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0 Executive Overview

Component based design is seen to increase software productivity, by reducing the amount of
effort needed to develop, update, and maintain systems. There are two main benefits specific to
component technology. First, it gives structure to system design and system development, thus
making system verification and maintenance more tractable. Second, it allows reuse of development
effort by allowing components to be re-used across products and in the longer term by paving the
way for a market for software components.

Roughly speaking, there are three lines of widely adopted component technologies: JavaBeans/EJB
from Sun. COM/DCOM/COM+/.NET from Microsoft, and and CORBA/CCM from OMG. Early
component technologies such as JavaBeans, COM, and CORBA offer protocols whereby indepen-
dently developed components can be deployed and collaborate. The technologies have subsequently
developed into sophisticated platforms (e.g., EJB, .Net, CCM) which offer a variety of runtime
services for managing component activation, concurrency, security, persistency, distribution, and
transactions.

Adoption for the development of real-time systems is significantly slower. Major reasons are
that real-time systems must satisfy requirements of timeliness, quality-of-service, predictability,
that they are often safety-critical, and can use severely constrained resources (memory, processing
power, communication). The widely adopted component technologies described in the preceding
paragraph are inherently heavyweight and complex, incurring large overheads on the run-time
platform; they do not in general address timeliness, quality-of-service or similar extra-functional
properties that are important for real-time systems. In their present form they start to be deployed
in large, distributed, and not safety critical systems, e.g., in industrial automation, and are not
suitable for deployment in most embedded real-time environments.

For small real-time systems, component technologies have been developed for particular classes
of systems. Often, these have been done within development organizations, and their adoption
outside these organizations is limited. To avoid heavy-weight run-time platforms, they mostly
do not support run-time deployment of components and lack many services. Composition of
components into a (sub)system is rather performed in the design environment, prior to compilation,
thus enabling static prediction of system properties and global optimizations.

In this document, we survey the use of component technologies in different industrial sectors.
Two important obstacles to wider adoption of component technology for real-time systems are the
following.

• There is a lack of widely adopted standards for component technology. A complicating factor
is that different sectors have different priorities concerning the main characteristics offered
by such a standard.

• A component technology for real-time systems should support specification and prediction of
timing and QoS-properties. Solutions to these problems are not well enough developed and
not well enough integrated into development tools.

In the document, we survey techniques for handling different functional and extra-functional prop-
erties of component and system behavior. A conclusion is that techniques exist for handling such
properties, but that further work is needed to improve the theory of specifying and composing
components, and to develop tool support.

In a subsequent section, we survey technical characteristics of main component technologies. Two
trends can be discerned: one is to define component technologies for specialized real-time appli-
cations, maybe building on existing RTOSs or simply deployed on target hardware. Another is
to adapt widely adopted component technologies to embedded systems, by omitting functionality,
and perhaps building efficient run-time platforms.

A conclusion is that in the future, we need widely adopted component technologies with common
interfaces, which can be tuned and configured to support needs of particular application domains.
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1 Introduction

1.1 Basic Motivation

Component-Based Development is perceived as key for developing advanced real-time systems in
a both cost- and time effective manner. It can be seen a qualitative jump in software development
methodology, comparable to the transition from assembly language programming to high level
problem oriented languages around 1970, or the transition from procedural programming to object
oriented programming around 1990.

Component based design is seen to increase software productivity, by reducing the amount of effort
needed to develop, update, and maintain systems. Benefits include the following.

• Giving Structure to System Development. Component technology supports the struc-
turing of complex systems early in the development process. In this way, many integration
and maintenance problems can be addressed early, at lower cost.

• Reuse of Development Effort. Components can be re-used across several products or
even product families. Re-use is made easer by defining product line architectures, in which
components have given roles. New products can then re-use components of previous products
by slight modification or parameterization.

• Supporting System Maintenance and Evolution. Systems are easier to maintain if
they have a clear structure, e.g., as a system composed of components. For legacy systems,
it sometimes pays off to decompose them into components in order to make future upgrades
and maintenance easier.

• Enabling a Market for Software Parts. Standardized component specifications and
technologies allow to integrate components produced by different suppliers. Currently, for
embedded systems, only large components are transferred between different organizations:
RTOS, databases, process control components, etc. If a wider class of components would
be re-usable across a wider class of systems, this would give higher returns on development
investment. One vision for the future is that application development could follow a “drop &
glue” approach, picking components from a library incorporating the intellectual property of
the system house, as well as standardized components, giving to the system developer a range
of re-usable components supporting all layers of a system architecture. This vision includes
an open market of components, which are interoperable, and where integration problems are
solved a priori.

Component technology has gained wide adoption in the area of business data processing, and is
under continuous development. There are also signs of adoption for the development of embedded
and real-time systems. However, the pace is significantly slower, major reasons being that other
concerns are of great importance for the development of such systems. Real-time systems must
satisfy constraints on extra-functional properties such as timing (e.g., meeting deadlines), quality
of service (e.g., throughput), and dependability (including reliability, safety, and security). It
is important that functional and extra-functional properties be predictable, in particular if the
system is safety-critical. Embedded systems must often operate with scarce resources (including
processing power, memory, communication bandwidth). These concerns are not addressed by the
most widely used component technologies.

Several component technologies have been developed that address the specific needs of embedded
systems. There are many challenges to overcome in order to develop component technology that
is suitable for the many particularities of embedded systems.
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1.2 Basic Concepts

There is some disagreement about the precise definition of basic terms in component based software
development. We therefore give a short treatment of basic ideas, and define how basic terms will
be understood in this document.

A basic idea in component based software development is to structure a system into components. In
classic engineering disciplines, a component is a self-contained part or subsystem that can be used
as a building block in the design of a larger system. It provides specific services to its environment
across well-specified interfaces. Examples are an engine in an automobile, or the heating furnace
in a home. Ideally, the development a component should be decoupled from the development of
the systems that contain is. Components should be reusable in different contexts.

In software engineering, there are many different suggestions for precise definitions of compo-
nents in component based software development. According to [BBB+00], advocates of software
reuse equate components to anything that can be reused; practitioners using commercial off-the-
shelf (COTS) software equate components to COTS products; software methodologists equate
components with units of project and configuration management; and software architects equate
components with design abstractions.

The best accepted definition in the software industry world is based on Szyperski’s work [Szy98]:

a component is a unit of composition with contractually specified interfaces and fully
explicit context dependencies that can be deployed independently and is subject to
third-party composition.

In this report, we largely follow the definition by Szyperski, and in particular stress the separation
between component implementation and component interface. Ideally, there should be no context
dependencies that are not captured by the component interface. This last sentence must be applied
with some care, since in practice typical interfaces capture only certain aspects of a component’s
behavior.

Szyperski [Szy98] tends to insist that components should be delivered in binary from, and that
deployment and composition should be performed at run-time. In this report, we take a more liberal
view, and consider a component as a software implementation that can be executed on a physical
or logical device. This includes components delivered in high-level languages, and allows build-time
(or design-time) composition. This more liberal view is partly motivated by the embedded systems
context, as will be discussed in Section 2.3.

There are two basic prerequisites that enable components to be integrated and work together.

• A component model specifies the standards and conventions that components must follow to
enable proper interaction.

• A component framework is the design-time and run-time infrastructure that manages re-
sources for components and supports component interactions.

There is an obvious correspondence between the conventions of a component model and the sup-
porting mechanisms and services of a component framework.

Component models and frameworks can be specified at different levels of abstraction.

• Some component models (e.g., COM) are specified on the level of the binary executable, and
the framework consists of supporting OS services.

• Some component models (e.g., JavaBeans, CCM, or .Net) are specified on the level of byte-
code.

• Some component models (e.g., Koala) are specified on the level of a programming language
(such as C). The framework can contain “glue code” and possibly a runtime executive, which
are bundled with the components before compilation.
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In component based system development, there is a clear distinction between two perspectives of
a component.

• The component implementation is the executable realization of a component, obeying the
rules of the component model. Depending on the component model at hand, component
implementations are provided in binary form, byte code, compilable C code, etc.

• The component interface summarizes the properties of the component that are externally
visible to the other parts of the system, and which can be used when designing the system.
An interface may list the signatures of operations, in which case it can be used to check that
components interact without causing type mismatches. An interface may contain additional
information about the component’s patterns of interaction with its environment or about
extra-functional properties such as execution time; this allows more system properties to be
determined when the system is first designed. An interface that, in addition to information
about operation signatures, also specifies functional or extra-functional properties is called a
rich interface.

The component implementations must of course conform to the properties stated in their interfaces.
In principle this presupposes that the semantics of what it means for a component implementation
to conform to information in its interface is well understood, and that there are mechanisms for
checking or enforcing conformance, such as verification (simulation, testing, run-time monitoring,
formal verification, etc.) and code generation.

The information in component interfaces facilitates the check for interoperability between compo-
nents. Rich interfaces enable verification of system requirements and prediction of system properties
from properties of components. This allows several system properties to be verified and predicted
early in the development life cycle, enables early design space exploration, and saves significant
effort in the later system integration phase. A research challenge today is to develop methods for
predicting system properties from component properties.

A contract is a specification of functional or extra-functional properties of a component, which are
observable in its interface. A contract can be seen as specifying constraints on the interface of a
component.

1.3 Concepts Related to Component Technology

Architecture Description Languages. The software architecture of a program or computing
system is generally taken to denote

”the structure or structures of the system, which comprise software components [and
connectors], the externally visible properties of those components [and connectors] and
the relationships among them.” [BCK98]

The architecture of a system is an early design decision, which to a large extent determines global
system parameters such as functionality, performance, resource consumption, maintainability, etc.
Descriptions of system architectures include descriptions of component properties, visible through
their interfaces, and enable informed evaluations of different system architectures when selecting
between them. Architecture Definition Languages (ADLs) have been developed as languages for
expressing system architectures as compositions of software modules and/or hardware objects.
Typical concepts of ADLs are components, ports, connectors, etc. They can also describe vari-
ous classes of component properties. When used in component-based development, component
properties expressed in a system description using an ADL should in principle also be expressible
in component interfaces. For example, MetaH may decorate components with properties such
as execution time and failure modes. Component interfaces must then be rich enough to allow
description of such properties.
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ADLs concentrate on the description of system, whose properties are the composition of properties
visible in component interfaces. In contrast, a component technology must also specify how such
interfaces are implemented (possibly from independently developed components), so that the re-
sulting system implementation has the properties described in its architecture. Since the purpose
of this document is to concentrate on components themselves, we refrain from giving an extensive
overview of ADLs. A few ADLs that are perceived as influencing the development of component
technology, are described in Section 5.

Software vs. System Components. Many important properties of components in embedded
systems, such as timing and performance, depend on characteristics of the underlying hardware
platform. Kopetz and Suri [KS03] propose to distinguish between software components and system
components. Extra-functional properties, such as performance, cannot be specified for a software
component in isolation. Such properties must either be specified with respect to a given hardware
platform, or be parameterized on (characteristics of) the underlying platform. A system component,
on the other hand, is defined as a self-contained hardware and software subsystem, and can satisfy
both functional and extra-functional properties.

1.4 Structure of This Document

This document is structured as follows. In Section 2, we present a view on the development of
component-based systems, as a basis for identifying key concerns for component based development,
in particular for embedded systems. Section 3 presents condensed reports on the state of the art,
trends, and needs for component based development in different industrial application sectors. In
Section 4, we concentrate on presenting techniques used for specifying and analyzing important
functional and extra-functional propeties of systems using information about component interfaces.
Section 5 presents major component models, and assesses some of their strengths and limitations,
in particular with respect to the aspects discussed in Section 4. Finally, in Section 6, we survey the
situation with respect to standardization efforts, in particular related to OMG, that are central to
component technologies for real-time systems.

2 Component-Based System Development

Component-based software engineering (CBSE) uses methods, tools and principles of general soft-
ware engineering. However there is one distinction: CBSE distinguishes component develop-
ment and system development with components. There is a slight difference in the require-
ments and business goals in the two cases and there exist different approaches.

• In component development, the main emphasis is on reusability: components are built
to be used and reused in many applications, many of them not yet existing. A component
should ideally be precisely (formally) specified, easy to understand, sufficiently general, easy
to adapt, easy to deliver and deploy, and easy to replace.

• System development with components is focused on the identification of reusable en-
tities and relations between them, beginning from the system requirements and from the
availability of already existing components [BCK98, GAO95]. Much implementation effort
in system development will no longer be necessary but there are efforts required in dealing
with components, including locating them, selecting those most appropriate, adapting them,
and verifying them [MSP+00].

We not only recognize different activities in the two processes, but also find that many activities
can be performed independently. In practice the processes are often already separated, since
third parties, independently of system development, develop many components. Even components
developed internally within an organization that uses the same components in different products,
are often treated as separate entities developed separately. For this reason we can distinguish:
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• Life cycle of component-based systems

• Life cycle of components

2.1 Life cycle of Component-based Systems

Development with components differs from traditional development through its focus on the iden-
tification of reusable entities and relations between them, starting from the system requirements.
Different life cycle models, established in software engineering, can be used in component-based
development,but modified to emphasize component-centric activities. Let us consider, for example,
the waterfall model using a component-based approach. The top half of Figure 1 shows the phases
of the waterfall model. Underneath are shown the accompanying activities in component-based
development.

Figure 1. The development cycle compared with the waterfall model.

Characteristic features of component-based development are the following.

• The initial identification of requirements is performed as in traditional development. How-
ever in the component-based approach, the mapping between system and component re-
quirements is important. Requirements for components should be identified during system
requirements elicitation, in order to reuse existing components.

• The early design phase focuses on two essential steps:

– The logical view of the system is specified by a system architecture in terms of compo-
nents and their interaction. In this view, components are represented by their interfaces,
possibly including specification of relevant extra-functional properties (in real-time sys-
tems this includes timing properties). The architecture specification process is combined
with finding, evaluating, selecting, and adapting components that will perform the roles
defined by the system architecture.

– The structural view is specified by a system architecture consisting of component imple-
mentations, which must conform to a particular component model, assuming a particular
system architecture, component framework, and different technology-specific services.

• The implementation phase includes adapting, composing, and deploying components, using
a framework for components.

• The verification (or test) phase performs system verification (e.g., by testing). Rich compo-
nent interfaces enable a significant part of system verification to be performed in the design
phase, thus saving significant effort in the test phase.
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• The maintenance phase puts extra focus on the replacement and update of entire compo-
nents, possibly during system operation.

In summary, the activities that are specific to component-based systems development are:

• Specify logical and structural system architecture

• Find and select components that may be used in the system.

• Alternately, create proprietary components to be used in the system.

• Match component requirements with system requirements (in the specified architecture), and
(where possible) verify system properties from component properties

• Adapt the selected components so that they suit requirement specification and the system
architecture

• Compose and deploy the components using a framework for components.

• Replace earlier with later versions of components.

A short overview of these activities is given below:

• Specify logical and structural system architecture. The functional and logical system archi-
tecture will be the result of an early design, based on system requirements in which design
methods, also valid in a non component-based approach, are used. The architecture specifica-
tion process must take into account that the system requirements should be compatible with
those of available components; in this way the system design becomes an interplay to match
system and component requirements. Often the requirements cannot be fulfilled completely,
and a trade-off analysis is needed to adjust the system architecture and to reformulate the
requirements to make it possible to use existing components. In addition, the selection of a
particular component technology must be taken into consideration, as a component technol-
ogy may require particular implementation architecture and includes a number of services
such as component intercommunication.

• Find and select components that may be used in the system. Available components are col-
lected for further investigation. To successfully perform this procedure, a significant number
of possible candidates must be available The selection process is bi-directionally related to
the requirements elicitations and system design. If the process begins only with require-
ments selection, it is highly probable that components meeting all the requirements will not
be found. If components are selected too early in the process, the system obtained may not
meet all the requirements.

Component repositories offer tool support for this process. Finding components, testing them
in a particular environment and storing them in component databases are activities that can
be separated from the system development, but obviously the type of categorization and the
search criteria offered by such a repository influences its usability.

• Alternately, create proprietary components to be used in the system. In many cases, it will
not be possible to define the entire system from already existing components. Especially,
the core functionalities of the product are likely to be developed as they should provide
the competitive advantage of the product. Parts created in this way should be designed as
components with well defined interfaces, so as to allow reuse in a forthcoming application
and to facilitate maintenance. This alternative usually requires more effort and lead-time
than adapting existing components.

• Match component requirements with system requirements and verify system properties from
component properties. A research challenge today is to predict the system properties from the
component properties. The emerging properties, i.e., the (typically extra-functional) system
properties not existing for the components, are of particular interest. For this purpose, rich
interfaces are essential.
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• Adapt the selected components so that they suit the existing component model or requirement
specification. Some components can be directly integrated into the system, some need to be
modified through a parameterization process, some need wrapping code for adaptation, etc.
In some cases, it may not be possible to reuse a component itself, but only its interface, which
has to be refined and implemented again. This kind of reuse also speeds the development
cycle, as at least the interface used in system V&V need not be redeveloped.

• Compose and deploy the components using a framework for components. Typically the com-
ponent framework will provide that functionality. To obtain a particular function, often
several components must be composed into an assembly. By introducing assemblies into the
system, conflicts between the basic components can occur. It may happen, for example, that
assemblies include different versions of the same basic component. In such a case a mecha-
nism for re-configuring assemblies must exist, either supported by the component framework,
or used manually. The traditional V&V integration activities must be performed. However,
they may become easier if some of the work has been done when specifying the system
architecture (predicting system properties from component properties).

• Replace earlier with later versions of components. This corresponds to system maintenance.
(Implementations of) components, and thus the entire system, may evolve over time. Bugs
may have been eliminated or new functionality added.

– Elimination of bugs in component implementations, which do not affect the interface,
should be completely transparent to the system behavior. Ideally, this requires at most
a validation of the new implementation against its interface.

– Any evolution of the system that affects its interface requires an additional validation
at system level. If functionality is added, a minimal validation consists in checking that
the new functionality is not used in an undesirable manner by other components.

A particular challenge is to upgrade or replace components during system operation.

