of the corresponding 
LTS, it should be realised that it may cause deadlocks. However, such deadlocks are not the 
result of a poorly-implemented queue-size restriction but only occur when the need for a 
larger queue size is an essential part of the specification. For example, if the queue size is set 
to one and the only transition that could be enabled contains two asynchronous invocations to 
the same active object, this transition will not be enabled (unless the maximum queue size is 
increased to two) and a deadlock will result.  

2.3.7 Auto-invocation and attribute access 
Auto-invocations by active objects are not treated like other invocations in the sense that they 
do not lead to an event being put in the event queue of the active object. Even though this 
means that the auto-invocation is dealt with as if it were synchronous, like other operations in 
active objects the auto-invoked operation must still be asynchronous (i.e. no return value) 
since it could also be invoked by other objects. Auto-invocations by passive objects are not 
                                                 
13 Contained in the file $UMLAUT_ROOT/products/Simulator/rts/active_state_machine.e. 
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considered to generate state-machine events (otherwise, for synchronous invocations, run-to-
completion semantics means that such a situation causes a deadlock). 

If the guidelines for specifying actor state machines of Section 2.1.2.7 are followed, most 
actor auto-invocations trigger a transition whose action expression contains a single 
invocation of a system operation. Furthermore, the atomicity of the LTS generated by Umlaut 
means that, since there is no intermediate queue, a single LTS transition is generated for the 
auto-invocation together with the consequent system invocation. The naming convention 
given in the guidelines then ensures that the label of this LTS transition, generated according 
to the rules of Section 2.3.5, adequately describes both the auto-invocation and the consequent 
system operation invocation (since they share the same name). 

Attribute access is rewritten using set and get features. An attribute set is an asynchronous 
operation while an attribute get is synchronous. Therefore, a policy which is coherent with the 
treatment of active-object auto-invocations is to only allow access to active object attributes 
by the objects themselves. It may be possible to extend this implementation allowing 
associated passive objects to access an active object’s attributes. 

2.3.7.1 CURRENT PROTOTYPE: IMPLEMENTATION NOTES 
In the current implementation an attribute read, i.e. an attribute get, of an active object, even 
by the object itself, causes a simulation error or a deadlock in simulation. The explanation 
would seem to be that attribute gets, even those invoked by the object itself, are not treated 
synchronously and are simply put in the objects event queue. 

A work-around for this problem is to move such attributes into associated passive objects of 
the system. 

2.4 From LTS to IOLTS 

The division of the actions of the alphabet of an LTS into external and internal, and the 
division of the external actions into inputs and outputs is what distinguishes an IOLTS from 
an LTS (the role of the function ℵ in the definition of IOLTS of Section 1.2.2.2). When used 
in testing, tester outputs will correspond to the SUT inputs and tester inputs will correspond to 
the SUT outputs. The information concerning which actions are internal, and that concerning 
which of the external actions are inputs and which are outputs, is provided to the TGV tool 
via the command line options –hide and –io, respectively, conventionally in files with 
suffixes .hide and .io respectively 

Defining the function ℵ on the set of Σ-actions of the LTS generated by the Umlaut simulator 
is not completely obvious, firstly, due to the atomicity of the transitions of the LTS generated 
by Umlaut, see Section 2.3.2, and secondly, due to the need to relate the synchronous 
communication architecture required by TGV to the communication architecture assumed by 
Umlaut. 

In the system testing case, these problems are dealt with jointly as follows: 
• by imposing guidelines on the specification of the external actor state machines, see 

Section 2.1.2. 
• by considering the communication queues of the external actors and of the system active 

objects that communicate with them to be inside the SUT boundary, see below. 
With these assumptions, the information defining the function ℵ can be derived automatically 
from the system specification.  
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2.4.1 The SUT boundary and the restriction to system testing  
In component testing, apart from the Component Under Test (CUT), the SUT may include 
other components that are considered to be correct; if there are no such components, the CUT 
and the SUT coincide. Though the test synthesis algorithms only use the notion of SUT, this 
does not mean that the test synthesis assumes the SUT and CUT coincide. The CUT will play 
a role in the choice of test objectives and in the interpretation of test verdicts, and must be the 
only component of the SUT which is not presupposed to be correct. 

Given a specification of a system, ideally, we would like to be able to choose the boundaries 
of the SUT to be those of a given component of any size within the specified system. 
However, the labelling of the LTS would need to be based on a semantics which is more 
discriminating than that of a usual OO programming language, in order for an active object 
receive event to contain information about the sending instance. 

2.4.1.1 RESTRICTION TO SYSTEM TESTING DUE TO CURRENT UMLAUT IMPLEMENTATION 
With regard to the labelling function in the Umlaut simulator (see Section 2.3.5), the 
semantics used is no finer than that of the language used to implement it, i.e. Eiffel. Thus, 
using the LTS generated by the Umlaut simulator, it is not always possible to know whether a 
receive event on a component outside the black box is that of a message sent from inside the 
black box or from outside it. 

In the case where the SUT is chosen to be the whole specified system, any reception by 
external actors of an invocation sent by another object must have been sent from inside the 
system, since UML does not allow any communication between external actors. Thus, with 
the current labelling function (and in absence of a component model allowing the description 
of environmental dependencies and corresponding connections between ports in UML 1.4), 
Umlaut/TGV is only suitable for system testing. We will therefore use the terms system and 
SUT interchangeably in the rest of this section. 

Currently, then, synthesis of test cases for an SUT which is only a part of the specified system 
must be done by creating a special-purpose test specification in which this SUT is the entire 
system specified, that is, a specification composed of the part of the original system one 
wishes to test and external actors (including their state machines) interacting with it, so as to 
ensure that communication between entities external to the SUT is not modelled. 

2.4.1.2 RESTRICTION TO SYSTEM TESTING DUE TO CURRENT TGV IMPLEMENTATION 
The above paragraphs deal with the problems with trying to use an LTS generated by the 
current implementation of the Umlaut simulator for test synthesis of general component test 
cases rather than system test cases. However, even if the required information was passed on 
by the Umlaut simulator to the test synthesis tool, this tool would also need to be modified in 
order to deal with this information. The definition of IOLTS used does not contemplate 
actions which are internal to the SUT environment. 

As stated above, restricting to system testing ensures that there are no communications 
between components of this environment, i.e. the actors. In a test case, these communications 
would be test coordination messages between the components of the tester. This restriction, 
imposed due to the current Umlaut simulator implementation is then almost enough to ensure 
also that test synthesis can be performed satisfactorily with TGV using the simulation API 
generated by Umlaut. However, auto-invocations on SUT environment components are still 
possible, even in the system testing case. Indeed, the guidelines of Section 2.1.2.7 practically 
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ensure that they will be used. Inevitably, then, the current treatment of auto-invocations by 
TGV is not satisfactory; see the next section for details.  

2.4.2  Definition of the SUT boundary in test synthesis with Umlaut/TGV 
In a test case, the tester plays the role of the SUT environment. In system testing, the SUT is 
the entire system and the SUT environment is constituted by the external actors. 

In the semantic model underlying the test synthesis algorithms, communication between the 
tester and the system is synchronous in the sense of CCS [Mil89], CSP [Hoa85], etc., i.e. 
communication actions are shared by the two communicating parties; in fact, an input of one 
of the parties is executed jointly with an output of the other party. The communications 
between the SUT and its environment are synchronous actions in this sense, and define the 
boundary of the black-box for the system test synthesis. In fact, for the TGV tool, the black-
box used for the testing is defined by simply listing either the external actions or the internal 
actions. As already stated, TGV assumes that all external actions are on the system boundary, 
i.e. that they are communication actions which are shared between the SUT and its 
environment14. 

Due to the atomicity of the LTS transitions generated by Umlaut, ensuring that the labels on 
the transitions of this LTS are of the required form for test synthesis is not immediately 
obvious, even for the drastically reduced set of admissible test objectives discussed in Section 
3.2.2. In the rest of this section, we investigate the compatibility of the Umlaut-generated 
labels with the test synthesis method. 

In the semantics used by the Umlaut simulator, the invocation of an operation of a system 
environment object (an actor) by an object of the system is performed asynchronously via a 
FIFO queue (one queue per object). Similarly for the invocation of an operation of an active 
object of the system by the system environment. See Section 2.3 for more details. These 
queues can be thought of as modelling the communication medium.  A notion effective SUT 
for IOLTS-based test synthesis can be defined as being composed of the SUT together with 
this communication medium. 

2.4.2.1 ΣΣΣΣ-ACTIONS ON THE SUT BOUNDARY: SUT OUTPUTS 
In a usual synchronous-communication model (in the CCS sense), an asynchronous 
invocation passing via a queue such as that from an active system object O to an external 
actor A would be composed of two atomic actions, one labelling the emission event (O 
placing the event in A’s event queue) and one labelling the reception event (A removing an 
event from its event queue). However, in the Umlaut simulator semantics, though one LTS 
transition is generated for the reception event, the emission event may be part of an LTS 
transition involving many other events, occurring on many different objects. 

This does not create any difficulties in defining the SUT boundary, however, if we treat the 
external actor queue as being inside this boundary. That is, suppose an event in the input 
queue of an external actor corresponds to an asynchronous invocation of an operation of that 
actor by a system object. We interpret the removal of this event from the input queue of that 
actor as an action shared by the SUT and its environment that the SUT views as an output. 

                                                 
14 With the rules defined here, this leads to auto-invocations of actor state-machines being treated as system 
inputs! 
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2.4.2.2 ΣΣΣΣ-ACTIONS ON THE SUT BOUNDARY: SUT INPUTS 
In a usual synchronous-communication model (in the CCS sense), an asynchronous 
invocation passing via a queue such as that from an external actor A to an active system 
object O is modelled as two atomic actions: one labelling the emission event (A placing the 
event in O’s event queue) and one labelling the reception event (O removing the event from 
its event queue). In the Umlaut simulator semantics, one LTS transition is generated for each 
of these two events. 

To define the SUT boundary for the test synthesis, we simply treat the active system object 
queue as being inside this boundary. That is, suppose an event in the input queue of an active 
object of the system corresponds to an asynchronous invocation of an operation of that object 
by an external actor. We interpret the placing of this event in the input queue of that active 
object of the system as an action shared by the SUT and its environment that the SUT views 
as an input. 

In the Umlaut simulator semantics, a synchronous (in the OO sense) or asynchronous 
invocation from an external actor to a passive system object gives rise to a single LTS 
transition, since there is no intermediate queue. The label of this LTS transition can be 
directly considered to be the action shared by the SUT and its environment that the SUT 
views as an input. As regards communications in the reverse direction (i.e. from the system to 
an external actor) synchronous (in the OO sense) invocations to external actors are not 
allowed since actors are active objects and, due to the atomicity of transitions, synchronous 
(in the OO sense) return messages are never visible. Such communications do not therefore 
need to be considered here. 

2.4.2.3 IMPORTANCE OF THE MODELLING GUIDELINES FOR ACTOR STATE-MACHINES 
Regarding actor-to-system invocations, we have assumed here that each such invocation is 
contained in an action expression of a separate triggerless transition or a transition invoked by 
an auto-invocation (thus also assuming that sytem-to-actor invocations never trigger actor-to-
system invocations). This will be the case if the guidelines for specifying actor state machines 
of Section 2.1.2.7 are followed. These guidelines are given in order to generate transition 
systems which are amenable to analysis and optimal for test synthesis. 

If these guidelines are not followed and multiple actor-to-system invocations are performed in 
the action expression of a triggerless transition, the corresponding SUT-input action 
comprises the placing of events in the input queues of several active objects of the system, 
and possibly also the invocation of operations of several passive objects of the system. The 
situation is even worse if an actor-to-system invocation is performed in the action expression 
of a transition triggered by a system-to-actor invocation. In this case, a single LTS transition 
labelled as an SUT-output action will include events which we would like to label as SUT-
input actions and the usefulness of the test synthesis becomes questionable. 