2.2 Life Cycle of Components

The component development process is in many respects similar to system development; require-
ments must be captured, analyzed and defined, the component must be designed, implemented,
verified, validated and delivered. When building a new component the developers will reuse other
components and will use similar procedures of component evaluation as for system development.
There are however some significant differences: Components are built to be part of something
else. They are intended for reuse in different products, many of them yet to be designed. The
consequences of these observations are the following:

• There is greater difficulty in managing requirements, caused by the interplay between com-
ponent and system requirements.

• Precise component specifications are more important.

• Greater efforts are needed to develop reusable units,

• Verification against component specification must be more stringent and documented, in
particular when transferring components between organizations.

• In a market for components, property rights and their protection become an issue.

The delivery result may be a component, tested and specified, stored in a component library in a
package suitable for distribution and deployment. The next phase in the life cycle is component
deployment into a system. The deployment should be enabled without making changes in the rest
of the system and should happen in an automatic way.
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2.3 Issues Specific for Embedded Systems

The design of real-time systems must consider constraints that do not apply to large component-
and object-based systems such as business data processing systems. Additional constraints include
the following.

• Real-time systems must satisfy constraints on extra-functional properties such as timing
(e.g., meeting deadlines), quality of service (e.g., throughput), and dependability (including
reliability, safety, and security).

• It is often important that functional and extra-functional properties be statically predictable,
in particular if the system is safety-critical.

• Real-time systems must often operate with scarce resources (including processing power,
memory, communication bandwidth).

Therefore, definitions and conclusions that hold for large business data processing systems may
have to be reconsidered for real-time and embedded systems.

• The most widely used definition of components, by Szyperski [Szy98], emphasizes contrac-
tually specified interfaces, fully explicit context dependencies, independent deployment, and
third-party composition. It seems biased towards component models where components are
deployed at run-time into the system, with run-time support for component registration and
composition. This suits well to the component models that are used in non-critical, non-real
time, and less resource-constraints applications. However it is not likely that similar prop-
erties can be applied to component models for embedded and real-time systems [CL02, Ch.
13]. There is a wide range of embedded systems (from very small to extremely large systems)
and there is a wide range of real-time requirements (from hard real-time to soft real-time).
While larger embedded systems may afford more resources and in this way provide better
prerequisites for utilizing the most widely used component technologies, smaller embedded
systems usually cannot afford such resources.

• In widely used component technologies, the interfaces are usually implemented as object
interfaces supporting polymorphism by late binding. While late binding allows connecting
of components that are completely unaware of each other beside the connecting interface,
this flexibility comes with a performance penalty which may be difficult to carry for small
embedded systems. Therefore the dynamic component deployment would not be feasible for
small embedded systems.

Taking into account all the constraints for real-time and embedded systems, we conclude that there
are several reasons to perform component deployment and composition at design time rather than
run-time:

• This allows composition tools to generate a monolithic firmware for the device from the
component-based design.

• This allows for global optimizations: e.g., in a static component composition known at design-
time, connections between components could be translated into direct function calls instead
of using dynamic event notifications.

• Design-time composition could be the instance of specific adaptation of components and
generated code towards specific micro controller families and real-time operating systems
APIs.

• Verification and prediction of system requirements can be done statically from the given
component properties.
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Design time composition presupposes a composition environment that specifically provides the
following functionalities.

• Component composition support;

• Component adaptation and code generation for the application;

• Building the system by including selected components and components that are part of the
run-time framework;

• Static verification and prediction of system requirements and properties from the given com-
ponent properties.

There may also be a need for a run-time environment, which supports the component framework
by a set of services. The framework enables component intercommunication (those aspects which
are not performed at design time), and (where relevant) control of the behavior of the components.

2.4 Summary and Conclusions

Component-based approach faces many challenges. This is in particular true for real-time and
embedded systems. The list below emphasize some of them.

• Component specification: in the context of embedded systems, it is obvious that interface
specifications of components must go beyond syntactic information and include functional
and extra-functional characteristics and requirements. For real-time systems the temporal
attributes of components and systems are of main interest. For embedded systems the prop-
erties specifying the resources and the properties related to dependability are important.
However, there is still no consensus about how components for real-time systems should be
specified.

• Component evaluation and verification (possibly for certification): the trustworthiness of a
component, that is the reliability of component in relation to its interface specification is an
important issue. The issue is difficult since the trend is to deliver components in binary form
and the component development process is outside the control of component users. Protocols
for component certification are of great interest.

• (static) Prediction of system properties from component properties: Even if we assume that we
can specify all the relevant properties of components, it is not necessarily known how they will
determine the corresponding properties of systems of which they are composed. Moreover,
existing component models do not provide support for predictable composition. In this,
one should aim for interfaces providing full functional and extra-functional specifications of
components are essential.

• Component models: Component models for real-time systems are still in the very early phase
of development. In general, existing component models do not support the needs of real-time
system development.

• Architecture specification: the use of components has an impact on the choice of the system
architecture, as it must take into account not only the requirements, but also the available
components.

• Managing the interplay between achievable system requirements and component specifications:
is complex, as the possible candidate components usually lack one or more features which
the system requires. Further, the relations between the system requirements and component
requirements are complex.

• Managing changes in component requirements: an important issue are changes to components
over time and possible conflicts arising from different coexisting versions of a component
within the same system. A precise interface specification should allow clarifying this issue.

12



• Update and replacement of components at run-time is useful for many real-time systems.
In the context of design-time composition, it is a challenge to combine this feature with
design-time optimizations across component boundaries.

• Tool support: The existence of appropriate tools is essential for a successful component-based
development. In non real-time domains there exist various tools supporting a component-
based development and they have proved to be successful, but in the real-time domains there
is a lack of such tools.

• Component repositories: which address the issues of how to store and retrieve components,
how to index components in a component library, and how to find ”similar” components.

3 Situation and Needs in Different Industry Sectors

The current state of and the needs for component-based approach differ very much between indus-
trial domains. Types of embedded systems vary from ultra small devices with simple functionality,
through small systems with sophisticated functions, strong real-time requirements, and low re-
source consumption requirements, to large, possibly distributed systems, where the management
of the complexity is the main challenge. Further we can distinguish between systems produced
in large quantities, in which the low production costs are extremely important, and low-volume
products in which the system dependability is the most important feature. Usually for high volume
products the time-to-market requirements are extremely important as well as the variation of the
products. All these different requirements have impact on feasibility, on use, and on approach in
component-based development. In different domains we can find very different component models
and system and software architectures.

3.1 Automotive

State of the practice

Within the automotive industry, the component-based approach has a relatively long tradition, as
these systems are typically built from physical components that are either developed in-house or
provided by external suppliers. Today, the physical components also include several computer nodes
(or Electronic Control Units, ECUs) equipped with software that implements vehicle functions.
A rapid development of electronic components and replacement of mechanical components has
increased the importance of efficiency in development and production of embedded components:
Modern vehicular systems contain almost hundred computer nodes, and the development costs
of the electronic parts have for high end models passed 50 % of the total costs. Even if this
development is successful in many aspects, for example in the form of reuse and time-to-market,
the trend cannot continue as the systems are becoming too complex and too costly with the current
practice of essentially having each ECU dedicated to one function. The current approaches are only
beginning to consider the deployment of model-based development processes, and current methods
and tool support are available for single ECU based implementations only. The main benefits
of the technology used today are improved and more flexible functional behavior of the vehicles,
decreased time-to-market and production costs. The trend to replace mechanical components with
electronic components will be strengthened.

Current Limitations and the Needs for Improvements

As the number of ECUs increases, the entire system becomes more complex. The system functions,
controlling particular aspects at the system level (for example cruise control) require input and
output control of many components. This requires sharing different types of resources (time,
communication, memory and CPU consumption). With increasing complexity, system reliability
and safety become major problems. A satisfactory handling of safety-critical functions, such as
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emerging brake- and steer-by-wire systems, will require the integration of methods for establishing
functional and temporal correctness for each component, as well as system-wide attributes such as
safety and reliability.

Even if the component-based approach is strong on the system level, this is not true for software
development. ECUs include proprietary software, mostly owned by subcontractors. This makes
the entire system inflexible and inefficient in utilizing resources, makes it difficult to implement
complex functions, and expensive to add new ECUs. The next major step in designing these
systems is to go from the current situation with “one node – one supplier” to a situation with
“one node – several suppliers”, i.e., there will be several software components of different origins
executing on a typical node. This requires changes in the design process and new division of
responsibilities.

A standard or de-facto standard component model for small embedded systems in the automo-
tive domain does not exist today. The existing component-based technologies require too many
resources to be suitable for small embedded systems. Developing and establishing an appropriate
component technology, including a supporting framework is one of the main research challenges

An example of an ongoing effort in the European automotive industry is the project EAST-EEA
(http://www.east-eea.net) with participation of all major European car manufacturers, suppliers
and software-tool providers, as well as research organizations and universities with connections to
the automotive industry. The goal of EAST-EEA is to develop a structure for the next generation
of electronic automotive features. There are two main activities to achieve this goal. (1) Specifica-
tion of middleware suitable for the automotive industry, and (2) development of an Architecture
Description Language (ADL). The middleware specification will leverage on the automotive indus-
try’s positive experiences of the RTOS standard OSEK, and will support concepts and provide
services on a higher abstraction level than an OS does. The ADL will allow manufacturers and
their suppliers to exchange requirements, specifications and documentation about both hardware
and software characteristics. The ADL will support system-descriptions on multiple abstraction
levels, ranging from very high-level feature specification to very implementation-close operational
specifications.

3.2 Industrial Automation

State of the practice

In the last five years the use of component-based technologies has rapidly expanded and become
the dominating development technologies in industrial automation. The technology mostly used
in large systems is Microsoft COM, and to smaller extent different implementations of CORBA,
although neither COM nor CORBA provide support for real-time. The systems using these tech-
nologies are soft-real time systems. Often a component technology is used as a basis for additional
abstraction level support, which is specified either as standards or proprietary solutions. Some
examples of utilization of component technologies:

• Example 1: OPC Foundation, an organization that consists of more than 300 member
companies worldwide, is responsible for specifications that standardize the communication
of acquired process data, alarm and event records, historical data, and batch data to multi-
vendor enterprise systems and between production devices. The specification is based on
standards DCOM [BK98], XML-DA and SOAP .

• Example 2: ABB Automation Products develops a next generation of automation system
architecture called Aspect Integrator Platform [CL02, Ch. 17], which is the basis for the design
of automation systems, such as open control systems for continuous and batch type processes,
traditional supervisory control and data acquisition systems, and others. The architecture
uses Microsoft’s COM technology, but it determines system architecture and enables flexible
system configurations. The main concept is based on AspectObjects which are treated as
components. An AspectObject encapsulates all the assets called Aspects belonging to that
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objects. In this model the aspects are treated as object attributes. The attributes (as the
AspectObject itself) are implemented as special COM objects.

• Example 3: Component-based development has been utilized for many years by developing
and using the standard IEC 61131 [IEC95]. IEC 61131 defines a family of languages that
includes instruction lists, assembly languages, structured text, a high level language similar to
Pascal, ladder diagrams, or function block diagrams (FBD). Function blocks can be viewed as
components and interfaces between blocks are released by connecting in-ports and out-ports.
Function block execution may be periodic or event-driven. IEC 61131 is successfully used in
development of industrial process automation systems, for example in ABB and Siemens.

• Example 4: Controllers that fulfill real-time requirements (either soft or hard) usually
do not use component-based technology such as COM. However in some cases (such as for
ABB controllers) a reduced version of COM has been used on a top of a real-time operating
system [LCS02]. The reused version includes facilities for component specification using the
interface description language of COM, and some basic services at run-time. These services
have been implemented internally.

Benefits from Using Component Technologies

The main reason for wide use of component-based technology in the automation industry is the
possibility of reusing solutions in different ranges of products, efficient development tools, standard-
ized specifications and interoperation, and integration between different products. For example,
the main advantage of OPC is the use of standard interfaces and communication protocols of con-
trol devices provided by different vendors. Another benefit is transparency of data access, provided
by the middleware. Finally, component-based technologies enable seamless integration with other
type of systems, for example business and office applications.

Current Limitations and Needs for Improvements

Many problems originate from the lack of support for real-time and quality-of-service properties
in currently used component technologies. Among other things, this results in a need for extensive
testing, and in integration problems for large systems.

Because of the dependency on one component technology vendor, there is a standing risk: the
current technology can become obsolete and the companies are forced to migrate to new technol-
ogy even if there are no requirements for that. The controllers, usually hard real-time systems
with restricted resources cannot directly use de-facto standard technologies. They either use pro-
prietary component models or try to use particular parts of de-facto standard technologies (for
example interface specification, but not run-time support). In the latter case, the challenge is to
identify a proper level of reuse of the technology. The lowest level includes use of standardized
interface specification, such as IDL (Interface Definition Language), or COM binary interface, and
implementation of some standard interfaces.

3.3 Consumer Electronics

State of the Practice

For high-volume electronics products, like TV, VCR, and DVD, cost per product unit is an impor-
tant issue. These costs are largely determined by the hardware costs, and lead to constraints on the
software; for example the available memory. In addition, the diversity of these products increases,
as does the complexity of the products due to convergence of functionality. Consumer electronics
products are developed and delivered in form of product families which are characterized by many
similarities and few differences and in form of product populations which are sets of products with
many similarities but also many differences.
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Production is organized into product lines - this allows many variations on a central product
definition. A product line is a top-down, planned, proactive approach to achieve reuse of software
within a family or population of products. It is based on the use of a common architecture and
core functions included into the product platform and basic components. The diversity of products
is achieved by inclusion of different components.

Because of the requirements for low hardware and production costs, general-purpose component
technologies have not been used, but rather more dedicated and simpler proprietary models have
been developed. An example of such a component model is the Koala component model used at
Philips [vO02]. Koala is a component model and an architectural description language to build a
large diversity of products from a repository of components. Koala is designed to build consumer
products such as televisions, video recorders, CD and DVD players and recorders, and combinations
of them. A Koala component is a piece of code that can interact with its environment through
explicit interfaces only. The implementation of a Koala component is a directory with a set of
C and header files that may use each other in arbitrary ways, but communication with other
components is routed only through header files generated by the Koala compiler, based upon the
binding between components. As Koala components are delivered in source code, it is possible to
statically analyze components and systems built of them.

Benefits from Using Component Technologies

There are two main benefits in a product line development.

• Reuse of already existing components and common architecture.

• Separation of product development from component development.

The first benefit is achieved not only through reuse of the core functionality (which includes the
architecture solutions and components that build a core-functionality), but also reuse of partic-
ular components in different product families. The second benefit is realized by enabling larger
development time for particular components than the time for development of a specific prod-
uct. Typically, products are released two times per year, while development of a new component
requires a year or a year and a half.

There are other benefits resulting from using a component-based approach. The latter forces the
software to be explicitly structured. Software components can only interact through well-defined
interfaces. The components can be parameterized by the use of diversity interfaces. By binding
components into a product, before the actual compilation of the code, the memory footprint can be
reduced: optimizations are done across components, without breaking the encapsulation provided
by the components.

Current Limitations and Needs for Improvements

The component models used in consumer electronics are proprietary, which requires internal sup-
port for their development and maintenance. Further it requires development of a number of
development tools: ADL, component repository, composition languages, compilers, debugging and
testing tools, configuration tools, etc. Such development is usually not a core business and it
requires a lot of resources. Also, the use of a proprietary technology makes it more difficult to
use COTS components. There are increasing requirements for achieving interoperability between
proprietary and standard component technologies.

The component models used in consumer electronics support only rudimentary analysis and pre-
diction of extra-functional properties of the components and systems. There are increasing re-
quirements for developing methodologies for reasoning about system properties derived from the
component properties.
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Component models in this domain cover composition at development (compilation) time; run-
time systems are monolithic applications, which makes on-line updates of components difficult.
Although the requirements for plug-and-play concept are not highly prioritized, it is expected that
this will be more important in the future. For this reason a support for managing components at
run-time will be required.

3.4 Telecommunication Software Infrastructure

State of the Practice

A main requirement in the telecommunication domain is that service design and development
should be done within short durations. But, the infrastructure (middleware) complexity, the het-
erogeneity of the standards for protocol exchanges, as well as their continuous evolution, the emer-
gence of new ones, and the absence of formal specification for many standards, lead the application
designers in the past and still currently to build new applications in a vertical way. Such a vertical
structure is contradictory with the need to rapidly build and modify (customize) new services, to
integrate them in a consistent way with existing ones, to share common infrastructure and plat-
forms (core network execution platforms or embedded mobile devices), etc. Real-time constraints
and QoS requirements are often neglected and consequently, time or performance problems are
discovered once the application is deployed. This leads to expensive time to market development
and deployment, mainly in the validation and integration phases, and is the source of a crucial
telecommunication problem: service interaction.

In telecommunication infrastructure, components play and have played a crucial role, and the ma-
jority of these components are embedded in core network platforms or several types of devices:
mobile, fixed, etc. But, due to the absence of formal specification of component interfaces and
composition rules and the lack of real-time and QoS property specifications, current practice con-
sists more in creating new software components (even at the specification level) rather than in
reusing existing ones.

Current Limitations and Needs for Improvements

The challenge for the telecommunication domain for the future is to enable the ubiquitous ”any-
thing, anytime, anywhere” concept, which means that a service should be seen for an end user as a
black box respecting functional and extra-functional properties (Quality of Service) independently
of the underlying architecture. Nowadays, due to openness of the telecommunication architecture,
a multiplicity of services and service components are provided by several companies and must be
dynamically added and updated. Telecomunication applications should be created in a secure and
reliable way as fast as possible in a multi-provider environment. In order to achieve this goal, it is
essential to provide service designers with software infrastructure offering an interface layer that
hides as much as possible the heterogeneity and the complexity of the underlying layers, in order
to allow flexible evolution of the applications and of the underlying components, as well as consis-
tent integration of different applications developed by different providers. Concepts such as Model
Driven Architecture [MM01] have the objective to help the creation of such an infrastructure. It is
time to go from ad-hoc techniques for component composition towards more integrated and formal
ones. Components from different horizons are omnipresent in telecommunication and they have to
be integrated in a consistent way. There is a real need to go from a vertical service development
to a horizontal approach based on flexible, reliable and open software infrastructure (middleware).