With the atomicity of the LTS generated by Umlaut and the rules given below for defining the 
external actions and for dividing them into inputs and outputs, LTS transitions labelled by 
actor auto-invocations are considered to be system inputs. Since the body of the auto-invoked 
operation will usually contain an invocation to the system, this is as required. Occasionally, 
however, the body of the operation will not contain an invocation to the system (e.g. object 
creation and initialisation). Such cases are not contemplated by the current test synthesis tool 
and according to the rules defined below will incorrectly be considered system inputs. 
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2.4.2.4 SYNTAX OF THE .HIDE FILE FOR SYSTEM TEST SYNTHESIS USING UMLAUT/TGV 
The syntax for the .hide file required by TGV for an LTS derived from a UML specification 
with external actors <actor1>,… , <actorn> by the Umlaut simulator has the following 
form:  

hide all but
<actor1>?.*
<actor1>!.*
…
<actorn>?.*
<actorn>!.*

A file called <spec_name>.hide with this syntax is generated from the UML specification 
contained in the file <spec_name>.uml by the Umlaut simulator. 

2.4.2.5 CURRENT PROTOTYPE: IMPLEMENTATION NOTES 
As stated in Section 2.1.2.7, the possibility of external actors synchronously (in the OO sense) 
invoking operations of the SUT is not implemented in the prototype so all communications 
between external actors and the SUT (that is, in both directions) are asynchronous via FIFO 
queues, eliminating one of the types of SUT input discussed above 

2.4.3 Partitioning the external actions in test synthesis with Umlaut/TGV 
The external actions (= those on the SUT boundary, with the current implementation) must 
now be divided into inputs and outputs.  

The transitions defined as SUT-input actions for TGV (to be viewed as tester-output actions) 
are those derived from the emissions of the external actors. In the case where the target system 
object is an active object, from the point of view of the effective SUT – which includes the 
event queue of the target active object – an actor emission is a reception from the external 
actor by the target object’s event queue. If the guidelines of Section 2.1.2.7 concerning actor 
state-machines are followed, for each actor emission, there will be a corresponding LTS 
transition labelled by this emission, since such an LTS transition is derived from each external 
actor state-machine transition without a trigger. 

The transitions defined as SUT-output actions for TGV (to be viewed as tester-input actions) 
are those derived from the receptions of the external actors. From the point of view of the 
effective SUT – which includes the event queues of the actors – such an actor reception is an 
emission by the external actor event queue to the external actor. An LTS transition labelled by 
such a reception action is derived from each external actor state-machine transition with a 
trigger (discounting auto-invoked transitions). 

2.4.3.1 SYNTAX OF THE .IO FILE FOR SYSTEM TEST SYNTHESIS USING UMLAUT/TGV 
Therefore, the following generic syntax can be used for the .io file required by TGV for any 
LTS derived from a UML specification by Umlaut: 
 input

.*!.*

The syntax of the <spec_name>.io file generated by the UML simulator from the UML 
specification contained in file <spec_name>.uml is more verbose but equivalent: 
 input

<actor1>!.*
…



Derivation of LTS from UML model  241 

 

<actorn>!.*

2.5 “Umlaut-simulatable” model for the ATC application 

The class diagram of the ATC application is shown in Fig. 6-4. The system consists of four 
classes: Flight and FlightPlan, used to store flight data, FlightPlanManager, and 
ControllerWorkingPosition, which control the system and interact with the environment (the 
thick borders on the class diagram indicate that the latter two classes are active, that is, objects 
of these classes have their own flow of control). 

 

Figure 6-4: The class diagram of the ATC application example. 

In the ATC application, the initial configuration shows that the deployed system knows of two 
flights (each with an associated flight plan), initially located out of the area managed by the 
ATC, see Fig. 6-5. An example of a state machine from the ATC application – that of the 
(passive) class FlightPlan – is shown in Fig. 6-6. 
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Figure 6-5: The object diagram of the ATC application example. 
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Figure 6-6: The state machine of the FlightPlan class of the ATC application example.  

2.6 Formal specification derivation: possible enhancements 

2.6.1 Atomicity of derived LTS transitions 
The most obvious possible enhancement to the simulation API concerns the atomicity of the 
transitions. By taking into account the stack of nested calls in the notion of global state, it 
would be possible to define a finer granularity of transitions, in which an LTS transition is 
generated for each inter-object communication event (perhaps a send and receive event to a 
passive object could be combined in the same transition). This would greatly improve all uses 
of the Umlaut simulator (interactive simulation, test synthesis, etc.). With the current 
implementation, it would imply making the Eiffel call stack explicit. 

However, a finer granularity of transitions would seem to oblige the use of a notion of global 
state which is “unstable”, i.e. in which some objects of the system are between control states 
of their associated state machines. One way of avoiding this would be to generate a transition 
system of macro-transitions, like those of the Umlaut simulator, which are composed of 
micro-transitions, one for each inter-object communication event. The atomicity of executed 
transitions can be defined in terms of the macro-transition notion (so the system is never in an 
“unstable” state), while the visibility (and therefore the use in test objectives and the 
synthesised test cases) can be that of the micro-transition. An approach similar to this is used 
in the Agedis project [Agedis]. 

2.6.2 Component testing and SUT-environment internal actions 
The labels on an LTS transitions corresponding to the firing of an active-object transition 
triggered by the reception of an asynchronous invocation do not contain information about the 
identity of the sender. If a finer semantics was used in the Umlaut simulator than that of the 
language used to implement it, i.e. Eiffel, the labels could contain such information. If 
coupled with an extension of TGV allowing it to treat external Σ-actions which are neither 
SUT inputs nor SUT outputs, it would enable the test synthesis method used here to be used 
for general component testing and not just system testing, as mentioned in Section 2.4.1. 

Test synthesis for general component testing would also need to take into account 
synchronous invocations from the SUT environment to the SUT and from the SUT to the 
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SUT environment. As a first step, the current implementation could be completed to allow 
actors to send synchronous invocations to the system and then extended to allow passive-
object actors that can receive synchronous invocations from it. 

The definition of SUT boundary would be derived in function of the chosen component. 
Furthermore, the enhancement to the atomicity of the transitions proposed in Section 2.6.1 
would make the present enhancement considerably more workable. 

2.6.3 Storage of global states 
The storage of global states, currently done using deep copies, could also be improved. The 
UML-actions executed when a transition is fired usually have a very localised impact on the 
system (e.g. changing the local state of a single object). While local states and queue contents 
are quite volatile, in general the structure of object inter-connections evolves very slowly. In 
many cases then, a significantly reduced footprint could be achieved by factoring out the 
“stable” information from successive configurations. However, the calculation of the “stable” 
information can be difficult without restrictions on included code, such as the Eiffel code in 
the action expressions in the current Umlaut implementation. 

2.6.4 Dynamically-created objects 
The flattening, in transition labels, of dynamically-created objects passed as parameters would 
enhance the usability of the generated LTS as mentioned in Section 2.3.5. 
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3 Derivation of LTS from scenario-based test objective 

In this section we briefly mention some important points concerning the O-TeLa language and 
then show how an LTS representation of a test objective, as used by the IOLTS-based test 
synthesis, is derived from a scenario-based representation in the form of O-TeLa scenario 
structures. Fig. 6-7 illustrates the part of the method that is presented in this section. We then 
show how the formal objective derivation proceeds for the ATC application example before 
giving some possible enhancements to this part of the method. 

Formal objective derivation

LTS test objective

O-TeLa test objective

XMI import

 

Figure 6-7: Formal objective derivation part of the method. 

Our work has mainly been concerned with the test description language TeLa. The work on a 
more general approach to O-TeLa test objectives than that implemented in the prototype of 
the COTE project [JarPic01] is therefore less advanced than the equivalent work on TeLa. For 
this reason also, in this section, when dealing with aspects which are common to TeLa and O-
TeLa, we refer to Section 5. 

3.1 The O-TeLa language 

As stated in Section 1.2.3.5, in the general case, scenario-based test objectives are described 
by two sets of scenario structures: accept scenario structures and reject scenario structures. 
The scenarios making up the test case scenario structure are those that are in correspondence 
with each of the accept scenario structures and none of the reject scenario structures of the 
test objective. Both types of scenario structures can be specified using a notation similar to 
TeLa [PicJarHeu01], denoted O-TeLa. In the general case, like TeLa, O-TeLa is based on 
UML sequence diagrams but its semantics is given in terms of partial orders of events rather 
than of messages, and constructs are added to give a greater expressive power. 

In test synthesis, the labels on the arrows in O-TeLa sequence diagrams are to be matched 
with the labels on the transitions of the LTS generated from the UML specification. This is 
somewhat delicate, particularly in the case of dynamically-created objects, i.e. those that do 
not exist in the initial state. The use of the O-TeLa language is therefore heavily influenced by 
the structure of the LTS generated by the Umlaut simulator. 

3.1.1 Constructs of O-TeLa used to represent LTS test objectives 
Our work has mainly been concerned with the test description language TeLa. For this reason, 
in describing the use of the O-TeLa constructs, here do so by analogy with TeLa. 



Derivation of LTS from scenario-based test objective  245 

 

We can allow different O-TeLa representations of the same test objective. The allowable 
representations are similar to those used for the TeLa representation of IOLTS discussed in 
Section 5, substituting “SUT environment” for “tester”, except that in the general case, O-
TeLa diagrams show not only SUT-environment structure but also SUT structure. Unlike for 
the TeLa representation of IOLTSs shown in Fig. 6-18, O-TeLa diagrams involving multiple 
SUT lifelines and/or multiple SUT environment lifelines can use the usual partial-order of 
events semantics. However, in the translation of the scenario-based test objectives to LTS, the 
distinction between choice and concurrency is lost. 

3.1.2 Current prototype: implementation notes 
As stated in the definition of scenario-based test objectives of Section 2.2.4, the O-TeLa 
language of the prototype uses only a single accept scenario which may be annotated with 
reject messages. This simplified syntax and semantics of the O-TeLa language is that which 
was implemented in the COTE project [JarPic01] along with the translation to LTSs of 
scenario structures described in it. 

3.2 From O-TeLa expression to LTS 

3.2.1 O-TeLa sequence diagram lifelines 
As in TeLa (see Section 5.2.1), lifelines represent components in a hierarchical component 
model. The hierarchy always contains at least two levels, namely, that defined by the objects 
(the lowest level components) and that defined by the two components: SUT and SUT 
environment. 

3.2.2 Atomicity in O-TeLa scenarios 
Calculation of the synchronous product in the test synthesis proceeds by matching the labels 
of the transitions of the LTS representing the test objective with those of the LTS representing 
the UML specification. The atomicity of the transitions in the LTS generated by Umlaut, see 
Section 2.3.2, and the labels used for these transitions, see Section 2.3.5, are thus of crucial 
importance for the test objectives. The LTS which is the target of the translation from the 
scenario-based test objectives must have the same atomicity and labelling scheme as the LTS 
generated by the Umlaut simulator. 

Recall that in the general presentation of the method, we wish to parameterise the test 
synthesis with the SUT boundary in order to be able to represent SUT-internal actions in test 
objectives. 

In the general case, if we are to take advantage of the full flexibility of TGV and parameterise 
the test synthesis with the SUT boundary, SUT-internal actions must also have the same 
atomicity in the two LTSs. However, as explained in Section 2.3.2, in the general case, one 
transition of the UML specification LTS subsumes many UML-actions, whereas the atomicity 
of the Π-actions of the test objective scenario structures is close to that of the UML-actions. 
Therefore, the need to have the same atomicity between the two LTSs necessarily implies 
many-to-one relations between the Π-actions of the scenario-based test objective and the Σ-
actions of the corresponding LTS test objective. 
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3.2.2.1 SIMPLIFIED TEST OBJECTIVE LTSS 
Though it would be possible to use scenario-based test objectives with such a complex 
translation scheme, it would certainly not be practical since such use would require a thorough 
knowledge of the UML specification, a very good understanding of the atomicity assumptions 
of the Umlaut simulator, and special syntactic constructions in the O-TeLa sequence diagrams 
(perhaps based on focus bars). However, if we restrict to test objective LTSs which contain 
only transitions labelled by external actor emissions and receptions, the guidelines concerning 
external-actor state machines of Section 2.1.2.7 (and the fact that synchronous invocations by 
external actors are not implemented) can, in most cases (but see Section 3.2.4), ensure a one-
to-one relationship between Π-actions of the test objective scenario structures, Σ-actions of 
the corresponding test objective LTS and Σ-actions of the UML specification LTS. 
Consequently, despite the flexibility which the test synthesis method allows with regard to 
representing SUT-internal actions in test objectives, we drastically simplify the test synthesis 
by assuming that test objective LTSs only contain transitions labelled by external actor 
emissions and receptions, these being the external Σ-actions defined for system test synthesis 
in Section 2.4. We will then generate one LTS transition for each Π-action describing an 
emission from an external actor of an invocation to the SUT and one LTS transition for each 
Π-action describing the reception by an external actor of an invocation from the SUT. That is 
to say that only the events on SUT-environment lifelines will give rise to transitions in the test 
objective LTS. 