A research goal for software infrastructure should be to integrate Model Driven Architecture con-
cepts with component based development approaches. We need also an innovative and consistent
development methodology from high level specifications towards design. Formal validation of com-
ponents, which must respect a rich interface specification, is crucial for a consistent composition
of distributed components. It is the only way to ensure a flexible and secure interface to the
telecommunication service designer.
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For the next generation telecommunication software infrastructure, several aspects of components
are important:

• Specific attention should be paid to mobile devices. They have to tackle several critical con-
straints (memory size, energy consumption, time constraints, etc.). They require continuous
adding, removing or modification of components, and different service negotiation procedures.
Security and availability should be provided in any kind of environment (unreliable environ-
ment, different kinds of communication modes, different performance properties). Specific
components should be provided for different communication patterns.

• In order to cope with the problem of interoperability between different protocols and API
implementations, standards are defined, which specify syntactic interfaces as well as service
requirements, timing aspects and other extra-functional assumptions on properties of the
underlying network. Standards are often given by documents in natural language (or in some
cases by UML class diagrams) and focus on static specification, but their ambiguity leads
to inconsistencies in dynamic and real-time behaviors. It implies the need of an increased
use of modeling languages with a formal executable semantics, like SDL, which allow to fully
specify the expected interface behavior.

• For service designers, the interest of components goes beyond interoperability. Service com-
ponents have individual requirements that might be violated when composed and deployed
with other service components. This problem, well-known in the telecommunication world as
the service interaction problem, should be tackled taking into consideration real-time and per-
formance aspects. Especially, in the context of mobile telecommunication or WEB-services,
real-time aspects, quality of service and dynamic composition are important issues.

• Another important aspect is the definition of a methodology for component based design,
from the analysis steps towards implementation and testing, applied for component life cycle
and system life cycle. There is a large consensus for the use of standards such as UML, SDL
and MDA in the telecommunication world, but research is necessary in order to take into
account real-time aspects, quality of service and deployment issues and to better integrate
components and composition in the software life cycle.

• Component and system verification using formal techniques for real-time systems should be
enforced. It should enable quick and secure telecommunication service creation answering
questions like how to build an architecture based on a set of components (reused and/or
shared by several services) in such a way that we can guarantee the provision of complete
applications respecting quality of services and safety requirements (especially security re-
quirements).

3.5 Avionics and Aerospace

Characteristic for software development for avionics and aerospace include the following.

• Application are highly safety- and mission-critical.

• Systems are inherently complex and expensive to design, upgrade, and support.

• Systems have an extremely long lifetime and will undergo several generations of upgrades
and platform migrations.

• Extensive simulation and V&V are performed, since flight testing is extremely costly.

One consequence is that model-based approaches are more advanced and applied than in other do-
mains, e.g., as witnessed by the prominence of the avionics application domain in many advanced
technology projects (e.g., SafeAir http://www.safeair.org/project/, Mobies http://www.liacs.nl/ mar-
cello/mobij.html, and others).
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Perceived Benefits from Using Component Technologies.

Particular attention has been paid to modeling of system and software architecture, and to the
development of supporting technologies (code generation, middleware). Benefits from component
technology include the following.

• Support for model-based development,

• Platform independence is achieved by supporting middleware and mapping tools.

• System evolution is supported by ability to replace individual components, perhaps in the
context of a developed product line architecture.

An example of technologies that have been developed for the avionics domain is MetaH. MetaH is
a domain-specific ADL dedicated to avionics systems which has been developed at Honeywell Labs
since 1993 under the sponsorship of DARPA and the US Army. A significant set of tools (graphical
editor, typing, safety, reliability, and timing/loading/schedulability analyzers, code generator...)
has already been prototyped and used in the context of several experimentation projects.

Current Limitations and Needs for Improvements

Standardized component models seem not to be widely used, maybe because a large portion of
software development is performed in-house with rather specific requirements. More emphasis
appears to be placed on predictability of global system properties and global system architecture.

A prominent desire is to continue the trend towards model-based development, supporting it by
integrated tool chains that can perform analysis of properties like fault tolerance, timing, utiliza-
tion, quality of service, etc. on models, and thereafter generate optimized code for target platforms.
There should be infrastructure support for distribution.

3.6 Summary and Conclusion

Components have been used in several industrial domains. The component-based approach on
system level, where hardware components are designed with embedded software, has been success-
fully used for many years. Also large-grain generic components like protocol stacks, RTOSs, etc.
have been used for a long time. In addition to this, technology supporting a component-based
approach has been developed, either in the form of proprietary component models, or by using
reduced versions of some widely used component models.

Main benefits include the following.

• Achieving time-to-market requirements by separating component development process from
system development process.

• In some sectors, reuse has been supported by the creation of product-line architectures.

• Imposing structure on complex systems, thus mastering complexity and making maintenance
easier.

• Solving problems with scalability, including integration of large systems on platforms with
limited resources. Some component-models use components with parameterized interface
that makes it possible to define the amount of memory and other resources used.

It should be noted that the following needs are important to different degrees in different sectors.

• The adoption of component technology is hampered by the lack of widely adopted component
technology standards which are suitable for real-time systems.
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• There is also a need to ensure interoperability between different component technologies.
One motivation is for users not to be bound to a single vendor of platforms or integration
tools.

• Specification technology is not sufficiently developed to guarantee a priori component inter-
operability. This is important, e.g., in the telecommunications domain where interoperability
is crucial, and in domains where manufacturers have the role of system integrators.

• Reuse of components across different organizations is hampered by the lack of technology
and procedures for verifying and certifying component implementations.

• Most current component technologies do not support important extra-functional properties,
such as timing behavior or QoS properties, that will be needed for predictability of embedded
systems. Explicit management of timing requirements is necessary when building component-
based real-time systems. A current shortcoming is that methods for breaking down system
timing requirements into component requirements are not fully developed.

• There is a need for generic platform services, for, e.g., security and availability.

• Tools that support component based development are still lacking. For proprietary compo-
nent models, the cost of developing such tools can in general not be motivated. The lack of
tools to enforce conformance to interfaces and standards puts heavy burdens on component
and system developers and limits adoption of component technology.

• For smaller-size embedded systems, it is important that a system composed of components
can be optimized for speed and memory consumption, typically by globally optimizing com-
pilation. This applies to sectors with large volumes and small platforms that have constraints
on, e.g., power consumption, such as the automotive industry and small mobile devices.

• There is a trend towards open, extensible, and upgradable systems. This creates a need
for systems where components can be deployed or upgraded at run-time. This requirement
conflicts to some extent with the desire for compile-time global optimizations, implying that
domain- or application-specific trade-offs may be needed.

• To support more advanced component technologies for embedded systems, it is important to
develop efficient implementations of component frameworks (i.e., middleware), which have
low requirements on memory and processing power.

• Components have individual requirements that can be violated when composed and deployed
with other components. Techniqes are needed that ensure that components do not interfer
with requirements of other components. Such interferences can be obvious, such as violations
of memory protection, or more subtle. An important scenario where interferences will occur
is when several components, each implementing a piece of functionality, are mapped onto
one ECU.

• There is a desire to develop domain-specific architectures, which can define different roles for
different types of components.

4 Specifying and Reasoning about Contracts

4.1 Introduction

One of the key desiderata in component-based development for embedded systems is the ability
to capture functional and extra-functional properties in component interfaces, and to verify and
predict corresponding system properties. For real-time systems, this is perceived to be particularly
important for properties such as timing and quality-of-service.

In this section, we review existing techniques for capturing, verifying, and predicting different
properties of component and system behavior. Properties of components can be expressed in
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their contracts, hence the title of the section. To structure the exposition into different types of
component properties, we use the classification of contracts proposed by Beugnard et al. [BJP99],
where a contract hierarchy is defined consisting of four levels.

• Level 1: Syntactic interface, or signature (i.e. types, fields, methods, signals, ports etc.,
that constitute the interface).

• Level 2: Constraints on values of parameters and of persistent state variables, expressed,
e.g., by pre- and post-conditions and invariants.

• Level 3: Synchronization between different services and method calls (e.g., expressed as
constraints on their temporal ordering).

• Level 4: Extra-functional properties (in particular real-time attributes, performance, QoS
(i.e. constraints on response times, throughput, etc.).

Currently, most component models support only level 1 contracts, while some models support also
other levels (see Section 5). In the remainder of Section 4, we will survey techniques for capturing
and reasoning about component and system properties, discussing each aspect separately. We will
use the four levels of the Beugnard hierarchy for structuring our treatment of different interface
properties. Regarding level 4, we make a separation between timing properties (e.g. absolute time
bounds) and stochastically formulated performance properties (e.g. average response time). In
addition, we briefly treat reliability properties.

For each aspect, we will consider techniques for

• expressing properties of systems and components,

• predicting or verifying system properties from component properties, in particular for doing
this statically at design-time,

• checking that component properties are compatible (assumptions made in one component
specification are guaranteed by some other component specification),

• verifying that component implementations satisfy properties given in component specifica-
tions,

• and compile-time and run-time support for enforcing system or component properties.

On the Nature of Contracts

The term contract can very generally be taken to mean ”component specification” in any form.
A contract is in practice taken to be a constraint on a given aspect of the interaction between
a component that supplies a service, and a component that consumes this service. Component
contracts differ from object contracts in the sense that to supply a service, a component often
explicitly requires some other service, with its own contract, from another component. So the
expression of a contract on a component-provided interface might depend on another contract
from one of the component-required interfaces. For instance, the throughput of component A
doing some kind of computation on a data stream provided by component B clearly depends on
the throughput of B.

It is indeed challenging to develop a practical framework for reasoning about complex component
properties (e.g., performance properties) stated in contracts, e.g., to infer global system (perfor-
mance) properties. A complete solution to this problem requires powerful mathematical reasoning,
e.g., about properties of stochastic processes. A pragmatic, more modest, approach to this prob-
lem, which does not need powerful mathematical reasoning, is to agree on a small set of fixed
contracts, or a small set of fixed building blocks for contracts. For each contract, one can then
in advance develop techniques for monitoring or verifying that component implementations sat-
isfy the contract, and techniques for inferring system properties from component contracts. For
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instance, for performance properties, one can define a fixed set of different levels of performance,
and for each level define rules for run-time monitoring and for component interoperability.

In simple cases, such a scheme can be seen as constructing a type system for specifying properties.
More complex cases may involve constraints expressed in some type of logic, and thus checking
beforehand that components interact correctly then need some form of theorem proving techniques.

4.2 Level 1 - Syntactic Interfaces

Definition

By a syntactic interface, we understand here a list of operations or ports, including their signatures
(the types of allowed inputs and outputs), by means of which communication with a component
is performed.

Generally speaking, a type can be understood as a set of values on which a related set of operations
can be performed successfully. Belonging to a given type usually implies constraints that go beyond
what value is denoted exactly, most notably how the value is stored (required when operations are
performed). Once types have been defined, it is possible to use them in specifications of the form:
if some input of type tin is given, then the output will have type tout.

Type safety is the guarantee that no run-time error will result from the application of some op-
eration to the wrong object or value. A type system is a set of rules for checking type safety (a
process usually called type checking since it is often required that enough information about the
typing assumptions has been given explicitly by the designer or programmer, so that type checking
becomes mostly a large bookkeeping process).

”Static” type checking is performed at compile- (or bind-) time and ensures once and for all that
there is no possibility of interaction errors (of the kind addressed by the type system). Not all
errors can be addressed by type systems, especially since one usually requires that type checking is
easy; e.g., with static type checking it is difficult to rule out in advance all risks of division-by-zero
errors.

Type systems allow checking substitutability when components are combined: by comparing the
data types in a component’s interface, and the data types desired by its environment client, one can
predict whether an interaction error is possible (e.g. producing a run-time error such as ”Method
not understood”).

Specification of System and Component Signatures

A system for specification of syntactic interfaces must include:

• A type system, together with a syntax (we can call it an Interface Description Language, or
IDL) for specifying signatures of operations/ports;

• A mapping from the (abstract) interface types to component implementations. For instance,
if components are given in some programming language (for example, if they are written
in C), and the interface types use the type system of C, then the mapping is direct. If
components are available in binary form, there must be an agreed mapping from interface
types to binary formats of component implementations.

• A notion of substitutability, which describes when the interfaces of two components are
compatible.

For embedded systems, the type system is usually rather simple, with a substitutability amounting
to equality (i.e. one may only substitute objects whose interface is the same as the declared
one). For run-time component frameworks, a little bit more flexibility is usually allowed, with
substitutability based on type extension or even a more generally defined conformance relation.
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For instance, every CORBA object has a type name, which is the same as the interface name
assigned in its IDL declaration. The operations that it can perform, and the variables (and their
types) that it understands, are all part of its type. Base types include three different precisions
of integers and floating-point numbers plus fixed-point, standard and wide characters and strings,
etc. Constructed types include records (”struct”s), unions, and enumerations. One can declare
either fixed or variable length structs, arrays, strings, and wstrings. There is an any type that can
assume any legal IDL type at runtime.

CORBA supports subtyping by extension: one can create a subtype by extending the base type’s
list of operation signatures. But one must not redefine any of the base type’s operations, and it
only works in the absence of explicit self-reference. The advantage of this scheme is that it is easy
to implement and understand, the disadvantage is that it is still quite restrictive since some safe
substitutions are ruled out.

A proposal for a polymorphic type system suitable for embedded system design is given by Lee
and Xiong [LX01] and incorporated in Ptolemy II. It combines several types of polymorphism,
including some standard coercions between numeric data types. One design goal is that the check
for substitutability should be efficient, since one may have to carry it out at run-time.

Component Interoperability

Conformance is more generally defined as the weakest (i.e., least restrictive) substitutability re-
lation that guarantees type safety. Necessary conditions (applying recursively) are that a caller
must not invoke any operation not supported by the service, and the service must not return any
exception not handled by the caller. Conformance has a property called contravariance: the types
of the input parameters of a service must conform in opposite to the types of its result parameters.

For example, if we have a type sign for the set of the three numbers -1, 0 and +1, it is natural to
see sign as a subtype of integer. Now consider a numerical function sign from integers to signs:
this function can be used (substituted) in contexts where a function accepting sign is expected,
and in contexts where a function returning integers is expected.

At first, the contravariant rule seems theoretically appealing. However, it is less natural than
covariance (where parameter types conform in the same direction), often encountered in real-
world modeling (animals eat food, herbivores are subtypes of animals, but they eat grass which
is a subtype of food, not a supertype!), and is indeed the source of many problems. The most
surprising one appears with operations combining two arguments, such as comparisons. If the
contravariant rule is used, the type associated with equal for Child instances is not a subtype of
the one of equal for Parent instances. As soon as this kind of feature is considered (and they
are common), the contravariant rule prevents a subtyping relation between Child and Parent (see
[Cas95] for more details and solutions).

Trends and Conclusion

About 10 years after the debates on contravariance vs. covariance have peaked in the OO research
community, the dust has settled down somewhat. We can now identify three main directions that
have been taken to deal with this issue.

• (i) Keep it simple: No-variance is used for IN parameters. That is the approach used in
mainstream languages such as CORBA, C++, Java, C] etc. For instance, if one needs a
specialized version of x.equal(y), the type checking (through downcasting on parameter x)
must be done by hand by the programmer, and verified at runtime only.

• (ii) Model reality: Covariance is used for IN parameters. This is the approach used in Eiffel,
which makes static type checking a non-local, non-incremental task. Indeed, if no other
restriction is made, type checking requires extensive program analysis and looks much more
like theorem proving than the simple bookkeeping process it used to be.
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• (iii) Make it complex: use parametric polymorphism in conjunction with reference polymor-
phism, and have a type system where the types themselves can be seen as variables. This is
quite appealing as far as the expressive power of the type system is concerned, but it still
lacks a mainstream adoption.

The conclusion is that as soon as one wants a minimum of flexibility for defining type conformance
between a provided interface and a required interface, static type checking is no longer a simple
bookkeeping process. So level 1 contracts do not have a very different nature than contracts of
other levels. In some cases, they can be defined with restrictive rules to allow simple tools to
process them, in other cases one could be interested in having more flexibility at the price of more
complex tools for static checking, or even rely on runtime monitoring.

A concern in component-based design of embedded systems is that runtime monitoring of interface
types may be desirable for building reliable systems, and because one cannot completely trust
component implementations. If components are deployed at run-time, the check for substitutability
must be performed with available computing resources.

4.3 Functional Properties (Level 2)

Definition

Functional properties are used to achieve more than just interoperability. Level 2 in the Contract
Hierarchy is concerned with the actual values of data that are passed between components through
the interfaces, whose syntax is specified at Level 1 (the preceding section). Typical properties of
interest are constraints on their ranges, or on the relation between the parameters of a method
call and its return value. It is also customary to include at level 2 properties of a persistent state
of a component. In level 2 contracts, transactions are described as atomic, which means they are
appropriate for components with sequentialized or totally independent interactions.

Specification of System and Component Properties

Formalisms at level 2 provide means for describing partial functions or relations for representing
a component (or system) step. In constraint languages, as provided by Eiffel/SCOOP [Mey91,
Mey97] (dedicated to the Eiffel programming language), OCL [WK98] (Object Constraint Lan-
guage dedicated to UML), LSL (Larch Shared Language) [GHG+93], JML (Java Modeling Lan-
guage) [LB99], relations are expressed by means of invariants, pre- and postconditions. More
classical notations are for example Kahn networks [Kah74]. Logical formalisms are Unity [CM88]
or TLA [Lam94], with the difference that they allow also to express liveness properties, that is,
additional properties of infinite sequences of steps (fix points).

In practice, pre- and postconditions are rarely used in the context of large components, but rather
for small components, often describing data structures providing a set of operations considered
as atomic. One reason may be that the same type of interfaces is much harder to obtain for
compositions of components.

Verifying Component Properties

There exists a number of tools using constraints for run-time monitoring which generate excep-
tions in case of violation of interfaces at run-time. This is the case for example in Eiffel and for
JML annotations of Java. It also exists in dotNET. Run-time monitoring assumes that interface
specifications are executable, and incurs a nontrivial cost. Many frameworks use assertions in
a test phase, often using a constraint language. Here, aspect-oriented programming techniques
[KLM+97], which allow to compose different features when generating code for testing or for final
implementation, can be used to introduce some degree of automation and to facilitate maintenance.
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There are research tools that perform static checking of JML, such as ESC Java at Compaq [ESC]
based on (partial) static analysis methods, or in the Loop project at University of Nijmegen [Loo]
which is based on the use of interactive theorem provers. Theorem provers are also used to verify
invariants or temporal logic properties on TLA or Unity specifications. Such tools are primarily
used in applications that require highly dependable software. Even in the future, they might not
become widely used in standard component based development, but it is important that they exist
for demanding applications. Certainly, component manufacturers may want to use them, to provide
highly dependable component implementations conforming to contracts. To some extent, the use
of theorem provers can be seen as a form of experimentation, which should result in automated
procedures for various application domains.