3.2.2.2 CONFIRMING THE EXACT SYNTAX OF THE UML SPECIFICATION ΣΣΣΣ-ACTIONS 
When defining test objectives, it may be helpful to use the other CADP tools [FerGarKer96] 
to interactively explore the LTS of the UML specification (using the xsimulator or ocis tools), 
or to exhaustively construct this LTS (using the generator tool). In particular, this technique 
can be used to confirm the exact syntax of the transition labels. 

3.2.3 The SUT boundary in O-TeLa scenarios 
After the simplifications of Section 3.2.2, LTS transitions need only be derived from the 
events which are to be translated to transitions labelled by labelled by Σ-actions which are 
visible in the synthesized tests, i.e. external Σ-actions. 
The SUT boundary for use with TGV/Umlaut is defined in Section 2.4.1. Concerning 
asynchronous invocations between the SUT and its environment, clearly, the events that 
should be translated to transitions labelled by SUT boundary Σ-actions involving such 
invocations are those on SUT environment lifelines that are receptions from, or emissions to, 
the SUT. In the current implementation, either there is a single SUT environment lifeline or 
there is a lifeline for each external actor. 

If we also wish to complete the current implementation and take into account synchronous 
invocations from the SUT environment to the SUT, even if we suppose that the corresponding 
send and receive event are indivisible in the sense that no other event can occur between them 
(c.f. the semantics of “interworkings”), we would inevitably lose the one-to-one 
correspondence between scenario Π-actions and LTS Σ-actions. However, in the interests of 
compatibility with the asynchronous invocation case, we could choose to view the event on 
the SUT environment lifeline as being the SUT boundary event. The label on the 
corresponding LTS transition would then derived from this Π-action.  
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In summary, the external Π-actions are those that label events occurring on SUT-environment 
lifelines. The Π-action SUT boundary is the set of Π-actions labelling events (send and 
receive) which occur on SUT environment lifelines and which are part of messages 
exchanged with the SUT. In fact, lifting the assumptions concerning external Σ-actions from 
the LTS level to the scenario level, we have that the current test synthesis method supposes 
that all Π-actions on the Π-action SUT boundary are communications with the SUT, see 
Section 3.2.4. 

3.2.4 SUT environment auto-invocations in O-TeLa scenarios 
Even in system testing, as has already been made clear, the assumption at the end of the last 
section does not hold. Furthermore, as stated in Section 2.4.1, the guidelines for specifying 
actor state machines of Section 2.1.2.7 practically guarantee that we will have to deal with 
such actions, since SUT environment (in system testing, actor) auto-invocations are external 
Π-actions which are not on the SUT-boundary. 

According to the definition of the SUT boundary and the division of the Σ-actions on this 
boundary into inputs and outputs, given in Sections 2.4.2 and 2.4.3, actor auto-invocations 
will be classified as SUT inputs. As mentioned in Section 2.4.2, if the guidelines for 
specifying actor state machines of Section 2.1.2.7 are followed, most auto-invocations trigger 
a transition whose action expression indeed contains a single invocation of an SUT operation, 
i.e. an SUT input. Furthermore, the atomicity of the LTS generated by Umlaut means that the 
auto-invocation and this system input will give rise to a single LTS transition. The naming 
convention given in the guidelines then ensures that the label on this LTS transition describes 
both the auto-invocation and the consequent system invocation since they share the same 
name.  

Describing the auto-invocation itself in test objective scenarios, or describing any processing 
the auto-invoked operation performs apart from the invocation of the SUT operation, should 
be avoided where possible. However, this may be impossible to avoid in the case where the 
action expression of the transition triggered by the auto-invocation contains no invocations 
itself, but is, nevertheless, important to the test objective. The label of the LTS transition 
derived from such an explicit auto-invocation using the name of the actor and the name of the 
actor operation auto-invoked must be that derived by the Umlaut simulator for this LTS 
transition, as defined in Section 2.3.5. 

In the usual case, the only aspect of the auto-invoked operation of interest to the test objective 
is the SUT invocation contained in its body. We would therefore like to represent only this 
SUT invocation rather than the auto-invocation which triggers it. As usual, the SUT 
invocation is represented in the test objective scenario as a message from the SUT 
environment to the SUT. The naming convention of the guidelines means that we can easily 
derive the label of the LTS transition from the name of the actor and the name of the system 
operation invoked (i.e. from the name of the send event) so that it coincides with the one 
derived by the Umlaut simulator for this LTS transition, as defined in Section 2.3.5. 

3.2.5 Deriving an LTS from a set of scenario structures 

3.2.5.1 GENERAL SCHEME FOR THE SCENARIO STRUCTURES TO LTS TRANSLATION 
First we derive an LTS from each scenario structure making up the test objective. From the: 

accept scenario structures {seqi
+}i∈I  we derive LTSs {Si

+}i∈I 
reject scenario structures {seqj

–}j∈J we derive LTSs {Sj
–}j∈J 
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where these LTSs are completed w.r.t. Σ, the alphabet of the application model, by loops in 
each state. 

We then derive a single LTS, TO, which is the LTS of the test objective. TO is defined as 
follows: 

TO  =  ∩i∈I Si
+  ∩  ¬ ∪j∈J Sj

– 
where negation denotes complement. The accepting states of TO are the so-called accept 
states and it is again completed w.r.t. Σ, but this time by transitions to the so-called reject 
states, rather than by loops. 

3.2.5.2 DERIVING AN LTS FROM A SINGLE SCENARIO STRUCTURE 
Deriving an LTS requires restrictions on the use of the scenario language. How much these 
restrictions can be loosened is still the subject of theoretical investigation. The compilation 
towards finite state automata raises several questions. In the intimately-related MSC case, 
from a theoretical point of view, it is known that we must restrict to bounded HMSCs 
[AluYan99], those in which loops without synchronisation are forbidden. To describe our test 
objectives, then, we need to define a sub-class of the O-TeLa language for which an efficient 
translation to finite state automata can be defined but which is, at the same time, sufficiently 
expressive. 

As mentioned in Section 3.2.2, we only wish to derive LTS transitions from the events on 
SUT environment lifelines. However, in the case where several lifelines are used for the SUT 
environment, ordering relations may be imposed on the events on these lifelines by message 
exchanges with the SUT. That is, the required LTS is obtained (at least in principle) in two 
stages: derivation of an LTS taking into account SUT lifelines followed by projection of the 
resulting LTS onto the SUT environment lifelines. This is analogous to the way the TeLa 
semantics is obtained by projection onto the tester lifelines. 

3.2.6 Component names in arrow labels 
The Σ-actions labelling the test objective LTS transitions must conform to those of the 
specification LTS generated by Umlaut, see Section 2.3.5. After dealing with the atomicity 
considerations and those concerning the SUT boundary, the remaining issue to be dealt with 
in the translation of Π-actions labelling test objective scenario events to Σ-actions labelling 
test objective LTS transitions concerns obtaining component names (in the current 
implementation, these are object names) as part of the Π-action names. In the current 
implementation, there are only two levels of components: that defined by the objects and that 
defined by the two components: SUT and the SUT environment. Here we define the rules for 
this two-level case. 

First suppose that only two lifelines are used in the test objective scenarios, one representing 
the SUT and the other representing the SUT environment. The label on an arrow representing 
an invocation emitted by the SUT environment and received by the SUT is prefixed by the 
emitting actor name and by the receiving SUT object name (separated by the “!” character). 
The label on an arrow representing an invocation emitted by the SUT and received by the 
SUT environment is prefixed by the receiving actor name. 

Next suppose that only one lifeline is used for the SUT but multiple lifelines are used for the 
SUT environment, one for each actor. The label on an arrow representing an invocation 
emitted by the SUT environment and received by the SUT is prefixed by the emitting actor 
name. The label on an arrow representing an invocation emitted by the SUT and received by 
the SUT environment is not prefixed by a component name. 
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Now suppose that only one lifeline is used for the SUT environment but multiple lifelines are 
used for the SUT, one for each SUT object. The label on an arrow representing an invocation 
emitted by the SUT environment and received by the SUT is prefixed by the emitting actor 
name. The label on an arrow representing an invocation emitted by the SUT and received by 
the SUT environment is prefixed by the receiving actor name. However, with the current 
implementation, the emitting SUT object name will not appear in the corresponding Σ-action, 
see Section 2.4.1. 

Finally suppose that multiple lifelines are used for the SUT and for the SUT environment, one 
for each object and one for each actor. In this case, none of the arrow labels is prefixed by a 
component name. However, in the case of an invocation emitted by the SUT and received by 
the SUT environment, with the current implementation, the emitting SUT object name will 
not appear in the corresponding Σ-action, see Section 2.4.1. 

3.3 A test objective for the ATC application 

In the ATC example, suppose we want to generate a test checking that flight number 0 will be 
correctly assumed (i.e. that the controller ctrl will be notified that the flight status is updated 
with the value 4) when the flight enters the ATC zone (i.e. when the radar ptg updates the 
flight position to true meaning “in zone”). This is described by the accept scenario 
structure, consisting of a single scenario, on the l.h.s. of Fig. 6-6. To help to produce a test 
case, we also specify that we are not interested in any of the events concerning flight number 
1. This is described by the reject scenario structure, consisting of a single scenario, on the 
r.h.s. of Fig. 6-8. 

notifyUpdateStatus(0, 4)

ATC Accept

ptg:PTGFacade ctrl:Controller

∗ (1, ∗)

ATC Reject

cwp.updateSystemTracks(0, true)

SUT ∗ ∗

 

Figure 6-8: A test objective for the ATC example (general case). 

From these scenarios we then derive the two LTSs shown in Fig. 6-9, where the loop 
transitions completing the LTSs w.r.t. the rest of the alphabet of the model in states other than 
the accept state are left implicit. 

0

1

2

ptg!cwp.updateSystemTracks(0, true)

ctrl?notifyUpdateStatus(0,4)

ACCEPT

  0

1

.*(1.*)

ACCEPT

 

Figure 6-9: Accept and reject LTSs derived from the test objective scenarios of Fig. 6-8. 
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The derivation of the reject LTS merits some clarification. As for the accept LTS, we only 
derive one transition, rather than two, from a message sent to the SUT from its environment 
(resp. received from the SUT by its environment), this transition being labelled by the sending 
action (resp. receiving action). However, we need only derive one transition in the case of any 
other message for which the tester can be the sender, such as the message sent to “any” object 
shown here. This is since the sending action of such a message is sufficient for use in pruning 
the graph. 

By taking the intersection of the accept LTS with the complement of the reject LTS and 
completing w.r.t. transitions to a reject state, we derive the following LTS for the test 
objective: 

0

1

2

3

ACCEPT

.*(1.*)

REFUSE

ptg !cwp.updateSystemTracks(0, true)

.*(1.*)

ctrl?notifyUpdateStatus(0,4)

 

Figure 6-10: LTS representing the test objective for the ATC example shown in Fig. 6-8. 

The loop transitions for the rest of the alphabet of the model in states other than the accept or 
reject state are again left implicit. Note that, while the LTSs accepted by TGV use regular 
expressions, the scenario structures are restricted to the more user-friendly wildcards in object 
names, operation names, and operation parameter names (though this may require more 
sequence diagrams than the use of regular expressions). 

Recall that since states contain no information in an LTS, a transition to an accept or reject 
state is actually modelled as a transition to a state in which the only possible transition is 
accept or reject, respectively. Note also that the current syntax for the reject states uses a 
transition named “REFUSE”, rather than a transition named “REJECT”.  

The Aldebaran format [FerGarKer96] for this test objective is as follows: 
des(0, 6, 4)
(0,"ptg!cwp.updateSystemTracks(0, true)",1)
(0,".*(1.*)", 3)
(1, "ctrl?notifyUpdateStatus(0,4)", 2)
(1, ".*(1.*)", 3)
(2, "ACCEPT", 2)
(3, "REFUSE", 3) 

The sending of the updateSystemTracks invocation by the ptg actor will be considered an 
input of the system and the reception of the notifyUpdateStatus by the ctrl actor will be 
considered an output of the system, see Section 2.4.2. We do not derive transitions for the 
consumption of the updateSystemTracks invocation by the SUT, nor for the emission of the 
notifyUpdateStatus invocation by the SUT (in fact, in the latter case, the current atomicity 
of the Umlaut simulator means that it would be problematic to do so, see Section 3.2.2). 
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3.4 Formal objective derivation: possible enhancements 

3.4.1 Atomicity in O-TeLa test objectives 
The enhancements proposed in Section 2.6.1 would allow greater flexibility in the test 
objectives. A change in the atomicity of the manipulated LTSs via the notion of macro and 
micro transition would enable test objective LTSs to use micro-transitions. Consequently, the 
method could then take full advantage of the flexibility offered by TGV by adding the 
possibility of including SUT-internal events in the test objective scenarios, since the relation 
between the Π-actions of the scenario representation and the Σ-actions of the LTS 
representation could be chosen to be one-to-one (or almost) even for SUT-internal actions. 

In addition to allowing SUT internal actions, a finer granularity in the LTS would also allow 
test objectives to contain nested invocations and synchronous invocation replies. 

3.4.2 Component testing and SUT-environment internal actions 
Component testing via the enhancements proposed in Sections 2.6.2 and 4.3.1 entails a more 
flexible notion of SUT boundary which would need to be reflected in the test objectives. 
Clearly, the atomicity enhancements of Section 2.6.1 and Section 3.4.1 would make the 
present enhancement more workable.  

3.4.3 Compositional approach to test objectives 
A compositional notion of test objective would be a valuable enhancement to the method. A 
promising approach which is under investigation [Tsc02] involves defining a boolean algebra 
of test objectives, in which each objective is composed of a positive and negative part. 
However, this necessarily involves a one-to-many correspondence between test objectives and 
test cases and the nature of a suitable such correspondence is not yet clear. 

3.4.4 On-the-fly treatment of test objectives 
The synchronous product of the specification with the overall LTS (or rather with the positive 
and negative parts of the individual LTSs) could be performed lazily, as could the derivation 
of an LTS from each of the scenario structures. This on-the-fly approach would also permit a 
greater expressiveness in the test objective scenario structures, particularly with respect to the 
use of loops. 
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4 Test synthesis from model LTS guided by objective LTS 

In this section, we give a brief overview of the TGV tool, its underlying theory and 
algorithms. TGV was developed jointly by IRISA and Verimag; more details can be found in 
[JarJér02]. Fig. 6-11 illustrates that part of the method that is presented in this section. We 
then show how the test synthesis proceeds for the ATC application example before giving 
some possible enhancements to this part of the method. 

LTS test objective

Test Synthesis
(on the fly)

IOLTS test case

LTS specification model
 via simulator API

visible actions (.hide)
inputs/outputs (.io)

 

Figure 6-11: Test synthesis part of the method. 

4.1 The test synthesis engine 

The test synthesis uses the TGV tool, see [JarJér02] or for a more detailed presentation 
[Jér02], based on the theory developed in [Tre96] and [Pha94] and using algorithmic 
techniques from [Tar72], but could also use other tools with similar properties. 

4.1.1 Inputs and outputs 
The inputs to the IOLTS-based test synthesis are, firstly, the following two elements: 
• A simulation API, which can be used to lazily construct the LTS representing the 

operational semantics of the specification of the entire system (including actors). 
• An LTS representing the test objective, which partially describes sequences of the 

specification. The LTS is completed w.r.t. Σ, the alphabet of the specification, by 
(implicit) loops in each state and the labels on its transitions may contain regular 
expressions. 

and, secondly, in order to define IOLTSs from the LTSs, the following two elements: 
• The specification of which Σ-actions are internal (conventionally in a file with the suffix 

.hide), thus defining the SUT boundary and possibly resulting in non-determinism. 
• The specification of which Σ-actions on the SUT boundary are inputs and which are 

outputs from the SUT point of view (conventionally in a file with suffix .io). 

The output is an IOLTS representing a test case, that is, a predefined set of interactions 
between the tester – assuming the role of the system environment – and the implementation. It 
is annotated with the test verdicts: 
• pass, on termination of executions which fulfil the test objective (i.e. those that lead to an 

accept state of the test objective LTS), 
• inconclusive, on termination of executions which do not fulfil the test objective but on 

which the behaviour is consistent with the specification (this verdict is derived as soon as 
possible); 
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The fail verdict is usually left implicit (on reception of any input not explicitly specified). 
Note that it is not related to the reject states. 

4.1.2 Method 
The test case is derived by exploring that part of the LTS of the specification which is selected 
by the test objective (the reject part of the objective plays a crucial role in this selection). This 
involves calculating the synchronous product of the two IOLTSs, calculating an equivalent 
deterministic IOLTS (after taking into account quiescence, see below) and extracting a test 
case as the mirror image of a particular type of controllable sub-graph of this “determinised” 
product and, finally, completing the input states with transitions to a fail state.  
The mirror operation simply interchanges inputs and outputs in order to move from a 
specification viewpoint to a tester viewpoint. A synthesised IOLTS is said to be controllable if 
none of its states has a controllability conflict; a state has a controllability conflict if it has 
more than one outgoing transition and one of these transitions is an emission (recall that all 
data is enumerated so we do not need to concern ourselves with whether guards are mutually 
exclusive or not). 

4.1.3 Theoretical basis 
This test case derivation is based on the following formal notion of conformance (known as 
ioco, see [Tre96]): an implementation conforms to a specification if it cannot produce outputs 
which are unexpected w.r.t. the specification, after executing a trace of observable actions 
which is allowed by the specification. In the theory, the absence of visible activity 
(quiescence) – resulting from deadlocks, livelocks or waiting for input – must be observable 
in order for it to be preserved in the determinisation and is therefore considered to be a 
particular type of output. In practice, such “outputs” are detected by timers. Infinite loops of 
observable actions can be dealt with using a timer which is global to the test case. 

The theory also assumes that an implementation (conformant or not) can never refuse an input 
and that in the general case, the set of possible inputs resp. outputs of an implementation is a 
superset of the set of inputs resp. outputs of the specification. All but the controllability part 
of the test synthesis algorithm is performed on-the-fly, that is, lazily with respect to the 
construction of the state graph. This enables the test synthesis algorithms to handle 
specifications of arbitrary size. 

The synthesis ensures essential properties on the synthesised test cases with respect to ioco. In 
particular test cases are sound or correct, that is, they reject only non-conformant 
implementations. The converse property, exhaustiveness, is unreachable in practice due to 
loops and to the fact that the tester does not control the SUT. Nevertheless, the test synthesis 
method itself can be guaranteed to be exhaustive, in the sense that for any non-conformant 
implementation, it is possible to synthesise a test case that may reject it (only “may” due to 
possible inconclusive verdicts arising from the fact that the tester does not control the SUT). 

4.2 Test case synthesis for the ATC application 

Feeding TGV with the test objective visualised in Fig. 6-8 and the LTS derived from the ATC 
UML specification using the following command (see the TGV user manual for an 
explanation of the TGV options): 

uml.open atc.uml tgv –io atc.io –hide atc.hide –unlock –tpprior \
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–outprior –output TO.aut TC.aut

we obtain the following IOLTS (here, in Aldebaran format [FerGarKer96]), describing the 
test case: 

des (0, 22, 21)
(0, "ptg!cwp.updateSystemTracks(0, true); OUTPUT", 1)
(1, "ccg!fpm.assume(0); OUTPUT", 2)
(2, "ccg!fpm.handOverRequest(0); OUTPUT", 3)
(3, "ctrl?notifyUpdateStatus(0,1); INPUT", 4)
(4, "ccg!fpm.assume(0); OUTPUT", 5)
(5, "ccg!fpm.handOverRequest(0); OUTPUT", 6)
(6, "ctrl!cwp.commandAssumeOrder(0); OUTPUT", 7)
(7, "ccg?notifyAssume(0); INPUT", 8)
(7, "ctrl?notifyUpdateStatus(0,2); INPUT", 9)
(8, "ctrl?notifyUpdateStatus(0,2); INPUT", 10)
(9, "ccg?notifyAssume(0); INPUT", 10)
(10, "ccg!fpm.assume(0); OUTPUT", 11)
(11, "ccg!fpm.handOverRequest(0); OUTPUT", 12)
(12, "ctrl!cwp.commandAssumeOrder(0); OUTPUT", 13)
(13, "ccg!fpm.assume(0); OUTPUT", 14)
(14, "ctrl!cwp.commandHandOver(0); OUTPUT", 15)
(15, "ccg?notifyHandOver(0); INPUT", 16)
(15, "ctrl?notifyUpdateStatus(0,3); INPUT", 17)
(16, "ctrl?notifyUpdateStatus(0,3); INPUT", 18)
(17, "ccg?notifyHandOver(0); INPUT", 18)
(18, "ccg!fpm.assume(0); OUTPUT", 19)
(19, "ctrl?notifyUpdateStatus(0,4); INPUT (PASS)", 20) 

This IOLTS is visualised in Fig. 6-12. Notice that the first and last transitions coincide with 
those of the test objective LTS. 

Such a test case could be executed by a tester on an implementation of the ATC model, as 
outlined in Section 5. For example, in the transition from state 2 to state 3, the tester sends a 
request for the flight 0 to be handed over (via the OUTPUT message handOverRequest). In 
reply, it waits for a notification of the update of the flight status to 1 (via the INPUT message 
notifyUpdateStatus). TGV reconstructs observable action sequences that lead the 
implementation to satisfy the test objective. However, it does not necessarily find the shortest 
sequences, since minimisation is impossible to achieve using on-the-fly algorithms. For 
instance, the transition from state 1 to state 2 leaves the system unchanged, and thus is not 
useful (but not harmful either). The concurrency in the system leads to the diamonds between 
states 7 and 10 and between states 15 and 18. To make the test case more readable, the 
transitions leading to a Fail verdict on unexpected input (of the tester) are left implicit. 
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ccg?notifyHandOver(0); INPUT

ptg!cwp.updateSystemTracks(0, true); OUTPUT

ctrl?notifyUpdateStatus(0,3); INPUT

ccg!fpm.assume(0); OUTPUT

ccg!fpm.assume(0); OUTPUT

ccg?notifyHandOver(0); INPUT

ccg!fpm.handOverRequest(0); OUTPUT

ctrl?notifyUpdateStatus(0,4); INPUT (PASS)

ctrl?notifyUpdateStatus(0,1); INPUT

ccg!fpm.assume(0); OUTPUT

ccg!fpm.handOverRequest(0); OUTPUT

ctrl!cwp.commandAssumeOrder(0); OUTPUT

ctrl?notifyUpdateStatus(0,2); INPUT ccg?notifyAssume(0); INPUT

ctrl?notifyUpdateStatus(0,2); INPUTccg?notifyAssume(0); INPUT

ccg!fpm.assume(0); OUTPUT

ccg!fpm.handOverRequest(0); OUTPUT

ctrl!cwp.commandAssumeOrder(0); OUTPUT

ccg!fpm.assume(0); OUTPUT

ctrl!cwp.commandHandOver(0); OUTPUT

ctrl?notifyUpdateStatus(0,3); INPUT

 

Figure 6-12:  IOLTS describing a test case synthesised according to the test objective IOLTS of Fig. 6-10. 

4.3 Test synthesis: possible enhancements 

4.3.1 Component testing and SUT-environment / tester internal actions 
As already stated, the definition of IOLTS on which the current test synthesis is based does 
not include the possibility of external actions which are neither inputs nor outputs. We require 
two such types of external actions: those internal to a component and those between 
components. Under an extension of the mirror operation of the test synthesis algorithms, 
internal actions of SUT environment components would become internal actions of tester 
components and communications between SUT environment components would become 
communications between tester components.  
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If coupled with a finer semantics in the Umlaut simulator, see Section 2.6.1, these actions 
would enable us to use the test synthesis algorithms for general component testing of a given 
specification, rather than simply system testing. 

4.3.2 More sophisticated treatment of data 
The enumerated character of the IOLTS basis (that is, all data must be instantiated, data 
cannot be treated symbolically) is undoubtedly a weakness of the method. However, this 
deficiency can be palliated somewhat by the use of test data generation techniques. In the 
COTE project [JarPic01], this approach has been explored via in the U-Casting [AerJen03] 
tool. A more ambitious proposal involves extending the synthesis techniques to include 
symbolic treatment of data However, state-space exploration with such treatment is a hard 
problem. An extension of the TGV tool which deals with symbolic data is under development 
[ClaJérRus01] but is not yet incorporated into the Umlaut environment. 