Some of these formalisms are also used in the domain of hardware or on finite state abstractions
of components, where (symbolic) composition and model-checking are applicable, and any of the
many model-checkers developed in the last 2 decades can be used.

The B-Method [Abr96], is based on a formalism of the same kind, but it provides an integrated
framework for systematic refinement from invariants to implementations of functional components.

Component Interoperability and System Properties

There are two aspects of interoperability: one is preservation of component properties and general
system properties like absence of deadlock, and the second is verification of emerging global system
properties corresponding to functional system requirements.

In the context of level 2 specifications, composition of interfaces can be seen as composition of
partial relations. Therefore, component interoperability amounts to verify that composition does
not require strengthening of preconditions (leading to additional undefinedness). In simple cases,
it can be sufficient to check that pre-conditions are satisfied by corresponding post-conditions of
connected interfaces.

The level 2 system properties are determined from the composed partial relation. In general, its
formal calculation requires more sophisticated mathematical machinery in the form of fixed-point
theory, as simpler representations in terms of invariants and pre/postconditions cannot always be
synthesized.

The situation concerning existing tool support is the same as for the verification of components
themselves. Run-time monitoring is the main approach, and alternative methods consist in using
interactive theorem provers, or, alternatively, a top-down approach based on systematic refinement.
In the case of finite domains, the situation is more favorable, as representations of compositions
can be synthesized from representations of components.

Research Challenges

Existing academic tools for the static validation of component properties should be pushed towards
more automation and integrated into professional development tools. The main problem of level 2
specifications is their applicability to distributed systems, due to the absence of means to express
interactions as non atomic or to express explicit concurreny. This can be improved by considering
additional level 3 specifications. In practice, level 2 specifications can be used mainly for a single
level of components and when non-interference between transactions can be guaranteed by con-
struction (in general by sequentializing access to components), as for example in the synchronous
approach used in the context of safety critical applications.
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4.4 Functional Properties (Level 3)

Definition

Level 3 in the Contract Hierarchy is concerned with the actual ordering between different in-
teractions at the component interfaces and more importantly, they allow interactions between a
component and its environment to be considered non atomic. Level 3 specifications provide the
following facilities:

• description of transactions (input/output behaviors) not necessarily as atomic steps.

• explicit composition operators avoid the obligation to provide an explicit input/output rela-
tion taking into account all potential internal interactions. This has the further advantage
that a restricted use of a component does indeed allow to derive stronger properties (only
the actually occurring interactions need to be taken into account, not all hypothetical ones)

• many level 3 formalism allow to express explicit control information, which makes the ex-
pression of complex, history dependent input/output relations much easier

Indeed, formalisms at level 3 have explicit composition and communication primitives.

Specification of System and Component Properties

There are several, formally comparable families of description techniques:

• Automata, including hierarchical state machines etc. as found in SDL, UML have explicit
composition operators which allow easily to represent complex components by means of the
same formalism.

• Process algebras are very similar in principle, and really focus on the notion of composition.

• Temporal Logics are used for the description of global properties to be verified on a component
or a system (also for components specified with level 2 interfaces), rarely as component
characterizations to be used in further composition.

• Sequence Diagrams or Sequence Charts represent also global properties, but in terms of a
set of interesting scenarios and are mostly used to describe test cases. They may be used to
describe complete specification if the number of alternative scenarios describing a transaction
is relatively small.

In order to distinguish between or the required and offered parts in the context of contract speci-
fications, most of these formalisms use the distinction between inputs and outputs. Timeouts or
explicit timing restrictions can be used in some formalisms to restrict waiting for particular inputs
or component reaction time. Most of these formalisms must handle unexpected inputs explicitly by
providing complete specifications. A recent suggestion for extending automata-based formalisms
with explicit distinction of provided and required interfaces are interface automata [CdAH+02].

Verifying Properties and Component Interoperability

In the context of level 3 contracts, the expression of interfaces of complex components is made
possible due to explicit composition. In this case, the verification of component properties and
of system properties are of the same nature. However, system verification can easily become
intractable for systems consisting many complex components (cf. the state explosion problem).

In academia, in the last two decades a large number of model-checking tools have been developed,
which allow to show that a composition of automata (describing behaviors of components) satisfies
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- that is implements - some property (a desired component or system property), described either as
an automaton, a formula of temporal logic, or in the form of a scenario (Message Sequence Chart
[Mau96, IT00] or Live Sequence Chart [DH01]). These tools can be used to verify properties of
relatively small descriptions, i.e., mainly of medium-size components or systems. In order to make
the verification of complex systems that are compositions of components tractable, two kinds of
methods have been developed:

• abstraction, to hide the internal structure of sub-components and to synthesize the externally
visible behavior of a component by abstracting, whenever possible from interactions between
internal components

• compositional verification techniques, which are similar in nature but based on character-
izations of components in terms of (temporal) properties and use of deductive verification
techniques

Most model-checkers work on finite-state systems only, but in the last years also tools for checking
decidable or semi-decidable properties of infinite-state systems (such as parameterized systems, sys-
tems with counters or communication through lossy channels) have been developed. Nevertheless,
at present these tools are not integrated with any existing tool for component-based development.

For modeling languages like SDL or UML, which can be used to describe interface behaviors, there
exist case tools [USE01, Ilo, Tel] with restricted simulation and validation facilities, allowing to
validate a composition of a set of components described by their interface behavior by simulation.
Nevertheless, none of these tools provides facilities for defining observation criteria that are neces-
sary to explicitly hide internal information. Industrial practice is mainly based on testing and/or
on model-based simulation. The step from a complete functional model to an implementation, for
example in C can be done automatically in some contexts. For synchronous languages, and for
SDL, automatic code generators exist and are being used.

It should be noted that system validation is in general not done for arbitrary environments, but
with a particular, restricted environment (including the underlying platform) and a restricted
number of possible interaction scenarios in mind. This reduces the amount of non-determinism
and makes validation more feasible, which then gets very close to testing of a restricted number
of scenarios played by the environment. In this context, level 3 specification have the considerable
advantage over level 2 specifications that encapsulation of internal activities need not be done a
priori for all uses of a components, but after restriction to a particular environment. This allows
for the derivation of stronger global properties.

Research Challenges

The short-term perspective is to integrate existing academic model-checking tools to validate com-
ponent properties, and to derive system properties from (relatively) complete component properties
using professional development tools. Another important direction is to develop tools for run-time
monitoring of properties given in terms of sequence charts, automata, TL, etc.

Compositional methods that allow the derivation of properties of realistically complex systems do
not really exist. For this, more research on automatic abstraction and property extraction by static
analysis is needed. Nevertheless, there will be no ultimate verification method for the verification of
arbitrarily complex systems. When verification is an issue, systems must be built having verification
in mind. Requiring only level 2 specifications, which capture only input/output relations, is too
drastic. Nevertheless, the identification of adequate restrictions to obtain reasonable complexity
at each level of composition is a key issue.

Ongoing interesting work on composition principles that tries to formulate sufficient conditions for
guaranteeing the preservation of component properties during composition can be found in [BGS00,
GS02]. Principles that allow the inference of system properties directly from component properties,
would certainly provide more motivation for the verification of components. An interesting research
challenge is the study of architectures that support such composition principles.
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4.5 Timing Properties (Level 4)

Definition

Timing requirements define constraints on the order of occurrence and on upper and/or lower
bounds of durations between events. We can distinguish between hard real-time systems, where
all the occurrences of the specified events must satisfy the specified constraints, and soft real-time
systems where the distribution of the durations between the specified events over all occurrences
within an execution must obey some constraints, e.g., on average and variance etc. In this section,
we consider timing properties for hard real-time systems, for soft real-time and QoS we refer to
the next section.

Specifying timing requirements

In current practice, time bounds can be associated with the duration between events in an
informal or (semi)formal requirements specification. Typical timing properties are the following
ones, where time requirements are expressed using physical time, e.g., seconds, some abstract
time unit, cycles of some clock or number of computation steps. When different requirements
and definitions of a system are expressed using different notions of time, it is important that the
relationship between these different notions is well defined.

• When called, this method is computed within 20 ms (execution time property).

• This function is computed periodically, with a period of 50 ms (periodicity property)

• packets are sent with a frequency of 50Hz and a maximal jitter of 1ms (periodicity property)

• Component C receives data requests at most every 3 ms (interarrival time property)

• When the value of variable x exceeds 100, component C is notified within less than 10 ms
(reactivity property)

• If lightning strikes, transformers is shut off within 50 microseconds (response time property)

• RPM does not exceed 50000 for more than a few seconds during the start phase.

• The response to this signal comes within 3 cycles (response time property)

• When component C gets a request every 2 to 3 cycles, it provides the response within 2
cycles (conditional response time)

• the execution time of task T is 20 to 30 ms and its overall duration should not exceed 100m.

Note that such properties can express both requirements and assumptions depending how they are
used.

Existing formalisms that allow the expression of time bounds are in fact extensions of level 2
and level 3 formalisms extended with time. They include metric temporal logics, i.e., temporal
logics with quantitative constraints on the duration between events, timed extensions of automata,
sequence charts extended with time, timing diagrams or general constraint languages, like OCL,
extended with time. For example, in Message Sequence Charts [IT00] and also in Sequence Dia-
grams in some UML tools, time bounds can be assigned to the distance between two events. In
Live Sequence Charts [DH01], time dependent properties are expressed with timers, meaning that
durations cannot be measured, but only constrained. Timed automata are more expressive: they
specify constraints between events by means of so called ”clocks” measuring durations, which are
reset to zero at the occurrence of one event, and then used in ”guards” to restrict the possible oc-
currence times of other events. A notion of urgency allows to distinguish between time constraints
and time guards.
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Temporal logics extended with time have rather limited expressive power. Sequence Diagrams
define time constraints in the context of certain scenarios, and are very cumbersome if the overall
number of scenarios is big. Timed-automata based formalisms naturally define constraints on all
possible scenarios, but it is harder to argue about particular ”interesting” scenarios.

Some programming and modeling languages have an explicit notion of time. In synchronous
languages one can define behaviors occurring at certain cycles, where cycles of various lengths
(all multiples of a basic cycle) can exist. In the modeling languages SDL and Room, a notion of
global time and timers can be used. But all these formalisms are aimed at the definition of time-
dependent behaviors, rather than at expressing real-time requirements. ITU recommends time-
extended Message Sequence Charts for defining real-time requirements for SDL system models.

For UML, which contains both formalisms for functional behavior descriptions and for express-
ing requirements and constraints, recently a ”profile for real-time, scheduling and performance”
has been defined [OMG01b], including notions of timers, timed events, constraints on their time of
occurrence and a large number of notations for which no semantics are given. These notions are de-
fined for all of UML, but have apparently been built with mainly timed Sequence Diagrams in mind.
A more elaborated RT-profile for UML, also based on a large number of intuitive notations, but
including semantics, is being developed in the OMEGA IST project (http://www-omega.imag.fr/).

Note that component timing properties depend in general on a given platform and system con-
figuration. They must therefore either be properties of a system component (i.e., the running
software together with platform and run-time system) be parameterized by (characteristics of) the
undelying platform, compiler, etc.

Component Interoperability and System Properties

There is a vast literature on timing analysis, treating the problem of determining whether a set
of given system timing requirements can be met by a collection of components with known timing
parameters. The most common paradigm is schedulability analysis, which takes as input compo-
nent timing properties, system timing requirements (on response times, periods, deadlines, etc.),
and properties of the scheduler and platform. The output is an answer about feasibility and infor-
mation about how the scheduling should be performed. In the context of hard real-time systems,
it is important to answer the following questions: ”to which extent a component based approach
is possible?” and what kind of ”components” are useful in this context. For this purpose, let us
look at what is current practice:

• Scheduling of periodic tasks. Mainstream schedulability analysis assume that tasks are
executed periodically or aperiodically with known maximal activation frequency. For each
task a worst case execution time is known or assumed, and where applicable also the worst
case communication requirements, overhead for context-switching, etc. on a given platform.
A simple framework is RMA, where all tasks are periodic, can be preempted, and have a stat-
ically known pattern of access to shared resources. Under suitable conditions, schedulability
can be analyzed in a time proportional to the number of tasks. This approach is present in
MetaH and Rubus and to some extent in PECOS. In general, an integration platform need
not perform the schedulability analysis itself; this can be done by an external tool. Schedu-
lability analysis can also be performed for distributed platforms, if communication delays
have known bounds. An example is the Volcano system on CAN. This approach has also
inspired the Real-Time profile of CORBA, and in the area of languages, Java-RT and Posix.
The approach is mature and has proven practicality.

In this context, a component may realize tasks or represent a shared ”resource” used for the
realization of certain sub-tasks. Its interface must, therefore, specify its worst-case execu-
tion time for each task (or sub-task) for the platform under consideration and the implied
resource usage. It must also be stated whether pre-emption is allowed, and whether multiple
concurrent invocations are perimtted.

• Synchronous Approach. This paradigm enforces a very strict scheduling policy. Globally,

29



the system is seen as a sequential system that computes in each step or cycle a global output to
a global input. The effect of a step is defined by a number of transformation rules. Scheduling
is done statically by compiling the sets of rules into a sequential program implementing these
rules and executing them in some statically defined order. A uniform timing bound for the
execution of global steps is assumed (system requirement).

In this context, components are often ”design-level components”, as the component-based
design is compiled into a single sequential program later on. In this case the analysis of the
WCET (worst case execution time) of a single step is done on the target code directly. An ex-
tension to the use of run-time components consists of generating code containing calls to those
components. Some component models, such as IEC61131-3 use this execution paradigm. In
some sense, this approach is quite close to RMA, where the ”global period” plays the same
role as the ”global step”.

TTA defines a protocol for extending the synchronous languages paradigm to distributed
platforms. In this context, distributed components can be made easily interoperable as long
as they conform to the timing requirements imposed by the protocol.

Another component view consists in considering an entire synchronous system as a ”com-
ponent” communicating (asynchronously) with its environment by buffering inputs from the
environment and/or relying on certain continuity properties of the environment. This is
sometimes called the GALS (Globally Asynchronous, Locally Synchronous) approach.

• Generalizations: Currently under investigation in the research community are generaliza-
tions of schedulability analysis to distributed systems and to more dynamic task sets, e.g.
with reconfiguration (this is discussed in action 3). Another extension consists in considering
components with a more complex structure than entities realizing a set of periodic tasks
with a global WCET, e.g., components which have an internal state, as described by a state
machine, or systems with modes. Quite a number of tools have been developed recently,
aiming at analysis of this kind of systems, such as Taxys [BCP+01], Prometheus [Gös01], IF
[BGM02], or Times [AFM+02] . An ambitious example of a model and framework supporting
this and other paradigms is Ptolemy [RNHL99, Lee01] or Metropolis [BLP+02].

In this context component interoperability is to some extent subsumed under the timing analysis
done when checking that system requirements can be met. This analysis includes checking that
the components can cooperate to satisfy the system timing requirements. In the context of soft-
real-time system, composition frameworks as proposed in [BGS00] are very promising.

Verifying Component Properties

A difficult point in timing analysis is assessment of WCETs of tasks or of the code implementing
a global step of a synchronous system. In current practice, this is done by measurements (on
each particular target platform), or by simulation, e.g., by using hardware simulators. Recently,
there has been progress in static code-based prediction of WCET by taking into account a very
precise platform model [FHL+01, FW98]. Note that WCET calculation is becoming more and
more complex, since new hardware features of processors are increasingly unpredictable, and due
to the sometimes complex platform dependencies. In order to make assertions about upper bounds
of durations, both time-dependent characteristics of the external environment and of the platform
on which the component is executed, as well as knowledge about all resource usage, need to be
known. Work on extracting timing information from peripherals and other devices remains to be
done.

Research Challenges

Recently, important advances have been made in the domain of timing analysis, as well con-
cerning execution time estimation for individual tasks, and also concerning interoperability and
scheduling analysis. Design-time timing analysis is being integrated into component-based design.
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Often, traditional scheduling theory is adopted: parameters of some scheduling paradigm are added
to the interface/specification of components. Such interface/specifications are also standardized
[OMG01b]. Classical scheduling theory assumes that system architectures and components have a
certain structure. A number of approaches exist which go beyond the classical theories and propose
techniques to extend timing analysis to less constrained forms of component specifications (e.g., as
timed automata). Nevertheless, a number of open and challenging problems remain to be solved:

• The major effort in the short term is to integrate the analysis capacities of the above-
mentioned tools for both

– low-level timing analysis based on abstract interpretation and

– for interoperability analysis based on timed automata or other more general task de-
scriptions into component-based design.

• Presently, there exist a number of approaches trying to extend the well-understood, but
restrictive paradigms provided by the synchronous approach or by classical RMA analysis
to more general frameworks. For example, TTA is an approach extending the applicability
of the synchronous approach to distributed systems. A system like Giotto[Hen01] extends it
with more dynamic scheduling of the tasks making up a step.

A really challenging research task consists in the development of a paradigm that encom-
passes the whole spectrum of approaches from the very strict synchronous approach to the
fully asynchronous approach, including distributed systems. Such a paradigm must provide
a semantic framework for composition of time-dependent components, based on different
communication and interaction modes. This will allow the verification of compositions of
time-dependent systems and their properties at modeling level.

• A number of features, such as run-time update and dynamic reconfiguration of systems,
which provide some of the motivation for using a component-based approach, have so far
been essentially avoided in systems with hard real-time requirements. It is an interesting
research question, whether such features can be reasonably included into hard real-time
systems.

We anticipate that componentd-based development will come, also to the world of hard real-
time systems; but it requires an adaptation of component models and frameworks - a process
already on its way for the asynchronous task paradigm, where one may expect to see results in
the immediate future. Using the synchronous paradigm in component-based development can in
some contexts provide a very attractive solution, but it is unlikely to become very widely spread.
Research into systems that consist of (small) synchronous components embedded into asynchronous
environment seems like a promising direction. This will form a basis for the development of tools
that produce dependable hard real-time systems in the range of small systems, and provide an
attractive technology for building components for larger systems. The challenge is to consolidate
the results and invent methods and tools that are mature enough to be offered to industry as a
future state of the art.

4.6 Level 4 - Quality of Service

Definition

A quality of a system can in general be considered as a function mapping a given system instance
with its full behavior onto some scale. The scale may be either qualitative, in particular it may be
partially or totally ordered. Or the scale is quantitative, in which case the quality is a measure.
The problem of realizing systems that have certain guaranteed qualities, also known as their quality
of service (QoS), involves the representation of such qualities in design models or languages and
techniques to implement and analyze them as properties of implemented system instances.
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While some definitions of ‘QoS’ include concepts such as security, where the scale is not a measure,
we here focus on quantitative measures, especially on those related to time. In this area, there
is a common further classification of system requirements, distinguishing between hard real-time
requirements, where the quality of any implemented system instance must lie in a certain interval,
and soft real-time requirements. Typical examples of such requirements are: ”The average lifetime
of the battery pack is 4hours”, or ”The probability of a buffer underrun is less than 0.001”. This
is the focus of this section, hard real-time systems are handled in the preceding section.

Embedded System Context

Embedded systems designers are usually facing many challenges if they strive for systems with
predictable QoS. To incorporate these constraints in the embedded systems design process is a
challenging issue, for the following reasons.

• The system dynamics is becoming ever more complex, making it more and more difficult to
observe or predict the QoS properly.

• The trend to networked embedded systems raises issues like message buffering, interdepen-
dencies due to media sharing, and communication characteristics, all influencing the system
QoS.

• Applications involve more and more extra-functional features in the form of multimodal
interfaces and multimedia support, having impact on the QoS.

• Modeling and analysis facilities for QoS are (if at all) not well integrated in the methods and
tools available to embedded system designer, because QoS relates to different design aspects
than the functional design.

For reasons such as these, encapsulation of QoS properties inside a component is very difficult.
Work has been done however, mainly on the definition of QoS contracts. A workable approach
appears to be to attach ‘offered’ QoS properties (much like postconditions) to components, as well
as ‘required’ QoS properties (resembling preconditions) [Sel02].

Specifying system and component requirements

Contract Languages. Research has progressed in the context of languages to specify such con-
tracts, and to attach them to component interfaces. We mention QuO/CDL (http://quo.bbn.com),
AQuA (http://www.crhc.uiuc.edu/PERFORM/AQuA.html), QML [FK98], and AQML [Nee91].
These are mostly syntactic extensions of CORBA’s Interface Definition Language (IDL) tailored
to express QoS properties. In order to be useful in component based systems, contract languages
must include facilities for expressing properties typical of components, that is, their context depen-
dencies [WBGP01]. A component provides a service under a given contract only if the surrounding
environment offers services with adequate contracts. Such dependencies are much more complex
than the traditional pre/postcondition contract scheme of object oriented programming.

In the most general case, a component may bind together its provided contracts with its required
contracts as an explicit set of equations (meaning that offered QoS is equal to required QoS).
Therefore, a component oriented contract language include constructs for:

• expression of QoS spaces (dimensions, units);

• primitives bindings between these spaces and the execution model (bindings to observable
events, conversion from discrete event traces to continuous flows, definition of measures);

• constraint languages on the QoS spaces (defining the operations that can be used in the
equations, form of these equations).
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Verifying Component QoS Properties

In an ideal world, a component user (i.e., a designer that picks a component to include it in a design)
has precise information on the QoS behavior of the component with respect to its environment.
Then, during component composition, some answers on the QoS behavior of the composed system
could be computed.

In practice, contracts written in languages such as QML or QuO are compiled to create stubs that
monitor and adapt the QoS parameters when the system is operational. This QoS adaptation
software is, in effect, equivalent to a controller for a discrete system. In the approaches practiced
today, the following issues limit the confidence that a designer can put in QoS declarations of a
component.

• The existing QoS contract languages are not equipped with a formal meaning, thus do not
provide a basis for formal proofs, nor can be used to perform symbolic computations.

• The QoS contracts often involve very complex dependencies.

• There are no techniques to prove that a given component implementation abides by the QoS
contracts of the component declaration.

• The runtime monitoring cannot fully observe and measure the component’s behavior in the
defined QoS space, because of technical limitations (e.g., undersampling of events, distributed
delay computation).

QoS contract negotiation and adaptation. Components are bound to run in diverse architec-
tures. As a consequence, soft-real time QoS properties are often considered as ”promises”, and in
practice implemented with best effort techniques. QoS contracts are thus not interpreted as final
and non-negotiable constraints (differing from the classical interpretation where postcondition fail-
ure means bad design). This implies that run-time violations of the contractually agreed QoS can
occur. In particular, the component characteristics of ”fully explicit context dependencies” and the
possibility of being able to ”be deployed independently” are not met by these approaches. Instead
the contracts are understood as guidelines for what has to be achieved, and architectural choices
by the designer must make provision for variation as well as fallback (minimal) constraints.

Classical component (i.e., non QoS aware) technologies already include facilities for dynamic dis-
covery of resource availability (in other words: level 2 contract negotiation). QoS contract models
must support adaptability even further, because a contract may be valid at some instant and in-
valid at a later time (while level 2 contracts stay valid once ”discovered” in a given component
execution). Such a support requires means of specifying variation in the QoS contract model, as
well as adequate contract monitoring support.

Contract monitoring. Since contracts must be monitored during component execution, the
component infrastructure must provide some support to the designer. Building contract monitors
is a difficult task, often more difficult than the design and coding of a component implementation.
Typical difficulties include

• reliable access to execution events and to precise time for sampling;

• computing with distributed events;

• coordinating distributed monitors, etc.

Therefore, monitors must now be designed by specialists. A component implementation is then
augmented by specific pieces of contract monitor. Since time is often an important factor of
QoS contracts, the monitor code must be efficiently synchronized with the service code of the
component. Aspect oriented programming [KLM+97] and aspect-oriented design [CW02] may
provide efficient means of extending a component with contract monitors when those are designed
as aspects weaved with the component architecture [HJPN02].
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Predicting System Properties from Component Properties

Model-based approaches. We here survey techniques for statically analyzing system perfor-
mance properties. A workable modeling and analysis approach to embedded systems QoS is based
on the observation that networks, interfaces, and even circuits on chips [Con02, Ten00, Ray02] can
be understood and modeled as discrete systems exhibiting stochastic behavior, such as error rates,
response time distributions, or message queue lengths.

Mathematically speaking, the QoS characteristics of a given embedded system induce families of
stochastic decision processes, e.g. Markov chains or semi-Markov decision processes. However,
these mathematical objects are too fine grained to be directly specifiable by an average embed-
ded systems designer. Therefore, one must rely on modeling techniques and tools for stochastic
processes.

Stochastic modeling and analysis research has given birth to many diverse formalisms, most of
them accompanied with tools supporting a QoS-oriented design. This section gives a brief account
of the most prominent representatives.

Queuing Networks. Rooted in the early approaches to QoS estimation for analog telecommu-
nication networks, queueing networks have since then been used to quantify the quality of many
communication system and multiprocessor networks. Queueing networks provide traffic-oriented
modeling, where flows of jobs travel through a static structure consisting of queues and processing
units [Kle75, Kle76]. Various tools for modeling and analysis of queueing networks exist, such as
Qnap2 (http://www.simulog.fr/eps/mod1.htm), and Opnet (http://www.opnet.com/), both being
commercial products.

Stochastic Petri Nets. Stochastic Petri nets [Mol82, MCB84, SM91] are extending Petri nets
with means to specify stochastic phenomena, and hence allow one to build QoS models. They can
alternately be viewed as extension of queueing networks with dedicated means to model resource
contention and several other features which are difficult to model in plain queueing networks
[Chi98]. In this sense they are more appropriate for contemporary embedded and concurrent system
design. Various academic tools exist, among them GreatSPN (http://www.di.unito.it/ greatspn/)
and Mbius (http://www.crhc.uiuc.edu/PERFORM/mobius.html).

Hierarchical models. Modular and hierarchical design has been one of the challenges in QoS
modeling. Among the first hierarchical methods is Hit [BMW89], which allows one to cap-
ture system functionalities and bind it to system resources in a layered approach (http://ls4-
www.cs.uni-dortmund.de/HIT/HIT.html). Other methods, including Quest (http://www.cs.uni-
essen.de/SysMod/QUEST/) [DHMC96] and LQNS (http://www.sce.carleton.ca/rads/ek-rads-etc/software.html)
[WHSB98] have developed this idea further. Among others [ESCW01] applies this approach to the
UML setting.

Compositional models. Another approach to construct complex QoS models is the compo-
sitional one, where systems are incrementally constructed out of smaller components. Typical
representatives are Pepa [Hil96], Imc [Her02], and Spades [DKB98]. Tool support exists, e.g. as
an add-on to the CADP toolkit (http://fmt.cs.utwente.nl/tools/pdac/) but is not as extensive as
for the Petri net-based approaches.

Annotated design methods. Many formal and semiformal design notations have been decorated
with QoS characteristics, in order to allow for a QoS prediction on the basis of an integrated model.
This approach has been followed e.g. for MSC [Ker01], for SDL [DHMC96], and for Statechart
dialects [CHK99, GLM00]. The tools that have appearently been developed for in-house case
studies are not publicly available.

Shortcomings. In view of these diverse modeling facilities for QoS, it seems necessary to address
the question what shortcomings exists, and what prospect QoS modeling and analysis may have
in the coming decade.

• On the principal level, still far too little research is done on the question how to obtain the
QoS characteristics to model decisive system aspects or activities. Such characteristics must
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be derived from real measured system aspects and activities, respectively. For embedded
systems, this issue is even more complicated than in other areas, because of the crucial role
of the embedding environment.

• On the analysis side, the success of modular modeling methods is variable. While composi-
tional methods so far focus on model construction, not analysis, the layered analysis methods
produce notoriously imprecise QoS results (where the inaccuracy relative to the true QoS
can be unbounded).

• On a conceptual level, there is still a disturbing gap between the state-of-the-art in functional
design, which is component-oriented, and the mainstream QoS analysis tools which are flow-
oriented, as in Petri nets or (layered) queueing networks (where tokens or jobs flow through
a static structure). This gap – which is also apparent in the relevant UML profile [OMG01b]
– hampers a seamless integration in the design process.

• This gap is related to the fact that QoS properties of systems can in general not be deduced
from the QoS characteristics of components alone. At least the relevant communication
aspects (either direct ones or platform dependent ones) must be taken into account as well.

• The existing QoS contract languages do not possess a precise interpretation that can be used
for rigid assessment of contractual obligations.

Research Agenda

The above shortcomings suggest the following research strands to strengthen the development of
embedded systems with predictable QoS.

• To enable a modular reasoning about QoS, pre/post condition style contracts should be
developed, allowing one to specify interfaces with ’required’ vs. ’guaranteed’ QoS [Sel02].
Since virtually any QoS measure is a stochastic quantity, both QoS guarantees and QoS
requirements must be expressible in a probabilistic setting ( a simple example would be: ’in
95answer must come within 3 seconds’)– as opposed to an absolute setting (’the answer must
come within 3 seconds’). In full generality one needs means to express those quantities via
probability distributions which may be parameterized by the component input.

• Due to the fact that QoS characteristics of a system cannot be derived only from QoS
characteristics of components leads to the necessity to reconsider the architectural approaches
in such a way as to at least reduce the dependencies of different parts of systems.

• The size and complexity considerations sketched in the beginning of this section ask for major
research endeavors with respect to management of the design for predictable QoS. Efforts
must be undertaken to strengthen a compositional reasoning with probabilistic quantities.
The layered analysis approach is going in this direction, but is too inaccurate. Better, and
more manageable, compositional methods are needed.

• A seamless QoS design process relies on a smooth but solid integration of the QoS modeling
and analysis concepts into a well-designed integrated formalism, which is semantically deeper
than a shallow annotational extension of the UML. Put differently, we need QoS contract
languages with precise semantics. A seamless design process also requires that QoS design
and engineering principles must be transferred from a flow-oriented to a component-oriented
modeling paradigm.

• Industrial-strength tools supporting this integrated QoS design process are needed. These
tools are expected to emerge as extensions of existing component-oriented modeling and
analysis tools.
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4.7 Reliability

Reliability is discussed in Section 4.1 of the Action 1 HRT Roadmap. We will therefore here be
content with a short account.

Definition. A technical definition of reliability can be given in terms of the probability that the
system work as intended (provide its service) during a certain time period. Two major techniques
for reliability analysis are fault trees and stochastic analysis using Markov chain. Stochastic analysis
can be carried out using techniques that have been discused in the previous Section 4.6. Here, we
will just indicate how they can be specialized to consider reliability analysis.

Description of Component Properties. A standard approach is to associate components
with a reliability model, which involves fault events, error states, fault arrival rates, and a Markov
chain model of how the component responds to fault events.

Analysis of System Reliability Properties. The system description must describe how errors
propagate between components. Then the reliability models of individual components can be
combined into a global Markov chain, which can be analyzed using a separate tool for Markov
chain analysis. This approach is used in the MetaH toolset, where the SURE/PAVE/PAWS tool
(from NASA LAngley) is used to solve the resulting Markov chain.

4.8 Specifying and Reasoning about Contracts: Summary and Analysis

From the various information of this Section 4, it is clear that the main difficulties of the contract-
based specification, verification and validation fall into a few general categories:

• Harmonization of Specfication Techniques: Current contract-based specification tech-
niques use notations and models that are quite different. In order to fully support all aspects
of component based design, these notations and models must be harmonized. This not a
simple task: for instance, crossbreeding notations and research results on behavior specifi-
cation and performance analysis is not obvious; one needs a time model that is compatible
with the behavior notation as well as the component framework.

• Obtaining Extra-Functional Properties of Components: Timing and performance
properties are usually obtained from components by measurement, usually by means of sim-
ulation. Problems with this approach are that the results depend crucially on the environ-
ment (model) used for the measurements may not be valid in other environments, and that
the results may depend on factors which cannot easily be controlled. Techniques should be
developed for overcoming these problems, thereby obtaining more reliable specifications of
component properties.

• Obtaining Component Properties by Static Analysis: Functional, and some non-
functional component properties can in principle be inferred by static analysis of the software
itself, although it is often difficult in practice. Some interesting recent advances concerning
synchronization and timing properties prompt for further work to enlarge the scope of static
analysis techniques.

• Dependency on the Underlying Platform: Many component properties are highly de-
pendent on its environment, including other parts of the system as well as the system plat-
form. It is highly non-trivial to express component properties in such a way that these
properties can be applied in a variety of environments. As an example, properties of ex-
ecution times of components depend crucially on the timing properties of the underlying
platform. There are currently no widely usable solutions for specifying the timing behavior
of a component in a platform-independent way.
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• Techniques for Building Run-Time Monitors: Contracts must in general be moni-
tored during component execution, unless there are guarantees that a component satisfies a
contract. For embedded systems, techniques for (automatically) constructing efficient (us-
ing limited resources) monitors from contracts must be further developed. Aspect oriented
programming [KLM+97] may provide structuring techniques for adding monitors to a system.

• Diagnosing Causes of Poor System Properties: When the predicted system proper-
ties do not meet requirements, it is important that analysis techniques can point at the
“bottlenecks” in a design, i.e., the components that “cause” poor system behavior.

• Guidelines for Tractable Analysis of System Properties: The verification and pre-
diction of system properties from component properties is in the general case an intractable
problem, i.e., general techniques can cope only with systems of small or medium complex-
ity. To master this complexity, we need guidelines for structuring assemblies, in other words
software methodologies that help the designer to build ”tractable” architectures by enforcing
well chosen restrictions.

• Adapting Well-Understood Design Principles: Many advances in component technol-
ogy have been obtained by adaptation of well-understood design techniques to the component-
based setting. An example is the use of classical schedulability analysis and reliability anal-
ysis in some component technologies for real-time systems. There are many other practical
techniques that could potentially be adapted to and enrich component technology.

• Relating Generic Contracts to Specific Platforms: Existing component models and
their supporting frameworks may often rely on particularities of the underlying platform.
Hence they do not necessarily match the platform independent, contract-based specification
techniques. There is therefore a need to bind platform independent notation, techniques and
tools to platform dependant models. This is a difficult issue, because component infrastruc-
tures are very different fom one application domain (eg automotive systems) to another (eg
network based information systems). Each class of platform brings specific difficulties; for
instance a network model may not match a real protocol implementation on some platform,
from both the behavioral and quality of service points of view. One potential solution to this
platform dependency problem could be the implementation of architecture transformations
along the lines of the MDA approach.

• Tool Support: must be developed to support the tasks described in this section.

5 Component Models and Integration Platforms: Landscape

This section is an overview of existing component models and component integration platforms.
The emphasis is to describe the component models themselves, and their support for handling the
aspects that are described in Section 4. In some cases, particularly for proprietary component mod-
els, there is a tight connection between the component model and a particular integration platform,
and sometimes also to a particular ADL. We then describe separately the model itself. Thereafter
follow descriptions of (some) available toolsets and platforms that support this component model.

The emphasis of the overview is to shortly describe for each model, how it supports the aspects
that were described in the previous section.

• Component Model, including its support to describe different properties in component inter-
faces

• Composition

• Verification and validation tools and techniques

• Supporting integration platforms

37



5.1 Component Models for Embedded System Design.

First in this overview, we survey component models and platforms that have been developed for
application to embedded systems. Typically, component implementations are given in a compilable
language, (C being the most common one) and are composed before compilation. Execution
semantics are given by a run-time executive or a simple RTOS.

5.1.1 Programmable Logic Controllers: the IEC 61131-3 standard

Introduction
In the area of Industrial Automation, PLC’s (Programmable Logic Controllers) are a widely used
technology. However, for the last twenty years, the corresponding applications have been written
in many different languages, resulting in inefficient work for technicians, maintenance personnel
and system designers. For instance, there are numerous versions of the so-called ladder diagram
language, and furthermore this language is poorly equipped with facilities such as

• control over program execution,

• definition and manipulation of data structures,

• arithmetic operations or

• hierarchical program decomposition.