4.3.3 “True concurrency” approach 
TGV has been primarily designed to generate sequential test cases. To take advantage of the 
TeLa test language, information about concurrency must be extracted. A more ambitious 
approach is to keep explicit initial concurrency of the UML model of the specification, 
replacing the IOLTS representation by a true-concurrency model, presented in [Jar02]. 

The use of such an approach would entail the revision of the other three main parts of the 
method since in the current method they are all to some extent tailored to use in IOLTS-based 
synthesis. 
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5 Derivation of scenario-based test case from IOLTS 

In this section, we show how to derive a scenario structure in the TeLa language from an 
IOLTS representing a test case produced by TGV. We first mention some important points 
concerning the TeLa language before discussing how to represent the output of TGV in TeLa. 
Fig 6-13 illustrates the part of the method that is presented in this section. We then show how 
the UML test case derivation part of the method proceeds for the ATC application example. 
We also use this example to illustrate some possible enhancements to the method. The one 
concerning the use of the actors to define a default test architecture could be automated 
relatively easily. 

IOLTS test case

UML test case derivation

TeLa test case

XMI export

 

Figure 6-13: UML test case derivation part of the method. 

5.1 The TeLa language 

The TeLa language [PicJarHeu01] extends the UML 1.4 sequence diagram notation. The 
extensions are introduced in order to define a language suitable for specifying test cases, in 
the form of scenario structures, for applications which may contain concurrency and 
asynchronous communication; the language is not aimed exclusively at the translation of 
IOLTSs produced by TGV. The extensions to UML 1.415 are, in part, inspired by the MSC 
notation [ITU-T99], as well as by the graphical TTCN-3 notation [ETSI03b] that is largely 
derived from it. As the MSC standard is apparently also the main inspiration for the UML 2.0 
sequence diagrams, our approach is well-positioned with respect to upcoming developments. 

5.1.1.1 CURRENT PROTOTYPE: IMPLEMENTATION NOTES 
Activity diagrams are not implemented in the prototype of TeLa in the Objecteering tool. The 
only type of choice implemented in this prototype is the one in which the alternative 
behaviours differ only in the initial message (which is unsuitable for representing the ATC 
test case). The coregion operator is implemented in the prototype of TeLa. 

5.1.2 Constructs of TeLa used to represent IOLTS test cases 
Rather than talk in the abstract, we illustrate the main aspects of using TeLa to represent the 
output of the TGV tool by representing the test case synthesized from the ATC application 

                                                 
15 Including weak sequential composition of sequence diagrams, a choice operator (enabling the specification of 
alternative behaviour continuations on different diagrams), a coregion operator (to introduce explicit 
concurrency on a lifeline), and an internal action construct (to specify actions such as assignment to tester 
variables or tester assertions). 
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example test objective, as shown in Section 4.2. TeLa offers alternative presentations for 
many constructs as follows. 

The most general choice (permitting, for example, a non-local choice, or a local choice 
involving events which are internal to the SUT, followed by arbitrary alternative behaviour) 
must be modelled as a 2-tier TeLa diagram, that is, using activity diagrams and activity-
diagram references. Fig. 6-15 illustrates how the ATC application example test case is 
represented using this type of diagram. Many types of choice can be modelled using several 
TeLa sequence diagrams connected via TeLa sequence diagram references (e.g. local choices 
between messages followed by arbitrary alternative behaviour). Fig. 6-14 illustrates how the 
ATC application example test case is represented using this type of diagram. 

Choices in which the alternative behaviours only differ in the initial part, that is, choices in 
which the alternative behaviours are joined shortly afterwards (such as the diamond structures 
of the ATC application example test case), can be modelled using a single TeLa sequence 
diagram and the block construct. Fig. 6-16 illustrates how the ATC application example test 
case is represented using this type of diagram. Finally, choices in which the alternative 
behaviours only differ in the initial message (the “unique continuation choice” of [Livrable 
2.3]) can be modelled using a single TeLa sequence diagram without the need for the block 
construct. The ATC application example test case cannot be represented using this type of 
diagram. 

Concurrent messages can be represented using the coregion construct. Fig. 6-17 illustrates 
how the ATC application example test case is represented using this type of diagram (N.B. the 
use of coregions means that this diagram cannot easily be derived automatically from the 
IOLTS, see Section 5.2.5.1). Finally, we can also represent the actors of the test on different 
lifelines, i.e. use the actors as a default test architecture. To illustrate this, we could adapt any 
one of the representations of Figs. 6-14 – 6-17. to include the explicit test architecture. We 
choose to do so with Fig. 6-17 since this gives the smallest diagram (however, since it uses 
coregions, like Fig. 6-17 it cannot easily be derived automatically from the IOLTS). Thus, 
Fig. 6-18 illustrates how the ATC application example test case is represented using this type 
of diagram, by extending that of Fig. 6-17. It is important to note that this diagram uses a 
restriction of the standard partial-order semantics of TeLa, see Section 5.2.5.2. 

5.2 From IOLTS to TeLa expression 

5.2.1 TeLa sequence diagram lifelines 
In TeLa, lifelines represent components in a hierarchical component model. The hierarchy 
always contains at least two levels, namely, that defined by the objects (the lowest level 
components) and that defined by two components: SUT and tester. The test case produced by 
TGV can then always be correctly represented using only two lifelines, the SUT and the 
tester. 

The lifelines of UML 1.4 sequence diagrams represent objects or collaboration roles. As 
defined in UML 1.4, collaboration roles must have a base classifier (this restriction could 
definitely be criticised). In TeLa, we wish to use lifelines to represent (roles played by) 
components of any size, from objects to systems. In particular, we need at least two 
hierarchical levels of components to represent the tests synthesized by TGV: objects and the 
two testing-oriented components, the SUT and the tester. Strict compatibility with UML 1.4 
could be achieved by specifying the components SUT and tester explicitly in a component 
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model in order for these components to constitute the obligatory base classifiers of the 
corresponding collaboration roles. 

5.2.2 Atomicity in TeLa scenarios 
By construction, all the transitions of the IOLTS test cases produced by TGV are labelled by 
actions on the SUT boundary. If the guidelines for specifying actor state machines of Section 
2.1.2.7 are followed, there is a one-to-one relation between these Σ-actions and the 
corresponding UML-actions, except for the case of actor auto-invocations (and actor-to-
system synchronous invocations, if the Umlaut implementation is completed to allow the 
latter). Thus, it is relatively easy to construct TeLa scenarios such that the Σ-actions to Π-
action relation is one-to-one in all cases but these. These two exceptional cases are dealt with 
separately in the following sections. 

5.2.3 The SUT boundary in TeLa scenarios 
As in the O-TeLa case, see Section 3.2.3, the Π-action SUT boundary is defined by the events 
on SUT lifelines. In the TeLa case, the translation is from the transitions labelled by external 
Σ-actions to the events labelled by the corresponding Π-actions, rather than the other way 
round. The assumption concerning external Σ-actions (that they are either inputs or outputs) at 
the LTS level means that currently, all Π-actions in TeLa diagrams are supposed to be on the 
Π-action SUT boundary, that is, they are either send or receive events of communications 
with the SUT (but see Section 5.2.4). 

As in the O-TeLa case, if we also wish to complete the current implementation and take into 
account synchronous invocations from the tester to the SUT, even if we suppose that the 
corresponding send and receive event are indivisible in the sense that no other event can occur 
between them (c.f. the semantics of “interworkings”), we would inevitably lose the one-to-one 
correspondence between and LTS Σ-actions and scenario Π-actions. However, in the interests 
of compatibility with the asynchronous invocation case, we could choose to view the event on 
the SUT environment lifeline as being the SUT boundary event. The Π-action labelling this 
event is then derived from the label on the corresponding LTS transition.  

5.2.4 Tester auto-invocations in TeLa scenarios 
Even in system testing, as has already been made clear, the assumption mentioned in the last 
section concerning the Π-actions on the Π-action SUT-boundary does not hold. Furthermore, 
as stated in Section 2.4.1.2, the guidelines for specifying active-object state machines of 
Section 2.1.2.7 practically guarantee that we will have to deal with such actions, in the form 
of tester auto-invocations. 

Due to the fact that emission of an auto-invocation will be treated as a system input by TGV, 
in a simple automatic derivation procedure, it will be shown as a message from the tester to 
the SUT. Usually, if the guidelines of Section 2.1.2.7 for specifying actor state machines are 
followed, the body of the invoked operation will indeed contain an invocation from the tester 
to the SUT with the same name, so this is not so much of a problem. However, occasionally, 
it will not contain such an invocation and the simplistic TeLa representation of the 
synthesized test case will be incorrect. To automatically produce a correct representation, it 
would be necessary to check the UML specification for each tester output Σ-action of the 
synthesized test case to see whether or not the series of UML-actions to which it corresponds 



260   TEST SYNTHESIS FROM UML MODELS OF DISTRIBUTED SOFTWARE  

begins with an auto-invocation and contains no invocation from the SUT environment to the 
SUT. 

5.2.5 Deriving a scenario structure from an IOLTS 

5.2.5.1 RECOVERING CONCURRENCY FROM AN INTERLEAVING MODEL 
Even though the test objectives may be specified in terms of partial orders, the basis of the 
test synthesis is currently IOLTSs in which the partial order is lost; concurrency is modelled 
as interleaving so that choice and concurrency are confused. One could hope to reconstruct 
the concurrency from diamond structures in the IOLTS output by TGV. However, apart from 
the difficulty in recognising diamond structures involving the interleaving of an arbitrary 
number of actions, such structures cannot be interpreted as representing concurrency without 
making assumptions about the application model. This cannot currently be done 
automatically. 

5.2.5.2 TESTER STRUCTURE: DEFINING THE TEST ARCHITECTURE 
For a test case synthesized by TGV, the external actors and their interaction with the SUT can 
be considered to define a default tester structure or test architecture (see Chapter 2, Section 
1.3.2.3 for our definition of test architecture). We may wish to use this architecture explicitly 
in the TeLa scenario structure derived from the TGV output, that is, we may wish to use a 
distinct lifeline to represent each external actor. The Umlaut-generated labels used in the 
output of TGV contain enough information to identify the external actor involved in each 
tester event so this is no impediment. 

However, with a general partial order interpretation, representing each actor with a separate 
lifeline introduces further concurrency.  As this concurrency is not present in the IOLTS 
descriptions, where it is not representable, we cannot introduce it into the TeLa representation 
of the synthesized tests. Therefore, either we add a large number of coordination messages 
between the different tester entities or we use a more restricted interpretation of the TeLa 
diagrams, in which the partial order is of messages rather then of events. This can be obtained 
as a restriction of the partially-ordered event semantics as shown in Chapter 5, Section 3. 

TeLa provides this option, giving a semantics similar to that of UML 1.4 sequence diagrams 
or to “synchronous interworkings”. In this restricted “interworking” semantics, if two 
communication events are in the scope of a coregion on one instance but their twin events are 
ordered on another instance, the coregion has no effect. 

In the context of a hierarchical component model, a general test architecture could be given. 
The test architecture diagram should tell us which objects belong to which test architecture 
components. Knowledge of which invocation is sent or received by which component is then 
sufficient to present the TeLa diagrams in which any such test architecture appears explicitly 
(in the sense that there is one lifeline for each component of it). Note, however, that with the 
current implementation, there would be no messages between elements of the test 
architecture, see Section 5.4.2. 

5.2.5.3 SUT STRUCTURE 
Though we are concerned with black-box testing, this does not mean that test cases described 
in a sequence diagram style notation such as TeLa cannot show part of the internal structure 
of the SUT in terms of objects/components. This is since, in the object paradigm, the tester 
needs the identifiers of the objects/components it is to communicate with, either having this 
knowledge in the initial state, or acquiring it in the course of the test. 
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However, aside from the difficulties concerning the recovery of concurrency information 
discussed in the previous section, in general, representing the “visible” SUT internal structure 
explicitly in the test cases produced by TGV is not possible, since the Umlaut-generated 
labels do not contain enough information. The label on the transition corresponding to the 
reception of an asynchronous invocation by the tester does not contain information as to 
which SUT object is the emitter. This problem was already discussed in Section 2.4.1. 