These problems led to the constitution of a working group within the IEC (International Electro-
technical Commission), with the aim to define a standard for the complete design of programmable
logic controllers. While previous efforts had been made before, IEC 61131 has received worldwide
international and industrial acceptance. The first document introducing the general concepts
was published in 1992 and followed by the definition of equipment requirements and tests. The
core of the standard is its third part, published in 1993, which describes the harmonization and
coordination of the already existing programming languages. The 8 parts of the standard can be
purchased at http://www.iec.ch.

Note that, due to the various types of hardware, the aim is not toward a single programming system
for all controllers. Instead, certified IEC 61131-3 programming systems have an agreed degree of
source code compatibility and have a similar look and feel. Yet they will differ in debugging
features, speed, etc.

An international organization of users and producers, PLCopen (http://www.plcopen.org), was
founded in 1992 with the aim of promoting the development and use of compatible software for
PLC’s. PLCopen offers tests for IEC 61131-3 compliance, but also a course, designed for expe-
rienced or beginner PLC programmers who want to develop software according to IEC 61131-3
and for support and implementation engineers who modify systems programmed according to IEC
61131-3. There are also smaller users-only organization, e.g. EXERA, which propose tests for the
compliance of programming environments.

Short Technical Description.

• Component types: An application is divided into a number of blocks.

• Supported languages: A block is written in any of the languages proposed in the standard.
There are two textual languages (ST, IL) and three graphical languages (FBD, LD, SFC).

– 1) Function Block Diagram (FBD) is used for the description and regulation of
signal and data flows through function blocks. It can nicely express the interconnection
of control system algorithmics and logic.

– 2) Structured Text (ST) is a high level textual language, with a Pascal-like syntax.

– 3) Instruction List (IL) is an assembler-like language, found in a wide range of PLC’s.
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– 4) Ladder Diagram (LD) is a graphical language based on the relay ladder logic,
which allows the connection of previously defined blocks. For historical reasons, it is
the most frequently used in actual PLC programs.

– 5) Sequential Function Chart (SFC) is used to combine in a structured way units
defined with the four languages above. It mainly describes the sequential behavior of
a control system and defines control sequences that are time- and event-driven. It can
express both high-level and low-level parts of a program.

• Visibility of Underlying Hardware: While it aims at enhancing portability of PLC
programs, the IEC 61131-3 has several features referring to the actual underlying hardware
(variables can be linked to physical addresses, etc.)

• Syntactic Support: Each functional block has a set of in-ports and out-ports. IEC 61131-3
also requires strong data typing and provides support to define data structures, which
can be used to transmit information as a whole between different units. More precisely, while
a function simply computes its output from its input, without internal variables, a function
block consists of a set of data, together with the algorithms handling these data, a bit like
the definition of class in an object-oriented framework (no further comparison can be made,
though). Input and output parameters must be formally defined, to ensure a clean interface
between different function blocks. This notion thus appears as an important feature, meant
to encourage the development of well-structured software: blocks can be viewed as the basic
components of a program. Since it is re-usable within a given program, but also from outside,
an increased use of such blocks will lead to the construction of powerful libraries.

• Support for Functional/Extra-Functional Properties: Function block execution may
be periodic or event-driven. There is no support for analyzing other properties than syntactic
properties.

Tools for the IEC 61131-3 Standard
Today, all large suppliers of PLC’s have announced IEC 61131-3 compliant development systems.
They propose different programming environments (prices up to 3 Keuros) for code generation
toward given hardware, with some architectural aspects as parameters. For instance:

• Siemens with STEP7

• Allen Bradley with Control Logic

• Schneider-Electric with PL7PRO.

There are also smaller suppliers, either for PLC’s only, or for programming platforms only. Of
course, due to developments in the industrial market producers may not always be 100% standard
compliant.

Assessment and Further Needs

The IEC 61131-3 standard is widely spread. Compared with traditional programming systems,
it appears to be a major step forward. The new set of languages is said [Lew98] to significantly
improve the quality of PLC software, and in particular to overcome the weaknesses of previous
versions, especially about the above mentioned Ladder Programming. The improvement also
concerns the communication and software model. Finally, a major benefit for end-users using IEC
61131-3 compliant products will be inter-system portability.

However, the IEC 61131-3 standard is not fully mature and the portability issue remains an impor-
tant problem. For instance, users feel the need to have textual files, that can be used to connect
different platforms. Furthermore, some ambiguous semantics remain for the languages. Finally,
new requirements emerge: systems will become more distributed with more parallel processing.
Therefore, new standards are under development, such as the function block standard IEC 1499,
not to replace the former but to work in conjunction.
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5.1.2 Koala

Introduction
Koala is a component model and an architectural description language that successfully works for
consumer electronics devices. Koala is developed and used at Philips. It was designed to build
software control units for consumer products such as televisions, video recorders, CD and DVD
players and recorders, and combinations of these (e.g. a TV-VCR). Koala is currently in use by
a few hundred software engineers for the creation of a family of televisions. More information of
Koala can be found in [vO02], [vOvdLK00], [FEHC02].

Short Technical Description.

• Component types: A Koala component is a piece of code that can interact with its envi-
ronment through explicit interfaces only. As a consequence, a basic Koala component has no
dependencies to other Koala components.

– Component Implementation is a directory with a set of C and header files that may
use each other in arbitrary ways, but communication with other components is routed
only through header files generated by the Koala compiler, based upon the binding
between components.

– Component Interface: the directory also contains a component definition file, de-
scribing among other things the interfaces of the component.

• Visibility of Underlying Hardware: The Koala component model itself is done on an
abstraction level that is independent of hardware. The hardware dependency is encapsulated
in particular components. The entire development environment is adjusted for development
of particular product families which improves the efficiency of the development process, but
looses on the generality.

• Syntactic Support: Connections between components are expressed in terms of interfaces
which are implemented as a small set of semantically related functions. Koala model identifies
two types of interface: provides interface and requires interface. Koala provides interfaces are
similar to the interfaces as known from COM and Java. A component may provide multiple
interfaces, which is a useful way of handling evolution and diversity. Koala requires interfaces
identifies interfaces of other components and interface required from the environment of the
component. All communication is routed through such requires interfaces. Koala interfaces
can be optional. An optional requires interface need not be connected - an optional provides
interface need not be implemented. This allows components to fine tune themselves to their
environment, by observing what the environment can and cannot deliver.

Connectors connect requires interfaces of one component to provides interfaces of another
component. Naturally, in compound components it is also possible to connect provides
interfaces of subcomponents to provides interfaces of the compound component, and similarly
for requires interfaces.

– Interface Compatibility It is allowed to connect a requires interface to a provides
interface of a wider type. The provides interface should implement all of the functions
of the required interface, but it may implement more than that.

– Glue Code can be added to the binding between interfaces. Simple glue code can
be expressed in an expression language within Koala; more complicated code can be
written in C. This allows to easily to overcome a certain category of syntactic and
semantic differences. A special case of glue code is code that switches a binding between
components. Such a mechanism to select between components can be implemented in
C, but it occurs so frequently that a special concept for this is defined in the language:
the switch. The compiler converts a switch internally to a set of Koala expressions,
which has the advantage that it can perform certain optimizations, such as reducing the
switch to a straight binding if the switch is set to a position that is known at compile
time. The binding through the glue module and the switch are examples of connectors.
The Koala language defines no other connectors.
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• Support for Behavioral Properties: No extra-functional properties are specified in the
interface of components. In a system design, it is possible to specify the ordering of tasks using
precedence relations and mutual exclusion. There is also support for deriving some of the
system properties form the components. For example memory consumption of the system is
calculated form the memory consumptions of the components, which is a parametrised value.

• Support for Timing Properties. No support for timing properties.

• Support for Performance Properties. There is no support for modeling performance
properties.

Short information about Koala tools

• Supported languages for component implementations: A component is an implemen-
tation in C language by using specific rules. Koala uses a “Koala language” for constructing
applications from the components by connecting the interfaces of the components.

• Supported development platforms: A proprietary development platform that includes
Koala language and compiler which compose components (C code) exists.

• Supported target platforms: Proprietary platforms.

• Status: The use of Koala is growing within Philips. There are plans for building additional
development environment tools, such as visual composition and visula component selection.

• Availability: There are plans to publish Koala as open source.

• Degree of Automation: The Koala compiler collects the involved components and makes
some optimizations such as removing unused interfaces and resolving connections of condi-
tional types. The component binding is of static type solved by generation of C code. The
compiler can also optimize the memory usage of the application (the so-called footprint),
by eliminating functionality in a component that is not used. Most of the documentation
(header files, etc.) must be created manually. This has not been seen as a large overhead,
although there are plans to improve this process by building a set of supporting tools.

• Run-Time Infrastructure: As in many small embedded systems, a system using Koala
component model is a single-process image, built on a top of a small real-time kernel with
pre-emptive scheduling, which separates the high frequency tasks from the low frequency
tasks. Separate activities can be allocated to light-weight threads, which are managed by the
kernel.

• Analysis Support for:

– Memory Footprint: The Koala component model and its implementation to some
extent allow calculating and predicting resource consumption. For example, memory
consumption can be estimated at composition time (compile time), and this feature
is built in the Koala compiler. For technical details see [FEHC02]. Using this calcu-
lation model it is possible to budget the memory for particular components and by a
parameterization of the interface define the particular properties of the components.

• Library Support: Koala components are stored in a repository. The repository is a set of
packages, where each package is a set of component and interface definitions, some of which
are public, some of which are private.

Summary
The Koala component model is an example of implementation of a component-based approach
that works successfully in a large industry. It is a good example of an evolutionary approach in
building support for component-based development. The design and implementation fulfills the
following requirements [CL02, Ch. 12] related to the component-based approach.
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• It devises a technique with which components can be “freely” composed into products, as
the main approach to deal with diversity in a product population. The technique must
work in resource-constrained environments such as televisions and video recorders (which are
typically 10 years behind PCs in computing power).

• Make the product architectures as explicit as possible, to manage complexity.

• Let components make as little assumption as possible about their environment.

• Allow for parameterized components that are “when instantiated” as efficient as dedicated
components.

• Allow for various ways of connecting components; more specifically, allow for adding glue
code to the connection between components.

These requirements are valid for many embedded and RT systems. Does it mean that the Koala
component model is so general that it is possible to use it in other domains? In many aspects this is
true. The basic principles, which are derived from the basic principles of CBD, are valid in general
for embedded systems. In implementation, in some parts the domain knowledge is implicitly
built in (due to the various reasons, one of them to improve the development efficiency and the
performance). In order to use the Koala model as a general component-model for embedded
systems, some parts should be removed or explicitly separated as domain-specific. The Koala
component model provides good bases for further improvement of achieving predictability of extra-
functional properties.

The strong points of Koala are:

• Separation of the provided from the required interfaces of a component.

• Interaction with the environment, including the underlying hardware-dependent services are
obtained exclusively via the interfaces.

• There is a strict definition of the component development process, including quality assurance,
and a form of component certification.

The weak points of Koala do not lie in the component model itself, but to a large extent in the
lack of tools supporting efficient development in large scale. Currently, Koala developers must
conform to rules that can be violated, unless checked automatically. Potential tool functionality
could include the following.

• tools that manage components (component repository, component browsers, visual environ-
ment, etc.)

• checks that a component has no other dependencies than through its explicit interfaces

• generation of glue could to some extent be automated.

• Support for analysis and composition of timing and performance (and some other properties)
is rudimentary and can further be developed. An obstacle is that many of these properties
are hardware and platform dependent and cannot be a part of a general model.

5.1.3 Rubus Component Model

Rubus is a small Real Time Operating System, developed by Arcticus Systems AB (http://www.arcticus.se/).
Rubus is divided into one part supporting time-triggered execution and one part supporting event-
triggered execution. Time-triggered execution is to support hard real-time applications with a
deterministic execution mechanism. In order to supports component-based development of hard
real-time systems has Arcticus Systems AB together with Department of Computer Engineering
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at Mlardalen University developed a component model and associated development tools for use
with the Rubus operating system [IN02]. The component model is used in projects within Volvo
Construction Equipments Components AB. We include a description of this model, in order to
illustrate how a component model can be developed on top of an execution platform in order to
suit particular needs.

Short Technical Description.

• Component types: A basic Software Component consists of a behavior, a persistent state,
a set of in-ports and a set of out-ports and an entry function. Its main functionality is given
by an entry function. A task provides the thread of execution for a component. The entry
function takes as an argument a set of in-ports, the persistent state, and the reference to the
out-ports. In [NGS+01], it is stated that entry function code may not contain any call to
communication services. Instead the compiler that compiles the system description automat-
ically generates the communication infrastructure. For example, assume that an out-port of
a component A is connected to an in-port of a component B, the generated code (system
task) will assure to copy the information automatically under the given synchronization and
timing requirements. The attributes of a task are Task Id, Period, Release Time, Deadline,
and WCET. In addition, precedence and mutual exclusion ordering between tasks can be
specified.

• Visibility of Underlying Hardware: System descriptions do not mention hardware con-
figurations, they are intended to be used by a schedule synthesis tool.

• Syntactic Support: Each Component has Input Ports and Output Ports for communica-
tion. Tasks in the safety-critical part communicate without buffering. There is a type system
for data

• Support for Behavioral Properties: No functional properties are specified in the interface
of components. In a system design, it is possible to specify the ordering of tasks using
precedence relations and mutual exclusion.

• Support for Timing Properties. The timing requirements are specified by release-time,
deadline, WCET and period. There is a tool for schedulability analysis.

Short information about Rubus tools

• Supported languages: The functionality of a system can be mode-dependent. Temporal
coordination between tasks is specified for each Mode by a software circuit or dataflow model
which specifies the output-input connections between tasks, and timing constraints on tasks
and their composition. Precedence/exclusion information can also be included.

• Supported languages for component implementations: C

• Supported development platforms: Available on Windows and Linux platforms

• Supported target platforms: Rubus OS is ported to a number of target and program
development tools.

• Status: Commercial product.

• Degree of Automation: A tool designated “Rubus Visual Studio” exists, which manages
the components available and their associated source files, so that components can be fetched
from a library and instantiated into new designs.

• Analysis Support for:

– Timing Properties: Scheduling is derived automatically from the ADL description,
using task attributes and precedence/exclusion information. Time-triggered tasks are
statically scheduled, and event-triggered tasks are scheduled on-line by fixed-priority
pre-emptive scheduling.
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– There is currently no support for performance properties, reliability or safety
analysis.

• Support for Distribution: Rubus supports distribution, over buses that supports time
synchronization (such as TTP and TTCAN)

Summary

Rubus is an example of how a component model can be developed on top of an existing RTOS.
The model makes system integration easier, by allowing timing analysis to be performed based on
a system description. The development of the Rubus component model has been a significant im-
provement for software development inside Volvo CE. For future development, the Rubus platform
may face a shortage of tools that support component-based system development, in a similar way
as was discussed for the Koala model. There are currently no automated checks for

• checking that components use only the explicit interfaces for communication,

• WCET (worst-case execution time) analysis of components, nor for

• allocation of tasks to processing nodes.

5.1.4 PECOS

The PECOS project (http://www.pecos-project.org/) [CL02, NAD+02, WZS02, PEC], funded
by the EC under the IST Program (project number: IST-1999-20398), aims to enable component-
based software development for embedded systems such as smart cell phones, PDAs, and industrial
field devices. In order to validate component-based software development (CBSD) for embedded
devices the project has developed the hardware and software for a field device as a case study for
embedded systems with real-time requirements.

The project has included four main activities:

• CBSD processes The PECOS process aims to enable CBSD for embedded systems, specif-
ically for field devices. It addresses the major technological deficiencies of state-of-the art
component technology with respect to extra-functional requirements, such as limited CPU
power, memory and hard real-time.

• Component Model:

– Interfaces are defined by Input Ports and Output Ports, and connectors connect com-
patible ports. Ports have basic types.

– Component Types: Active Components (with own thread), Passive Components
(encapsulating behavior without threads), Event Components (triggered by events)

– The attributes of a Component can specify Memory Consumption and WCET, cycle
time, priority

• ADL: The CoCo Component Language is used for the specification of components,
entire embedded devices, and architecture and system families. In CoCo, a composite active
component (with thread) specifies the execution rules (called schedule) for its subcomponents.

• Lightweight composition techniques The CoCo Component Language is used for the
specification of components, the specification of entire embedded devices and the specification
of architecture and system families. CoCo provides the concept of abstract components,
composition rules to allow composition checking.
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• Platforms and tools A translation from CoCo to target languages such as C++ and
JAVA has been developed. The PECOS model is mapped to a prioritized, pre-emptive multi-
threaded system to realize the different components, passive, active and event. A technique
has been introduced to enable data exchange between components. The developed tools are
embedded in the open source framework ECLIPSE as plug-ins.

Other characteristics:

• Supported Languages: Includes a composition language CoCo that is translated to C++
and Java. A CoCo component structure is mapped to an identical class structure. Connectors
are mapped to shared instance variables in the enclosing object. Ports map to set and get
methods.

• Scheduling: The model does not specify anything regarding the scheduling of components,
what scheduler can be used and how schedules can be checked to see if they are actually
feasible. It only assumes that there is a scheduler.

• Availability: embedded in the open source framework ECLIPSE

http://www.eclipse.org/ as plug-ins. It can include any proprietary integration platforms
(developed by companies such as ABB, Boeing, Dassault, EADS, Thales). So far ABB has
started to integrated the model with its proprietary platform.

Summary

The PECOS is unique in the sense that it addresses several aspects of component-based software
engineering - development and life cycle process, component model that treats temporal and other
extra-functional attributes, architectural modeling and development tools. However the model is
still not fully developed and it remains to be seen how successful its implementation will be.

5.2 Component Models for Run-Time Composition

In this subsection, we survey component models and platforms that have been developed not
primarily for embedded systems. The deployment and composition of components is typically
performed at run-time.

5.2.1 Java Beans

Sun Microsystems initially introduced a client-side (or desktop) component model (JavaBeans),
and subsequently a server-side (or enterprise) component model (Enterprise JavaBeans). Both
of these build on a Java-based approach to distributed applications [Mic02]. In the JavaBeans
specification a bean is a reusable software component that can be manipulated visually in a builder
tool; this differentiates beans from class libraries which cannot benefit from visual manipulation
even if providing the equivalent functionality. Some of the unifying features of JavaBeans are
the support for property customisation (to control the appearance and programmatic behavior
of beans), event handling (a communication metaphor based on delegation and event listeners),
persistence (serialisation of a bean’s state for later reloading or transmission over a network) and
introspection (analysis and manipulation of a beans internal structure, e.g. properties, events,
methods and exceptions). A major quality of the Java Beans component model is its simplicity -
the specification of the model is only a 114-page document [Mic97].

JavaBean was designed for the construction of graphical user interfaces (GUIs). Customization of
components plays an essential role in JavaBean and was originally emphasized to enable incremental
specialization of GUIs from generic exemplars.

Short Technical Description.
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• Component types: A bean is defined as a self-contained, reusable software unit that can
be visually composed into applets, applications, servlets, and composite components, using
visual application builder tools.

Programming a JAVA component requires definition of three sets of data: (i) properties
(similar to the attributes of a class); (ii) methods; (iii) events that are an alternative to
method invocations for sending data. A bean wishing to receive an event (listener) registers
at the event source (component launching the event). In Java, events are objects created by
a source and propagated to all registered listeners. Example: An alarming device (listener)
asks a temperature probe (source) to send it a message when temperature value exceeds a
certain threshold so that a bell can be sounded.

• Syntactic Support in Interfaces: The model defines four types of interaction points,
referred to as ports:

– methods, like a method in Java.

– properties, used to parameterize the component at composition time or as a regular
attribute in the OO sense of the term during run time.

– event sources, and event sinks (called listeners) for event-based communication.

• Other Support in Interfaces: JavaBeans does not support behavioral or QoS properties.

• Support for Introspection: A bean can be dynamically queried for its characteristics (op-
erations, attributes, etc.), through an introspection mechanism available to all Java classes.
The component programmer can, however, restrict the amount of information made avail-
able. To do so, the Java component implements a BeanInfo interface whose methods return
a list of properties, operations, etc.

• Supported Programming languages: code must be written in Java.

• Required ”Middleware”/Framework Support: None.

Short information about JavaBean tools

There are several commercial programming environments, e.g., Sun’s Net Benas, IBM”s Visual
Age, and Borland’s JBuilder. These builders build assemblies visually as a graph of components,
where ports between beans are connected. Note that the JavaBean component model by itself does
not specify how to connect components; this is done by the builder tool.

5.2.2 EJB - Enterprise Java Beans

The EJB model is a server-side component model, which is rather different from JavaBeans. The
EJB specification defines its component architecture in terms of a scalable environment, based on
containers (see below), that provides runtime services for managing component activation, concur-
rency, security, persistency and transactions [JF00]. The EJB specification defines a component
model by standardising the contracts (context and callback interfaces) and services offered by the
runtime environment, and the patterns of interaction between components.

Short Technical Description.

• Component types: There are three types of EJB beans defined:

– Entity beans are application elements that embody data and are by nature trans-
actional (and persistent); these beans may handle the persistency themselves (bean-
managed persistence) or delegate it to the container (container-managed persistence).

– Session beans are used to model business processes in a transactional and secure
manner without the need for persistent storage (i.e. they last for the duration of a
session).
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– Message-driven beans are created by containers to asynchronously handle messages
from the Java Messaging Service (JMS) sent, for example, to a queue transparently
associated with the bean.

• Syntactic Support in Interfaces: Depending on the bean type, developers must im-
plement associated, pre-defined, callback interfaces (e.g. EntityBean, SessionBean, Mes-
sageDrivenBean). These callback interfaces are used by containers to manage and notify
beans about certain events (e.g. bean activation or passivation, instance removal, transac-
tion completion, etc.). Moreover, each type of bean expects a specific interface or context
from the container (e.g. EntityContext, SessionContext, MessageDrivenContext) for getting
an entity beans primary key, identifying the bean caller, transaction demarcation, etc.

• Other Support in Interfaces: The container provides a uniform interface with services
such as naming (Java Naming and Directory Service), security (public/private key authen-
tication and encryption), transactions (based on Java Transaction Service or OMG Object
Transaction Service), and messaging (Java Messaging Service).

• Support for Introspection: A bean can be dynamically queried for its characteristics (op-
erations, attributes, etc.), through an introspection mechanism available to all Java classes.
The component programmer can, however, restrict the amount of information made avail-
able. To do so, the Java component implements a BeanInfo interface whose methods return
a list of properties, operations, etc.

• Supported Programming languages: code must be written in Java.

• Required ”Middleware”/Framework Support: Containers act as a level of indirection
between clients and bean instances. Each container provides objects, called EJB objects,
that expose bean functionality and intercept every method call before delegating it to the
bean. This EJB object is automatically generated and embodies container-specific knowl-
edge about bean activation, transactions, security and networking [RAJ01]. Additionally,
each EJB object implements the remote interface that enumerates all business methods ex-
posed/implemented by the respective bean.

EJB relies heavily on Java Remote Method Invocation (RMI) platform to support dynamic
class loading, automatic activation, remote exceptions and distributed garbage collection
[RAJ01]. RMI is a distributed architecture which uses a RPC-based protocol supporting
inter-process communication. For example, EJBHome and EJBObject remote interfaces rely
on the RMI infrastructure for transparent distribution of component functionality.

• Deployment: The deployment of beans is in terms of EJB-jar files that package bean classes,
remote interfaces, home interfaces and bean properties files, together with an XML-based
deployment descriptor that contains information on all the packaged beans (e.g. home name,
bean class name, primary key, container fields, etc.) and their dependencies. Deployment
descriptors also declare the middleware services needed by components (e.g. life-cycle policy,
persistency handling, transaction control), thus avoiding the non-standard manifest files that
were previously used with JavaBeans. [RAJ01].

Short information about EJB tools
The Java Development Kit (JDK) includes a set of classes and development tools (e.g. an RMI
compiler) to support the automatic generation of distribution classes (e.g. stubs), glue code (e.g.
container policies) and deployment descriptors, thus alleviating developers’ efforts and responsibil-
ities.

Summary EJB standardises a distributed architecture for building component-based business ap-
plications. EJB builds on the previous JavaBeans client-side component model and particularly
on the Java language, and essentially realises the WORA principle (Write Once Run Anywhere)
(albeit in a language dependent manner). EJB also relies on the RMI architecture, and simplifies
and automates the development and distribution process. In contrast to CORBA (see below),
RMI not an open standard (although it has the advantage over CORBA that it fully supports
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objects passed by value (via serialisation). However, efforts have been made to make EJB portable
to CORBA systems, particularly through standard connectors (vendor specific bridges that link
different architectures) along with RMI-IIOP mappings [RAJ01]. Most crucially, the EJB software
engineering process is grounded on a set of tools and code generators that automate the devel-
opment and deployment process by hiding the cumbersome details of handling distribution and
component management policies (e.g. life-cycle, security, transactions, persistency).

5.2.3 COM, DCOM, COM+

COM (Component Object Model) [Cor95] dates back to 1995, and is typical of early attemps
to increase program independence and allow programming language heterogeneity. COM has
roots in Microsofts OLE (Object Linking and Embedding, first version in 1991), which provided
a standard way to embed or link data objects (e.g. text, graphics, images, sound, video, etc.)
inside document files, hence supporting the creation and management of compound documents.
Unlike EJB and CORBA (see below), COM provides a binary solution to interoperability and
extensibility [Bro96, Gos95] (see below). The Distributed Component Object Model (DCOM),
which supported inter-process communication across distributed machines through an RPC-based
protocol called Object RPC (ORPC) [Pat00], was introduced with Windows NT 4.0. More recently,
the component model was extended (and renamed COM+) and integrated with Windows 2000 to
support the development, configuration and administration of distributed systems with automatic
and integrated (Windows-based) control over several aspects of business applications (e.g. security,
synchronisation, transactions, queues and events).

The COM component model is fundamentally an intra-address space model. COM extends object-
oriented design principles by hiding a components implementation behind its interface(s) (encap-
sulation) and allowing components to be replaced by different implementations of the same set (or
super set) of interfaces (polymorphism) without the need to recompile their clients. These princi-
ples are possible in COM because component services (collections of interfaces) are separated from
their implementation through a binary-level indirection mechanism called a virtual table (cf. C++
virtual functions or vtables) [Szy98]. This is the basis of the binary solution referred to above. At
runtime, an interface is a typed pointer (known as an Interface Identifier - IID) to a specific virtual
table that references the functions (methods) implementing the services exposed by the interface.
This binary interface structure allows interoperability between software components written in
different languages as long as compilers can translate language structures into this binary form
[Gos95].

Short Technical Description.

• Component types: A COM component can be seen as an object at the binary level, whose
implementation is clearly hidden behind its interface.

• Syntactic Support in Interfaces: COM defines interfaces on the level of binaries, consist-
ing of data and function declarations. There are standard protocols for calling an interface,
and for dynamically discovering and creating objects and interfaces.

Independent development brings the potential for naming conflicts between interfaces and
their implementations. To avoid this, COM requires developers to assign a unique Interface
Identifier (IID) and Class Identifier (CLSID) to each newly specified interface and class
implementation, respectively.

COM does not support inheritance; basic component composition is available through

– containment, where a COM object contains other COM objects: the outer object
declares some of the inner objects interfaces; at run-time it delegates calls to these
interfaces to the inner objects,

– delegation, this employs wrappers that insert behavior before or after delegating the
method calls to inner classes,
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– aggregation, where the interface of the inner object is exposed without the overhead
of call indirection; aggregation requires the source code of both the inner and outer
objects to be changed.

• Other Support in Interfaces: COM does not support behavioral or QoS properties.

• Support for Introspection: Components can be queried to find out their supported in-
terfaces.

• Supported Programming languages: code can be written in any programming language
as long as the compiler generates code that follows the binary interoperability convention.
Component interfaces are defined using the Microsoft Interface Definition Language (MIDL)
which is an OSF/DCE-based adaptation of CORBA IDL. The MIDL compiler generates
marshalling classes and type information (e.g. proxies, stubs, header files, type libraries)
needed to accomplish binary compatibility - i.e. joint deployment of components developed
in different languages.

• Required ”Middleware”/Framework Support: Component interfaces are separated
from their implementation through an indirection mechanism called a virtual table (cf. C++
virtual functions or vtables) [Szy98]. At runtime, an interface is a typed pointer to a specific
virtual table that references the functions (methods) implementing the services exposed by
the interface. The framework needs a run time engine that creates COM objects. COM
objects are also automatically garbage collected.

DCOM (1996) extends COM with distribution, based on the DCE RPC mechanism. The
component model itself is unchanged.

COM+ (1999) is an extension of DCOM with the container approach (see text on EJB and
CCM in sections 5.2.2 and 5.2.5), using the runtime platform MTS (Microsoft Transaction
Server). The container intercepts calls to a component, and can execute pre- and post-
processing actions to implement various services. Typical services offered include support for
transactions, concurrency control, load balancing, role-based security checks.

Short information about COM/COM+ tools

The COM framework is rather specific to Windows platforms (although it is also implemented on
VxWorks). It is supported by several tools for development on Windows platforms, such as Visual
Studio.

Summary

The COM+ component model focuses on the provision of enterprise distributed applications. It
tries to take domain-neutral aspects out of source code and expose them through declarative at-
tributes that can be used to control service context (e.g. process synchronisation, security profiles,
automatic transactions) [Box00]. Nevertheless, it is not possible to add new attributes, hence
making this mechanism limited for the majority of COM developers. Additionally, COM+ type
information management is rather cumbersome, i.e. it uses disparate information formats (e.g.
IDL, type libraries, MIDL-generated strings embedded in proxy DLLs), sometimes with no map-
pings between them. Furthermore, COM+ runtime type information (type library) permits us to
advertise only the types exported by a component but not component dependencies [Box00].

5.2.4 .NET

The .NET component model and framework allows to write applications in different proramming
languages. .NET also provides a run-time platform with a number of services. .NET does not rely
on COM, because binary interoperability is too limited. Instead, a .NET a compiler translates
source code into an intermediate language called the Microsoft Intermediate Language (MSIL),
very similar to the Java Byte Code. The common language runtime (CLR), very similar to a Java
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Virtual Machine then takes the intermediate language and, on the fly, converts it into machine-
specific instructions.

The CLR is able to recognise and execute portable executable (PE) files, which are image files that
combine MSIL code with metadata (stored in metadata tables and heaps). This approach avoids
the need for multiple and disparate metadata formats (e.g. type libraries, header and IDL files)
and enables the generic use of reflection, serialisation and dynamic code generation in a type safe
manner [MG02].

MSIL compilers are responsible for automatically emitting metadata into the PE file (e.g. infor-
mation describing types, members, references, inheritance, etc.). The runtime environment then
uses this binary metadata information (cf. managed data) to locate and load classes, control mem-
ory usage, resolve invocations, manage runtime context boundaries, enforce security and compile
to a particular computer architecture by using specific just-in-time (JIT) compilers. Metadata is
the .NET language neutral way to provide binary information describing: assemblies (e.g. unique
identification, dependencies on other assemblies, security permissions), types (e.g. base classes, im-
plemented interfaces, visibility), members (e.g. methods, fields, properties, events) and attributes
(extra metadata modifying the properties of types and members).

.NET addresses programming of services for Web-based software development. For this purpose,
The .NET framework is complemented by a set of unified class libraries for standard programming
(e.g. I/O, math, etc.), for accessing operating system services (e.g. network, thread, cryptography,
etc.), for debugging and for building enterprise services (e.g. transactions, events, messaging, etc.).
These libraries include a set of classes (called ASP.NET), which are tailored to the development of
Web-based applications. ASP.NET provides an infrastructure with a set of controls that simplify
both the server side (web forms that mirror the typical HTML user interface, e.g. buttons, list
boxes, etc.) and client-side programming (check client capabilities and choose the appropriate
interface). The ASP.NET infrastructure also includes an HTTP runtime (different from the CLR)
which is an asynchronous multithreaded execution engine that processes HTTP commands. The
HTTP runtime employs a pipeline of HTTP modules that route HTTP requests to a specific
handler (a managed .NET class).

Short Technical Description.

• Component types: What most resembles a component is an assembly; the manifest is
the component descriptor, it gathers in a single place all the information about an assembly:
exported and imported methods and events, code, metadata and resources. Because of the
programming language approach, the corresponding programming language, C], which looks
very much like Java, includes some features of a component model: (first class) events and
extensible meta data information. The compiler not only produces MSIL byte code but also
generates, in the manifest, the interface description of the component (called assembly), in
the form of a list of import and export types.

• Syntactic Support in Interfaces: The Common Type System (CTS) permits the defini-
tion and use of types across different languages. Metadata provides a uniform mechanism
for storing and retrieving information about types. Together, these two facilities provide the
basis of multilingual integration. Additionally, .NET provides a Common Language Specifi-
cation (CLS) that describes a set of language features (e.g. primitive and composite types,
natural-size types, references, exceptions) and rules for using these features (e.g. defining,
creating, binding and persisting types). This specification expresses a set of naming and
designing guidelines for mapping features between different languages [Cor01].

• Extra-functional properties .NET des not provide any support for analyzing extra-
functional properties. The language enables use of meta data at run-time, which gives some
possibilities for checking the properties at run-time. For example, contract-based interfaces
with pre- and post-conditions may be implemented by using this feature. .NET does not
provide any support for real-time applications. Further, the memory size and performance
excludes it from do embedded systems domain so far.
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• Life cycle Unlike when using traditional DLLs, the .NET model includes visibility control,
which allows assemblies (and their modules) to be local to an application, and thus differ-
ent DLLs with same name can run simultaneously. Further, each assembly has versioning
information about itself and about the assemblies it depends on, provided either in the form
of attributes in the code source or as command line switches when building the manifest.
Version control is delegated to the dynamic loader, which selects the right version, local or
distant, based on the assemblys version information and on a set of default rules.

Short information about .NET environments

• Supported languages: In contrast to the (open) OMG approach where separate formalisms
(and files), are used to indicate component related information, languages and compilers be-
ing unchanged, .NET is a proprietary approach, where the program contains the information
related to the relationships with other components, and the compiler is responsible for gen-
erating the information needed at execution. Current platforms include support for C] and
Visual Basic among others.

• Availability .NET is used on Microsoft Windows 2000 and XP platforms. Some parts
of it are ported to Windows CE, the Microsoft real-time systems. The Mono iniative (
http://go-mono.com ) develops an open source implementation of the .NET Development
Framework. Mono includes a compiler for the C] language, a runtime for the Common
Language Infrastructure and a set of class libraries. The runtime can be embedded into the
application.

Summary of .NET

.NET is Microsoft’s new paradigm for service development. It uses self-describing components
(assemblies) to tackle the limitations of COM+. Each .NET assembly sets the scope for type names,
and explicitly represents component dependencies. Moreover, assemblies avoid the fragmentation
of disparate meta-information sources because the metadata is automatically compiled into the
image PE file. Finally, .NET type information is extensible (via system attributes), can be applied
to different elements (e.g. classes, methods, properties) and is available at runtime via reflection.
Developers may then use these attributes that transparently integrate with the COM+ attribute-
based context and transaction infrastructure.

5.2.5 CORBA and CCM

CORBA is proposed by the Object Management Group (OMG) as a standard for middleware
infrastructures and a programming model for assembling and deploying distributed applications.
It is part of the Object Management Architecture (OMA) [St00] which consists of

• the CORBA bus which maintains information about the location of components and de-
livers requests and responses in a standard way.

• CORBAservices that are predefined objects supplying functions required by most dis-
tributed applications (naming, events, security, etc.);

• CORBAfacilities that are object frameworks that standardize data management and user
interfaces; domain interfaces that are objects for precise domains such as finance, the health
industry, etc.;

• application objects that are objects specific to the application.

CORBA has evolved over the years as reflected in the release of three main versions of the stan-
dard. The first version simply defined a distributed object model that separated interfaces from
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implementations. CORBA v1 also specified a common set of services and facilities that facili-
tated the development of distributed applications by integrating mechanisms for naming, event
communication, life-cycle management, etc.

CORBA version 2 focused on ORB interoperability (v1 did not impose an inter-ORB protocol),
and object activation management by defining the Internet Inter-ORB Protocol (IIOP) which
enables interoperability across multiple ORB products, and the Portable Object Adapter (POA; see
more below) which renders server objects portable and also offers various server-side configuration
policies. The use of an IDL compiler combined with the runtime ORB manages cross language, cross
platform and cross location independence, while the TCP/IP-based inter-ORB protocol assures
cross vendor interoperability.