In some cases, a detailed knowledge of the specification may be sufficient to represent SUT 
structure in TeLa diagrams, in a manual conversion of the TGV output. This will be the case 
if the UML specification is such that for each SUT-to-SUTenv invocation appearing in the 
test case, there is only one candidate for its emitter. That is, detailed knowledge of the action 
expressions of the specification tells us that only one object makes each type of invocation 
appearing in the test. The use of a suitable component model, such as that of UML 2.0, would 
in many cases also allow the missing information to be extracted from the specification. 
However, a general solution would require the enhancements proposed in Section 2.6.2, 
allowing true component testing, see below. 

5.2.6 Component names in arrow labels 
The syntax for the labels on the arrows of TeLa sequence diagrams extends UML syntax by 
allowing the name of a lower-level component owning the event which is inside the 
component represented by the lifeline to appear explicitly, prefixing the operation name and 
parameters. In the current implementation, with only two levels of hierarchy, in the case of an 
invocation by the tester, respectively, by the SUT, the name of the owning SUT object, 
respectively, of an external actor, followed by a dot appears before the name of the method. 
See Figs. 6-14 – 6-17 for examples of this syntax. We now give the rules for the TeLa syntax 
use of these prefixes, supposing only two levels of components: object level and SUT & tester 
level. These are similar to those given for O-TeLa in Section 3.2.6. 

First suppose that only two lifelines are used in the test case scenarios, one representing the 
SUT and the other representing the tester. The label on an arrow representing an invocation 
emitted by the tester and received by the SUT is prefixed by the emitting actor name and by 
the receiving SUT object name (separated by the “!” character). The label on an arrow 
representing an invocation emitted by the SUT and received by the tester is prefixed by the 
receiving actor name. 

Next suppose that we use the default test architecture defined by the actors, see Section 5.3.5. 
Thus, only one lifeline is used for the SUT but multiple lifelines are used for the tester, one 
for each actor. The label on an arrow representing an invocation emitted by the tester and 
received by the SUT is prefixed by the emitting actor name. The label on an arrow 
representing an invocation emitted by the SUT and received by the SUT environment is not 
prefixed by a component name. 

There are no other possibilities for representing the IOLTS synthesized by TGV since neither 
SUT structure nor other test architectures, see Section 5.2.5, can be used in the current 
implementation. 

5.3 Synthesized test case for the ATC application 

If we do not make any assumptions on the UML specification, the diamond structures 
involving states 7, 8, 9 & 10 and involving states 15, 16, 17 & 18 in Fig. 6-9 must be 
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modelled using the choice operator. If we can recover the concurrency information, we can 
model these structures using the coregion operator. 

5.3.1 One-tier representation with TeLa sequence-diagram references 

Fig. 6-14 shows a TeLa scenario structure representing the test case of Fig. 6-12, which is 
synthesized from the ATC UML specification according to the test objective of Fig. 6-10, 
which is in turn represented by the scenario structure of Fig. 6-8. This scenario structure is 
one-tier, that is, it uses TeLa sequence diagram references to link TeLa sequence diagrams. 
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Figure 6-14: 1-tier TeLa representation of the test case described in IOLTS form in Fig. 6-12 (using the TeLa 
sequence diagram reference construct). 
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5.3.2 Two-tier representation with TeLa activity-diagram references 
Fig. 6-15 shows the two-tier version of Fig. 6-14. This time the TeLa sequence diagrams are 
connected by being referenced from a TeLa activity diagram. Note that the sequence diagrams 
themselves involve fewer messages than those of Fig. 6-10, due to the fact that connecting 
diagrams in a one-tier structure involves duplicating messages. 
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ATC3: 2-tier

ATC5: 2-tierATC4: 2-tier
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cwp.updateSystemTracks(0, true)

fpm.assume(0)

fpm.handOverRequest(0)

ctrl.notifyUpdateStatus(0, 1)

fpm.assume(0)

fpm.handOverRequest(0)

cwp.commandAssumeOrder(0)

SUT

ATC init: 2-tier

Tester

ccg.notifyAssume(0)

ctrl.notifyUpdateStatus(0, 2)

SUT

Tester

ATC2: 2-tier

ctrl.notifyUpdateStatus(0, 3)

SUT

ccg.notifyHandOver(0)
Tester

ATC4: 2-tier

fpm.handOverRequest(0)

cwp.commandAssumeOrder(0)

fpm.assume(0)

cwp.command HandOver(0)

fpm.assume(0)

SUT

Tester

ATC3: 2-tier

ctrl.notifyUpdateStatus(0, 3)

SUT

ccg.notifyHandOver(0)

Tester

ATC5: 2-tier

ctrl.notifyUpdateStatus(0, 4)

fpm.assume(0)

SUT

Tester

ATC6: 2-tier

ccg.notifyAssume(0)

ctrl.notifyUpdateStatus(0, 2)

SUT

Tester

ATC1: 2-tier

 

Figure 6-15: 2-tier TeLa representation of the test case described in IOLTS form in Fig. 6-12. 
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5.3.3 Block structure representation 

The representation of Fig. 6-14 uses TeLa sequence-diagram references and that of Fig. 6-15 
uses activity-diagram decisions. In this particular case (choices between alternative 
behaviours, followed by a join), a simpler representation using the block construct, can also 
be used, see Fig. 6-16. However, as stated in the introduction to Section 5.1, none of these 
three representations is implemented in the prototype. 
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Figure 6-16: TeLa representation of the test case described in IOLTS form in Fig. 6-12 using the block construct 

5.3.4 Representation using coregions 
Fig 6-17 shows a TeLa scenario structure representing the same test case as that represented 
in the previous figures. The part of the TeLa language used in this diagram has been 
implemented in the prototype. The diamonds formed by states 7, 8, 9, 10 and by states 15, 16, 
17, 18 have now been interpreted as representing concurrency (by making certain assumptions 
about the UML model). The coregions are thus used to indicate that the tester can expect to 
receive the corresponding messages in any order. Note that the coregions are placed on the 
Tester: in the partial-order semantics of TeLa, without further assumptions, placing the 
coregions on the SUT would not break the ordering on the tester and it is the events on the 
tester instance which are significant for the test; the events on the SUT instance only serve to 
add orderings between the events on the tester instance(s). 
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Figure 6-17: TeLa representation of the test case described in IOLTS form in Fig. 6-12 using coregions. 
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5.3.5 Representation using default test architecture (and coregions) 
In TeLa, the tester structure can be shown by using different lifelines to represent different 
tester components. More generally, a test architecture would be described in a component 
diagram. In the case where these lifelines represent tester objects, the syntax allowing the 
name of the tester object to appear in the label of an arrow representing an invocation to that 
tester object (see Section 5.2.6) is no longer needed.  

ptg:PTGFacade ctrl:Controller ccg: CGCFacade

cwp.updateSystemTracks(0, true)

fpm.assume(0)

fpm.handOverRequest(0)

notifyUpdateStatus(0, 1)
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fpm.handOverRequest(0)

cwp.commandAssumeOrder(0)

fpm.assume(0)

fpm.handOverRequest(0)

notifyAssume(0)

notifyUpdateStatus(0, 2)

cwp.commandAssumeOrder(0)

fpm.assume(0)

cwp.command HandOver(0)

notifyHandOver(0)

notifyUpdateStatus(0, 3)

fpm.assume(0)

notifyUpdateStatus(0, 4)

SUT

INTERWORKING SEMANTICS DIAGRAM

 

Figure 6-18: TeLa representation of the test case described in IOLTS form in Fig. 6-12 using coregions and 
showing tester structure. 

Fig. 6-18 shows a TeLa scenario structure representing the same test as that represented in the 
two previous figures but with the tester structure represented explicitly (and, in consequence, 
with the “interworking” semantics). Note that the coregion operator is now on the SUT. The 
part of the TeLa language used in this diagram has also been implemented in the prototype. 

More generally, in the context of a component approach, the synthesized TeLa test case could 
be represented according to any given test architecture described as a component model. The 
notation for prefixing component names on arrow labels gives the flexibility to display all the 
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information required (in a hierarchical component model, if the base-level name is used, other 
levels can be deduced).  

5.4 UML test case derivation: possible enhancements 

5.4.1 Atomicity in TeLa test cases 
A change in the atomicity of the manipulated LTSs via the notion of macro and micro 
transition, as proposed in Section 2.6.1, would allow TeLa test cases containing SUT 
callbacks and synchronous invocation replies. 

5.4.2 Component testing and tester internal actions 
In sections 2.6.2, 3.4.2 and 4.3.3, we discussed how more information an the labels of the 
LTS generated by Umlaut, together with test synthesis based on an extension of the IOLTS to 
include tester internal actions, would make it possible to use the method for general 
component testing and not just system testing. The principle effect on the TeLa test cases 
would be to allow test synthesis to also derive coordination messages between different tester 
components and to allow SUT structure to be represented in TeLa sequence diagrams. As 
already stated, the atomicity enhancements of Sections 2.6.1, 3.4.1 and 5.4.1 would make the 
present enhancement more workable. 

However, in such a component testing approach, the translation from IOLTS to TeLa could be 
parameterised by the test architecture, given as a component diagram, as outlined in Section 
5.2.5.2 above. In the synthesis method, then,  the test designer would: 

• designate any component of the application component diagram as the SUT 

• give a component diagram to define the test architecture;  

• synthesize test cases for the given architecture; the SUT environment structure may be 
shown in the O-TeLa test objectives (if there is no component diagram for it, then merely 
the default one defined by the actors); the test architecture which may be shown in the 
TeLa synthesized test cases 
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1 Original contributions 

In this section we present a summary of the original contributions of this thesis. 

1.1 Structural semantics of scenario-based test descriptions 

Component-based software is increasingly widespread and testing languages adapted to this 
emerging software paradigm are of increasing importance. However, such languages are 
currently very immature. The notion of component is at the heart of a component testing 
language and we therefore need to base our language on some component model. The 
component model of UML 1.4 is clearly not suitable for our purposes. As regards the 
component model of UML 2.0, though covering most of the aspects we need, it is not 
sufficiently precise. We therefore define a more formal notion of component model largely 
inspired by UML 2.0 ideas, which have evolved in parallel to our formalisation. 

1.1.1 A component model 
In Chapter 4, we formally define the basis of a component model underlying our scenario-
based language in terms of components with ports which are joined via connectors. Though 
not the aim of this work, this model can be seen as a formalisation of part of the UML 2.0 
component model.  

1.1.1.1 WHY AN UNDERLYING COMPONENT MODEL? 
The underlying component model is crucial to making TeLa a component testing language. 

We make precise the idea of the structural basis (set of lifelines) of test description scenarios 
being views on a component model snapshot, in such as way as to ensure that this basis 
reflects the test architecture and the test configuration. The component model also provides a 
suitable framework in which to interpret multiple SUT (system under test) lifelines in a 
language describing functional tests, that is, tests in which the SUT is treated as a black-box. 

For an application designed according to the component paradigm, the test architecture can be 
derived from component architecture of the application. Hence, if the test language used has 
an underlying component model, the test descriptions will then reflect or incorporate aspects 
of the component architecture of the application.  

Therefore, given an application designed according to the component paradigm, we can 
designate any given component of the application model as the SUT and derive, or partially 
derive, the structure of the test descriptions from the application component model. The 
scenario-based tests can then be better related to the scenario-based development assets of the 
application, such as use-case scenarios. Along with a treatment of tester internal actions, this 
relation between the application component architecture and the test architecture is the key to 
generalising established test synthesis techniques from system testing to component testing. 

1.1.2 Component hierarchy 
The component model we define is hierarchical. 
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1.1.2.1 WHY A HIERARCHICAL COMPONENT MODEL? 
The fact that the component model underlying a test description is hierarchical provides us 
with a framework in which to define the following concepts: 

Composition/decomposition of lifelines. A lifeline representing a component can be 
decomposed into lifelines representing its subcomponents. This facility enables test 
descriptions to be viewed at different levels of structural abstraction according to need. A 
component hierarchy enables composition/decomposition of lifelines to be given meaning for 
a wider range of descriptions than in MSCs, e.g. those involving guards that contain dynamic 
variables. 

Component-based properties, in particular, those which affect the behaviour of the test being 
described. We introduce two such properties (see below for more details): 
• Communication semantics: a component can have event-based or message-based 

semantics. This property concerns the communications between the subcomponents of a 
component. If a component has message-based semantics, all its subcomponents must 
have message-based semantics. 

• Control flow scheme: a component can be active or passive. This property concerns the 
ordering of events which are located on the component. A component is passive if all its 
subcomponents are passive. 

Local versions of global properties. A local notion of controllability, for example, would be 
very useful in distributed testing. As an example of a question of interest for distributed 
testing, we could ask: is the test locally controllable for some lifeline decomposition? 

Nodes. Assuming the units actually deployed (nodes) are to be related to the components, the 
existence of hierarchy provides flexibility in choosing these nodes. As an example of a 
question of interest for distributed testing, we could ask: what level of decomposition defines 
the most suitable physical distribution of the test system? The choice of nodes may be 
influenced by the component-based properties, e.g. if a component has message-based 
semantics, it is likely to be implemented in a centralised manner. 

1.2 Behavioural semantics of scenario-based test descriptions 

Partial-order test descriptions are of great importance for distributed testing. However, 
currently, even some basic testing concepts are not defined in the partial-order setting. We 
attempt to rectify this situation by defining the key concepts needed to give a partial-order 
semantics to our test description language TeLa. 

We also wish to ensure that our semantics leads to a user-friendly language. In this respect we 
address the semantic issues involved in: 
• using explicit SUT lifelines, 
• using a simpler, more restricted communication semantics that is closer to that of UML 

1.x sequence diagrams, when appropriate, 
• making the notion of active or passive lifelines / components more well-defined. 

1.2.1 Generalisation of formal testing concepts 
We generalise testing concepts familiar in interleaving models to the as-yet largely uncharted 
partial-order case. 
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1.2.1.1 GENERALISATION OF THE FORMAL DEFINITION OF VERDICT 
In Chapter 4, we give a formal definition of the notion of verdict, in a way that generalises 
smoothly from the relatively well-established interleaving semantics case to the relatively 
uncharted partial-order semantics case. We define a verdict as an annotation on a transition or 
event. 

In the partial-order case, verdict annotations are local and translate to local verdicts in 
distributed testing. We therefore also define formally how global verdicts are obtained from 
local verdicts in the partial-order case. The most problematic is the local inconclusive verdict. 
Our definition takes into account that a local inconclusive verdict can degrade into a global 
fail verdict. 

The assignment of local verdicts and the derivation of global verdicts from them is of prime 
importance in the distributed testing context. For test descriptions involving non-enumerated 
data, we describe the notion of verdict for the partial-order case in Chapter 3, but in Chapter 
4, we only outline the formalisation for the interleaving case. 

1.2.1.2 GENERALISATION OF THE CONCEPT OF IMPLICIT VERDICT/INPUT COMLPETENESS 
In Chapter 4, based on the above-mentioned formal definition of verdict, we outline a formal 
definition of implicit verdict, in a way that generalises smoothly from the relatively well-
established interleaving semantics case to the relatively uncharted partial-order semantics 
case. Note that for the non-enumerated data case, we not only define an implicit fail verdict, 
but also an implicit inconclusive verdict. 

In the partial-order case, implicit verdicts are local and translate to local verdicts in distributed 
testing. For test descriptions involving non-enumerated data, we describe the notion of 
implicit verdict for the partial-order case in Chapter 3, but in Chapter 4, we only outline the 
formalisation for the interleaving case. 

The implicit verdicts we define ensure test-completeness, where this is the well-known input-
completeness of the interleaving case, together with conditions ensuring that any execution 
which does not deadlock results in a global verdict. The property of test completeness is 
essential in a testing language. A well-defined notion of implicit verdicts ensures that test 
descriptions have a suitable level of abstraction while at the same time being test-complete. 

We define the properties of a partial-order test description which are necessary for implicit 
verdicts to be well-defined. For test descriptions involving non-enumerated data, we describe 
implicit verdicts and the properties necessary for them to be well-defined in Chapter 3, but in 
Chapter 4, we only outline the formalisation of the interleaving case. 

1.2.1.3 GENERALISATION OF THE CONCEPTS OF DETERMINISM  / CONTROLLABILITY 
In Chapter 4, we give formal definitions of determinism and controllability in a way that 
generalises smoothly from the interleaving semantics case to the partial-order semantics case. 
In fact, in the partial-order case, we can weaken the standard notion of determinism to obtain 
several useful definitions. Similarly, in the partial-order case, we can weaken the standard 
notion of controllability to obtain several useful definitions. 

The notion of minimal determinism is key to implicit fail verdicts being well-defined. It is 
therefore of prime importance for a test description language. 

The different notions of controllability are the key to defining the following hierarchy of test 
cases: parallel test cases, externally-coherent parallel test cases, coherent parallel test cases, 
externally-centralisable parallel test cases and centralisable test cases. A test case can be 
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moved from left to right in this list by resolution of tester concurrency. The generalisation of 
the controllability notion to the partial-order setting is also of some importance in distributed 
testing. 

For test descriptions involving non-enumerated data, we describe controllability notions for 
the partial-order case in Chapter 3, but in Chapter 4, we only outline the formalisation of the 
interleaving case. 

1.2.2 Definition of other crucial scenario-based testing concepts 
We generalise explicit verdicts and explicit (global) default alternatives to the as yet largely 
uncharted partial-order case. We generalise the notion of local choice to the semantics-by-
projection case. 

1.2.2.1 EXPLICIT VERDICTS 
In the partial-order case, explicit verdicts are not necessarily implementable in any 
meaningful way. We define a coherent notion of explicit verdict for partial-order test 
descriptions, which, when combined with implicit verdicts, conserves test completeness. 

In Chapter 3, we define the properties of a partial-order test description which are necessary 
for explicit verdicts to be well-defined. Though we do not formalise the semantics of the 
explicit verdict, doing so would not be difficult since the mechanisms of the explicit verdict 
are similar to those of the implicit verdicts and the default alternative. 

1.2.2.2 EXPLICIT DEFAULT ALTERNATIVE 
In the general case, it is difficult to attach meaning to a (global) default alternative in choices 
between different scenarios in a language such as TeLa, MSC or UML 2.0 sequence 
diagrams. 

In Chapter 3, we define the properties of a partial-order test description which are necessary 
for (global) default alternatives to be well-defined. Though we do not formalise the semantics 
of the default alternative, doing so would not be difficult since the mechanisms of the default 
alternative are similar to those of the implicit verdicts. 

1.2.2.3 NOTION OF LOCALITY APPROPRIATE TO SCENARIOS USED AS TEST DESCRIPTIONS 
We define a notion of locality that is appropriate for discussing choices between alternative 
scenarios in a scenario-based test description language whose semantics is given by projection 
onto tester lifelines. This gives rise to the definitions of test local choice and test non-local 
choice. 

1.2.3 Definition of a practical semantics 
We define the semantics of our test description language with usability in mind. 

1.2.3.1 SEMANTICS BY PROJECTION 
In Chapter 2, we informally define the semantics of our test description language involving 
SUT lifelines by projection onto the tester lifelines. This leads to a simpler more user-friendly 
language than the use of TTCN-3 ports or MSC gates. 
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1.2.3.2 CHOICE OF TWO COMMUNICATION SEMANTICS 
In Chapter 4, we formally define how a message-based semantics can be defined as a 
restriction on an event-based semantics for a certain class of test descriptions (those that are 
RSC: Realizable with Synchronous Communication)1. 

The definition of the former as a restriction of the latter enables us to mix the two 
interpretations in the same diagram, defining the communication semantics as a property of a 
component that is denoted via an annotation on the component model. One use of this facility 
is to simplify the description of the parts of the system which are to be implemented in a 
centralised manner. 

The more restricted semantics is more suitable for modelling centralised implementations or 
procedural diagrams. The flexibility given by having a less restricting and a more restricting 
semantics enables us to use the simpler, more restricting semantics when the complexity of 
the full semantics is not needed. The fact that the restricted semantics is closer to the intended 
semantics of UML sequence diagrams prior to UML 2.0 may be valuable to test designers 
familiar with these notations. In the context of the restricted semantics, for example, the 
return message of synchronous invocations can be safely omitted, as was the standard practice 
in UML 1.4 sequence diagrams. 

In circumstances where use of the restricted message-based semantics is sufficient for the 
whole test description, use of the full event-based semantics would simply oblige the test 
designer to clutter the test description with synchronization messages, seriously hampering its 
readability. An example of such a circumstance is the scenario-based representation of the 
output of an interleaving-semantics based test-synthesis tool such as TGV. The message-
based semantics facility was therefore highly relevant for the COTE project as explained in 
Section 5. 

1.2.3.3 CHOICE OF CONTROL FLOW SCHEME 
The UML concept of active or passive is ambiguous. In recognition of the difficulty of 
defining these concepts, the control flow scheme notations introduced in MSC 2000 simply 
have no semantics. However, the concept behind these definitions is clearly a useful one, 
particularly in the object- or component-based system context. 

In Chapter 3, we interpret the notion of passiveness as a set of restrictions on the allowed 
linearisations. When a partial-order semantics is used, this constitutes another semantic layer 
to be added (optionally) to the basic semantics. As stated below, the control flow scheme is a 
property of a component, denoted via an annotation on the component model describing the 
test architecture. 

We describe the way this extra semantic layer affects the constructs of a scenario-based test 
description language, notably the focus bar and the coregion. For example, the effect of a 
focus bar inside a coregion is to re-impose an ordering, while the effect of a focus bar inside a 
coregion on a passive lifeline is similar to that of the UML 2.0 construct “critical region”. 

We claim that our definitions adequately model the notion of passiveness as regards the 
interpretation of: 
• concurrency as being implemented via scheduling rather than execution threads, 
• synchronous calls as blocking the sender, 
• focus bars as representing method executions. 
                                                 
1 In fact, we only need the RSC property on the part of the diagram that is to use the message based semantics. 
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1.3 Definition of a scenario-based test description language 

In Chapters 2 and 3, we define a scenario-based test description language TeLa based as 
closely as possible on UML 1.4 sequence diagrams (though, the inadequacies of UML 1.4 
meant that this was not as closely as we originally thought possible!) and inspired by MSC 
2000. It is suitable for describing centralised and distributed black-box tests of object- and 
component-based software. It is a language in which the system under test (SUT) is 
represented by one or more lifelines and, though the emphasis is on control aspects, it 
includes treatment of data. 

1.3.1 Motivation for the definition of TeLa 

1.3.1.1 EVALUATION OF EXISTING SCENARIO LANGUAGES AND THEIR SEMANTICS 
We evaluate the suitability of UML 1.4, UML 2.0 and MSC 2000, with the emphasis on UML 
1.4, as the basis for a test description language. 

We evaluate the suitability of the semantics proposed for other scenario-languages, notably 
the different semantics proposed for MSCs, as the basis for the semantics of a test description 
language. 

1.3.1.2 CHOICE OF SUITABLE LEVEL OF ABSTRACTION 
We study the most suitable level of abstraction for scenario-based test descriptions. Our 
choice for the language TeLa differs from that taken in the UTP proposal in that we allow 
constructs which cannot be realised directly but require some synchronization mechanism 
(e.g. synchronization messages, centralised controller, shared variables, etc), or some 
resolution of indefiniteness, which need not be specified explicitly. Prominent examples of 
such constructs are: 
• test non-local choices (see above), 
• internal actions or guards involving variables from multiple base-level components, 
• indefinite choices, that is, choices for which it cannot be guaranteed that only one of the 

alternatives is possible in any execution, 
• implicit verdicts, that is, we only describe the correct behaviour 
• implicit derivation of a global verdict from local verdicts 

The decision to model the choice of control flow scheme as an extra layer of semantics also 
stems from the desire for the test descriptions of our language to remain at a slightly higher-
level of abstraction. 

It is worth noting that it is a greater challenge to ensure that implicit verdicts, explicit verdicts 
and default alternatives are well-defined for more abstract test descriptions. 

1.3.2 Principle original features of TeLa 

1.3.2.1 USER-FRIENDLY SUBLANGUAGE: ONE-TIER SCENARIO STRUCTURES 
We define a user-friendly sublanguage of the full test description language that has less 
expressive power but is simpler to use than the full language. This sublanguage is sufficient 
for most typical test cases. We ensure that it automatically has the properties required for the 
test description to specify a parallel test case, with well-defined implicit verdicts, explicit 
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verdicts and default alternatives. However, we do not deal with the computational complexity 
issues involved in ensuring the well-formedness of this sublanguage (nor of the full 
language!). 

1.3.2.1.1 Locally-defined choice operator in one-tier scenario structures 
Much of the complexity of scenario languages (assuming no explicit parallel operator) arises 
from the choice operator. This is since it describes a global choice between elements which 
are naturally only partially-ordered. The choice operator of the sublanguage mentioned in the 
previous section, the TeLa sequence-diagram choice operator, only allows a limited range of 
choices in order to ensure desirable properties. 

 With user-friendliness in mind, the TeLa sequence-diagram choice operator is locally 
defined, that is, annotated on a single lifeline. Where appropriate, we describe the properties 
that a test description must have in order for such an operator to be well-defined. 

1.3.2.1.2 Locally-defined loop operator in one-tier scenario structures 
With user-friendliness in mind, the TeLa sequence-diagram loop operator is locally defined, 
that is, annotated on a single lifeline. We describe the properties that a test description must 
have in order for such an operator to be well-defined. 

1.3.2.2 TESTING-SPECIFIC LANGUAGE CONSTRUCTS 
We define the necessary test-specific constructs, such as a construct to denote an unknown 
value in the parameter of a message sent from the SUT and the assignment of this value to a 
dynamic variable. 

1.4 Application of TeLa: test synthesis using Umlaut/TGV 

We extend the test synthesis method using Umlaut/TGV to achieve full integration in UML, 
firstly, through the use of UML scenario-based test objectives and UML scenario-based test 
cases and, secondly, through the XMI model exchange with commercial UML CASE tools. 
We also suggest how it could be generalised from system testing to component testing. 

In the case of the Umlaut simulator, we refine the tool support and suggest improvements to 
it, while at the same time clarifying, firstly, the semantics it implements and, secondly, the 
constraints the derivation of this semantics from a UML model imposes on that model. 

1.5 Conceptual framework 

We define the conceptual framework in which our scenario-based component test description 
language is to be inserted, leading to a glossary of component-testing terms. As yet, there is 
no commonly-accepted conceptual basis and terminology in this field. Though the definitions 
we provide are inspired by telecom testing terminology and standard software testing 
terminology, they are original. An earlier version of our glossary of terms served as input to 
the UTP work. 
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2 Future work 

2.1 Semantics of TeLa 

It would be of interest to develop the work on a formal semantics for TeLa of Chapter 4, in 
particular, to define the mapping from syntax to semantics passing via the UML 2.0 
metamodel and the constructs of the recently-defined UML Testing Profile, where possible. 
Evidently, defining a non-interleaving semantics with symbolic data is a daunting task and the 
first step would be to complete the non-interleaving semantics for the enumerated data case. 

The development of the full formal semantics should include the incorporation of the explicit 
verdicts and the explicit default alternative. It could also include the formalisation of the local 
controllability notions mentioned in Section 2.2.1.2.3 of Chapter 4. 

The definition of structural consistency could be extended to allow lifeline decompositions 
which result assert and assign internal actions straddling multiple lifelines, or in which an 
assign internal action can be decomposed into a message exchange and subsequent 
assignment. 

2.2 Syntax of TeLa 

The concrete syntax of TeLa was heavily influenced by the contemporaneous needs of the 
COTE project. As a consequence, the auto-invocations syntax for the TeLa sequence-diagram 
loop and choice operators is certainly not ideal and could definitely be improved. 

The actual concrete syntax used is largely irrelevant to the work reported on here but any 
serious use of TeLa would probably require its modification. This is particularly true now that 
the exact syntax on which the language was based has become obsolete due to UML 1.4/UML 
1.5 being superseded by UML 2.0. 

2.3 Tool support 

There are many possible extensions of this work concerning the use of Tela and tool support 
for this use. For tool support, the study of the computational complexity of the conditions 
used to define test descriptions and test cases is crucial. Below we indicate the most 
significant of these conditions. 

Firstly, it is important to study the possibilities for automatic detection of when a test 
description is well-defined. That is, for a test description with no explicit default alternatives 
and no explicit verdicts, or with only explicit inconclusive verdicts on test reception, minimal 
determinism together with the extra condition on resolution of determinism by controllable 
actions, as described in Section 3.4.4.3 of Chapter 2. For a test description with explicit 
default alternatives and/or other types of explicit verdicts, the test description must define a 
parallel test case. 

Secondly, it would be of interest to study the possibilities for automatic detection of when a 
test description defines each of the types of test case defined in Section 2.2.3.2.2 of Chapter 4: 
parallel test cases, externally-coherent parallel test cases, coherent parallel test cases, 
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externally-centralisable test cases and centralisable test cases. It would also be of interest to 
study the possibilities for CASE tool support in reducing tester concurrency. That is, in 
converting a parallel test case into an externally-coherent parallel test case, an externally 
coherent parallel test case into a coherent parallel test case, a coherent parallel test case into 
an externally-centralisable parallel test case and externally-centralisable parallel test case into 
a centralisable test case. 

Thirdly, it also important to study the automatic detection of when a two-tier scenario 
structure is in semi-normal or normal form, as defined in Section 3.4.1 of Chapter 3. 

Some tool guidance could also be provided for choosing the components whose internal 
communications are to conform to the message-based semantics and the components which 
are to be annotated as active. 

2.4 Extensions to TeLa 

One of the most important general extensions to TeLa would be to incorporate some treatment 
of time, preferably in the form of time constraints, as in the UML Testing Profile proposal, 
rather than in the form of explicit timers as in MSCs. 
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A1  Grammar of .aut input in system test synthesis 

<axiom> ::= des (<initial_state>, <num_transitions>, <num_states>)
<transition>*
<initial_state> ::= 0
<num_transitions> ::= <integer>
<num_states> ::= <integer>
<transition> ::= (<from_state>, "<label>", <to_state>)
<from_state> ::= <state>
<to_state> ::= <state>
<state> ::= <integer>
<label> ::= <reg_exp>

| *
| ACCEPT
| REFUSE

A1.1   Constraints 

− <num_transitions> is positive or zero. 
− <num_states> is strictly positive. 
− <state> takes a value between <initial_state> and <num_transitions>-1. 
− The labels ACCEPT and REFUSE can only be used on transitions which are the only 

outgoing transitions of a state and which furthermore are loop transitions; the accept and 
reject states must be modelled in this way since no state information is allowed in an LTS. 

A1.2   Observations 

− <reg_exp> is a regular expression using the Unix regexp syntax; we suppose that the 
labels are to match those generated from the UML specification (see grammar on 
following page and also Chapter 6, Sections 2.3.5 and 3.2.2). 

− the * is used to denote the complement of the existing outgoing transitions in the 
<from_state> of the <transition> in which it occurs; it is commonly used in a transition to 
a reject state in order to enforce a strict ordering. 

− We suppose that we are performing system testing, the .hide and .io files are as given in 
Chapter 6, Section 2.4 and the guidelines for the specification of actor state machines of 
Section 2.1.2.7 of this same chapter have been followed. In this case the <action
expression> of the <actor_triggerless_trans_label> will always be of the form 
<partner>.<op_call> rather than of the form <more_complex_expression> 

− The REFUSE transition is usually referred to via the term “reject” 



296     

A2  Grammar of .aut output in system test synthesis 

<axiom> ::= des (<initial_state>, <num_transitions>, <num_states>) <transition>*
<initial_state> ::= 0
<num_transitions> ::= <integer>
<num_states> ::= <integer>
<transition> ::= (<from_state>, "<label>", <to_state>)
<from_state> ::= <state>
<to_state> ::= <state>
<state> ::= <integer>
<label> ::= <actor_triggerless_trans_label>

| <actor_triggered_trans_label>
| <timer_event>

<actor_triggerless_trans_label>::= <owner>!<action_expression>; OUTPUT [<verdict>]
<actor_triggered_trans_label>::= <actor_name>?<op_call>; INPUT [<verdict>]
<action_expression> ::= <object_role>.<op_call>

| <more_complex_expression>
<timer_event> ::= timeout <timer>; INPUT [<verdict>]

| start <timer>
| cancel <timer>

<op_call> ::= <op_name>([<param_list]>)
<param_list> ::= <param>|<param>,<param_list>
<actor_name> ::= <identifier>
<object_role> ::= <identifier>
<op_name> ::= <identifier>
<param> ::= <identifier>
<more_complex_expression> ::= <char_string>
<timer> ::= TAC | TNOAC
<verdict> ::= PASS | (PASS) | FAIL | INCONCLUSIVE | (INCONCLUSIVE)

A2.1   Constraints 

− <num_transitions> is positive or zero. 
− <num_states> is strictly positive. 
− <state> takes a value between <initial_state> and <num_transitions>-1. 
− <param> defines a unique value (a constant). 
− <verdict>, in the case PASS, INCONCLUSIVE and FAIL, can only be given for a transition 

to a sink state. This is also the case for the non-definitive verdicts (PASS) and 
(INCONCLUSIVE), if no postamble has been computed. A verdict after an OUTPUT can only 
be PASS or (PASS). 

A2.2   Observations 

− We suppose that we are performing system testing, the .hide and .io files are as given in 
Chapter 6, Section 2.4 and the guidelines for the specification of actor state machines of 
Section 2.1.2.7 of this same chapter have been followed. In this case the <action
expression> of the <actor_triggerless_trans_label> will always be of the form 
<partner>.<op_call> rather than of the form <more_complex_expression> 

− The tag INPUT or OUTPUT is obtained by performing the mirror operation on the direction 
(as specified in the .io file) of the external (as specified in the .hide file) Σ-actions; it refers 
to the point of view of the tester. 
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− TAC is used to check that the implementation does not remain silent when it should 
respond. 

− TNOAC is used to check that the implementation does not respond when it may or should 
remain silent. 

− For a test case, the transitions from a state are either all inputs or all outputs: a test case is 
a controllable test graph. 

− A default transition to fail exists in states awaiting inputs. 
− There are no guards in the output produced by TGV since all data is enumerated. 
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Resumé : Nous affirmons le besoin d’un langage intégré dans UML pour décrire des test 
fonctionnels de composants, et nous proposons un tel langage, TeLa, fondé sur les 
diagrammes de séquence UML, où l’architecture de test se décrit avec des diagrammes de 
composant UML. Nous formalisons la base de la sémantique non-entrelacée de TeLa, et les 
notions de déterminisme / contrôlabilité, complétude en entrée, verdicts implicite / explicite et 
alternative par défaut. La sémantique par projection sur les événements du testeur permet 
l’usage d’une syntaxe avec lignes de vie pour le SUT. L´architecture de test fournit un cadre 
pour définir la décomposition des lignes de vie et des propriétés de composant telles que la 
sémantique de communication et le schéma de flôt de contrôle. Nous définissons les concepts 
d’une description de test bien fondée, d’un cas de test centralisable et de quatre types de cas 
de test parallèle. Nous expérimentons l’utilisation de TeLa dans la synthèse de test avec 
Umlaut/TGV. 

Mots clés: testing, test de logiciel, test de composants, test reparti, test télécom, sémantique 
non-entrelacée, déterminisme, controllabilité, architecture de test, langages graphiques, 
langages de description de test, UML, diagrammes de séquence, MSC, scénarios, modèles 
formels, synthèse de test, automatisation de test. 

 

 

Abstract: We argue the merits of a UML-integrated language for describing black-box tests 
of possibly-distributed components and propose such a language, TeLa, based on UML 
sequence diagrams, with UML component diagrams to describe the test architecture. We 
formalise the basis of a non-interleaving semantics for TeLa, including notions of 
determinism / controllability, input completeness, implicit / explicit verdicts, and default 
alternatives. The semantics by projection onto tester events allows the syntax to include SUT 
lifelines. The hierarchical component model of the test architecture provides a framework for 
defining lifeline decomposition and component-based properties such as communication 
semantics and control flow scheme, the latter being viewed as a restriction on allowed 
linearisations. We define the concepts of well-defined test description, centralisable test case 
and four types of parallel test case. We also experiment with the use of the TeLa in test 
synthesis using Umlaut/TGV. 

Keywords: software testing, component testing, distributed testing, telecom testing, non-
interleaving semantics, determinism, controllability, test architecture, graphical languages, 
test description languages, UML, sequence diagrams, MSC, scenarios, formal models, test 
synthesis, test automation. 