Finally, CORBA version 3, adopted in 2001, standardises the CORBA Component Model (CCM)
which adds features and services that enable the implementation, configuration, assembly and
deployment of distributed component-based applications.

The first two CORBA versions tackled interoperability through a distributed object model whereas
v3 standardises a full component model. CCM increases the levels of integration and flexibility
by automating tedious and error prone tasks that are usually delegated/solved by developers in
ad hoc ways (e.g. deploy and install implementations, activate and configure services, life-cycle
management). CCM has been designed on the basis of the accumulated experience using CORBA
services.

The CCM is a server-side component model that is used to assemble and deploy multilingual com-
ponents. CCM standardises and automates the component development cycle (from specification
to deployment) by defining a middleware infrastructure and a set of support tools. This compo-
nent model architecture permits us to define the interfaces supported by the components, automate
their implementation and pack the components in assembly files (e.g. JAR, DLL) that can be au-
tomatically deployed on server hosts. The architecture uses proven design patterns [GHJV94] that
enable the automation of code generation and associated usage of a container infrastructure that
mediates the component access to the system services for handling security, transactions, events
and persistency [Cob00]. CCM focuses on the provision of generic system services required by
server applications and implemented by the container, thus freeing application code from complex
and error prone tasks and allowing developers to concentrate on the business logic details. In short,
the goals of CCM are very closely related to those of EJB.

Short Technical Description.

• Component types: these are similar to the corresponding EJB categories; i.e. session and
entity categories are supported.

• Syntactic Support in Interfaces: A component interface is made of ports, which can be
of several types

– facets: named interfaces

– receptacles: named connection points to other components representing external de-
pendencies on other components’ facets. (cf. required interfaces).

– event sources: emit events

– event sinks: consume events

– attributes: named values, intended primarily for use in component configuration.

• Other Support in Interfaces:

• Support for Introspection:

• Supported Programming languages: CCM is a language independent model.

• Required ”Middleware”/Framework Support: CCM, like EJB, introduces an inter-
action pattern based on the notion of a container. A container is automatically generated
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for each component implementation and constitutes the component’s view of the surround-
ing system [CCM]. The container shields components from the details of the underlying
platform, and provides a framework (a standard runtime API) for seamless and automatic
integration of core services [Cob00]. The container provides a series of uniform interfaces
(called internal interfaces) that support communication with standard system services like
transactions, security, persistency, and event notification). The types of internal interfaces
available depends on the component category (i.e., service, session, process and entity; cf.
the related EJB definitions). The container is also responsible for using callbacks to notify
the component of certain events (e.g. persistency, transactions) [WSO00]. The component
implements and registers these callbacks in the container to be notified of the events.

• Extra-functional properties CCM des not provide any support for analyzing extra-
functional properties.

• Life cycle For each component type there is an associated ’home’ component that is re-
sponsible for attributing primary keys and instantiating components. Furthermore, the com-
ponent container uses an activation framework (e.g. ServantActivater, ServantLocator) that
exploits the CORBA POAs mechanisms to control a components lifetime (e.g. activation, de-
activation, lookup) according to a chosen policy. This way it is possible to control (depending
on the component category) the activation and passivation of components, in co-operation
with the persistence service, on a per-method, per-transaction, per-component (via specific
callbacks) or per-container basis (this is slightly more general than the related EJB facil-
ity). Along with these lifetime policies, the CCM also standardises management policies
that determine the way containers handle (on a component’s behalf) transactions, security,
events and persistency. The container intercepts the requests from clients and, according to
the requirements (declared in the components XML configuration file), enables and executes
pre-processing strategies (e.g. activation, transaction, persistence, pooling, caching) before
delegating requests to the component.
CCM supports the development process with automated mechanisms to generate and con-
figure the necessary runtime container [CCM]. Specifically, the CCM Component Implemen-
tation Framework (CIF) defines a set of APIs and tools that automate the code generation
of several management strategies (e.g. life-cycle, transaction, security, event and persistence
policies). This framework automatically exposes different aspects of the implementation
that may be embedded in a component’s implementation [WSO00]. CCM also standardises
a declarative language, called the Component Implementation Definition Language (CIDL),
that is used to describe component implementations and associated persistency requirements
[WSO00]. A CIF compiler reads the components CIDL description and generates default
component behavior (e.g. introspection, activation, state management). The resulting im-
plementations are called executors (e.g. facets, home, container) and provide hook methods
that may be used by developers to later add custom behavior and adapt the default imple-
mentation [WSO00].
The CIDL compiler is also responsible for generating component descriptors, which are XML
files used to define the component category (e.g. entity, session), features (e.g. ports), policies
(e.g. lifetime, transactions, security, events and persistency) and segmentation (i.e. delin-
eation of independently deployable units). CCM defines several XML descriptor file-types
(i.e. component descriptor, software package descriptor, assembly descriptor and property
file descriptor) which conform to the WWW Consortiums Open Software Description (OSD)
Data Type Definition (DTD). Component segments and descriptors are joined in a package
file, i.e. a archive file that contains one or more implementations of a component and the as-
sociated XML description files. Component packages may be installed or grouped with other
packages in an assembly file. Descriptor files are used at deployment-time to automatically
create and configure the required POA hierarchy and to resolve component dependencies.

Short information about CCM environments
Few commercial implementations of EJB have been developed. To date, the most prominent
implementation has been developed in the context of the TAO CORBA platform by the University
of Washington [WSO00].
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5.2.6 Real-time CORBA

Real-time CORBA is an extension to CORBA that is designed for applications with real-time
requirements, such as avionics mission computing, as well as those stringent soft real-time re-
quirements, such as telecommunication call processing. It is integrated with the CORBA 2.5
specification.

Real-time CORBA provides standard interfaces and policies that allow applications to configure
and control the following system resources:

• Processor resources via thread pools, priority mechanisms, intra-process mutexes, and a
global scheduling service for real-time applications with fixed priorities

• Communication resources via protocol properties and explicit bindings to server objects using
priority bands and private connections

• Memory resources via buffering requests in queues and bounding the size of thread pools

CORBA and real-time CORBA have the advantage of being platform independent, in that a wide
variety of programming languages support CORBA interfaces. Real-time CORBA has a particular
benefit to the embedded, real-time systems market, as until recently, many such systems have had
to define highly platform specific approaches to implementing many of the features proposed by
the CORBA standard.

Analysis. Real-time CORBA is in itself only a standard for controlling system resources. It is up
to the system designer to use the standard to configure the system to meet application requirements
in a predictable way. Real-time CORBA has some shortcomings, such as not being suitable for
dynamic real-time systems since it is only focused on fixed-priority based systems, and such as not
addressing consistency issues.

OMGs Dynamic Scheduling proposal [OMG01a] intends is to overcome the limitations imposed by
RT-CORBA in terms of dynamic scheduling.RT-CORBA only addresses static distributed systems
whose resource requirements are known a priori. Offline analysis allows developers to predict
the workload that will be imposed by this kind of systems. Thus, variations in these systems
are bounded within a priori known operating modes. In contrast, dynamic distributed systems
are those that are susceptible to experiencing unexpected dynamic changes. Therefore, in this
type of system it is not feasible to predict the overall workload. This proposal introduces some
modifications to the RT-CORBA specification and also provides some extensions to the standard.
The proposal provides a framework that allows for the development of portable schedulers.

5.2.7 Analysis

The models described in this section represent an evolution from initial light-weight component
models with support for component composition, to which support for distribution is added. Later,
to support common needs in business applications, the models are extended to support an inte-
grated container-based environment for automating the management of generic, extra-functional,
properties such as transactions, security, persistency and event notifications. Only one of the
models discussed, CCM, is not tied to a particular language (like Java) or operating system (like
Windows). CCM was designed to align closely with the EJB specification and, apart from language
independence, these component models can broadly be considered conceptual equivalents [CCM].
Both support different types of components which automatically determine the available con-
tainer interfaces and the policies for managing the components state and persistency (component-
managed or container-managed). Furthermore, CCM and EJB define three approaches to de-
marcate transactions (cf. client-managed, container-managed and server-managed) while COM+
supports only automatic transactions (MTS-managed). Moreover, COM+ defines only one type of
component. This leads to a simpler programming model, but also leads to limited expressiveness
and deep dependence on the MTS environment. Despite being more difficult and complex to learn
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and manage, CCM and EJB architectures may be considered more flexible and open than COM+
which builds of top of the operating system services. Nevertheless, COM+ is a binary standard
that allows the integration of several languages without compromising the performance.

Another significant aspect is the recurrent use of meta-information for describing the structure and
behavior of components. Meta-information is widely used in CCM (e.g. the interface repository),
EJB (e.g. bean descriptors) and COM+ (e.g. type libraries) but is particularly visible in .NET
where the metadata is embedded in the image files and then extracted using reflection to reason
about the system and control assembly, enforce security, manage serialisation, perform compiler
optimisations, etc. The combination of meta-information and reflection is an interesting approach
for managing type evolution.

Finally, it must be emphasised that these component models are inherently heavyweight and com-
plex. In their present form they are not suitable for deployment in most embedded environments.
Nevertheless, they exhibit many potentially interesting features that would clearly be of interest to
the developers of embedded systems. What is required is research to make such features available
in component model environments that are considerably more lightweight and, probably, can be
tailored to specific environments on a highly configurable what you want is what you pay for basis.

Some initial work in this area has been carried out. For example, THINK (’THINK Is Not a
Kernel’, http://sardes.inrialpes.fr/research/think.shtml) from Inria Alpes is a minimal, low-level,
component model that has been used to flexibly build software configurations at the operating
system level. This develops earlier OS-level efforts such as OKKit from the University of Utah and
the Spring Kernel, but adds modern notions of independent run-time deployment of components,
and support for multiple interfaces. Similarly, the OpenCOM component model from Lancaster
University, UK, is a lightweight component model that is being used to develop low-level pro-
grammable networking software. This model incorporates lightweight reflective mechanisms to
assist in run-time deployment and dynamic reconfiguration of component compositions. Both of
these component models (THINK and OpenCOM) have the potential to be applied in embedded
environments, although a lot of work is required to fully validate this approach. Finally, Wash-
ington University have carried out interesting research on slimlining the CCM for application to
embedded environments. This has also involved extending the CCM with support for QoS speci-
fication and validation.

5.3 Integration Platforms for Heterogeneous System Design

In this section, we review some platforms that are intended for modeling of systems, typically
composed of heterogeneous components. A system design is represented as an architecture popu-
lated by interconnected components. Components can often be represented in different languages,
formalisms, or even modeling paradigms.

Composition is performed at design time, typically glue code is generated automatically. The
software components are wrapped with a run-time executive, which schedules the (compiled and
linked) components.

A major emphasis is that the architecture description should be executable, so that simulation
can be used as the major tool for design V&V. Analysis techniques can use information visible
at the architectural level. Typical attributes could be period, deadline, and execution time for
schedulability analysis, code size, etc.

5.3.1 MetaH

Introduction. MetaH (homepage http://www.htc.honeywell.com/metah/) is a domain-specific
ADL dedicated to avionics systems which has been developed at Honeywell Labs since 1993 under
the sponsorship of DARPA and the US Army. A significant set of tools (graphical editor, typing,
safety, reliability, and timing/loading/schedulability analyzers, code generator...) has already been
prototyped and used in the context of several experimentation projects.
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In 2001, MetaH has been taken as the basis of a standardization effort aiming to defining an
Avionics Architecture Description Language (AADL) standard under the authority of SAE . This
emerging AADL is a domain-specific ADL developed to meet the special needs of embedded real-
time systems such as avionics systems. In particular, the language can describe standard control
and data flow mechanisms used in avionics systems, and important extra-functional aspects such
as timing requirements, fault and error behaviors, time and space partitioning, and safety and
certification properties.

Short Technical Description.
Note: MetaH in itself is only an ADL, which is under development. The rules for producing
conformant component implementations are given by the current Toolset. In this description, we
therefore describe MetaH together with this toolset.

• Component types include

– Macro is a hierarchical composition of connected parts.

– Application is the highest level composition, and combines a software architecture and
a hardware architecture.

– processes, a unit of scheduling with a protected address space in a partitioned system,
and is a unit of binding to a processor. The control structure of a process must have a
main outer loop, which calls the MetaH dispatcher on each iteration.

– packages, and monitors (functioning like in Ada),

• Visibility of Underlying Hardware The underlying platform can be described by means
of a hardware architecture. Processors, Memories, Channels, Devices. A mapping from
Component types to Hardware may be provided.

• Syntactic Support The interface of a process or macro contains declarations of ports,
packages, monitors, subprograms, out events, and in events. Components are connected by
connection declarations, giving

– port connections - message transfer between ports.

– event connections - control signals, events, to an aperiodic process (process dispatch),
or to modes (for mode switch).

– equivalences - shared data and resources in terms of monitors and packages.

Connections are strongly typed. There is no inheritance.

• Support for Behavioral Properties No functional properties are specified in the interface
of components. A system can be described in terms of modes - which are run-time configu-
rations of active processes and connections. Modes interfaces contain events. The run-time
semantics describes how the run-time Executive works. when invoking the processes in a
system.

• Support for Timing Properties. Components of type process can have (worst-case) exe-
cution times specified. This is the duration of the main outer loop on one invocation. Pro-
cesses can be given periods and deadlines in a given system. There is a tool for schedulability
analysis.

• Support for Performance Properties.

• Support for Reliability Analysis Components can be equipped with reliability models,
which are Markov chains that relate fault events and error states. The system description
must describe how errors propagate between components. A reliability analysis tool com-
bines the reliability models of individual components into a global Markov chain, and uses a
separate tool (in this case SURE/PAVE/PAWS tool from NASA Langley) or Markov chain
analysis.
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• Support for Safety Analysis Each process has its own address space in an implementation.
Safety levels and memory allocation properties can be declared for components. The MetaH
tool partitioning analyzer can partially verify that no error in a component with lower safety
level can propagate to a process with higher safety level. safety/security modeling and
analysis: The tool can check if the safety/security mechanisms provided by MetaH will
enforce a specified safety/security policy. (e.g., rights of objects to access other objects.

Short information about MetaH tools, some from

http://www.rl.af.mil/tech/programs/dasada/tools.html.

• Supported languages: Accepts ADL specifications written in the emerging SAE standard
Avionics Architecture Description Language (AADL) in both graphical and textual formats.

• Supported languages for component implementations: Ada, C. Many concepts are
closely inspired by Ada.

• Supported development platforms: WindowsNT and Solaris hosts available,

• Supported target platforms: portable Ada95 and POSIX targets available, application
source code may be written in C or Ada.

• Status: Core toolset fairly mature (beta-quality), reliability analysis and general system
safety specification/analysis are research proof-of-concept, technologies for blended time-
driven/event-driven workloads, dynamic reconfiguration, distributed hard real-time schedul-
ing are ongoing research.

• Availability: Available under zero fee license; ITAR

• Degree of Automation: automatic production of the executable image. Can perform soft-
ware/hardware allocation, and generate tailored/efficient middleware to integrate a system.

• Analysis Support for:

– Syntactic Properties: AADL syntax/semantic checking, can translate textual to
graphical and graphical to textual AADL, and check compliance of source components
with AADL specifications,

– Functional Properties: It is currently investigated how to (automatically) extract
hybrid automata models from the generated code in order to analyze the target system.

– Timing Properties: real-time schedulability modeling and analysis.

– Reliability Properties: See above.

– Safety Properties: See above

5.3.2 Ptolemy II

Ptolemy ( http://www.ptolemy.eecs.berkeley.edu/) was initially a simulation and rapid prototyping
framework for heterogeneous systems. The focus is on embedded systems, particularly those that
mix technologies, including for example analog and digital electronics, hardware and software, and
electronics and mechanical devices. The focus is also on systems that are complex in the sense
that they mix widely different operations, such as signal processing, feedback control, sequential
decision making, and user interfaces.

The Ptolemy software environment has been used for a broad range of applications including sig-
nal processing, telecommunications, parallel processing, wireless communications, network design,
investment management, modeling of optical communication systems, real-time systems, and hard-
ware/software co-design. Ptolemy software has also been used as a laboratory for signal processing
and communications courses. Currently Ptolemy software has hundreds of active users at various
sites worldwide in industry, academia, and government.
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The first generation of Ptolemy, now called Ptolemy Classic is written in C++. The current
version, Ptolemy II is written in Java, and produces code in Java.

Ptolemy does not really define a component model, since there is no standardized definition of
component interfaces and composition at the implementation level (C or Java).

Short Technical Description.

• Component types: Components, called Actors are created in different Models of Compu-
tation (MoC). Existing MoCs include

– CSP with synchronous rendezvous as a communication mechanism

– CT – Continuous time, where components are described by algebraic or differential
relations between inputs and outputs.

– DE – Discrete Events. Actors communicate via events (consisting of value and time
stamp). Execution of an actor is typically event-triggered. The execution semantics is
realized by a discrete-event simulator, which maintains a global time-stamp-sorted queue
of pending events. There is an experimental Distributed DE model of computation,
using ideas from distributed DE-simulation

– FSM – Finite State Machines, which can be used in different contexts.

– PN – Process networks. These are Kahn process networks.

– SDF – Synchronous Dataflow. Globally synchronous (discretely clocked) systems.

– SR – Synchronous/Reactive. This is like the synchronous paradigm.

• Syntactic Support: Actors send and receive data through Ports. Ptolemy Classic can
perform type conversions like in C. In the latest versions of Ptolemy II, there is a polymorphic
type system [LX01].

• Support for Behavioral Properties: Each Model of Computation defines an abstract
execution semantics. This can be used in simulation.

• Support for Timing Properties. Some Models of Computation have explicit notion of
time. This can be used in simulation.

• Support for Performance Properties.

• Support for Reliability Analysis:

• Support for Safety Analysis:

Short information about the Ptolemy II tool

• Supported languages: There is a rich family of notations for graphical definitions of system
structure.

• Supported languages for component implementations: In Ptolemy Classic, the im-
plementation language is C++. In Ptolemy II, this has changed to Java.

• Supported development platforms: Windows, Linux, MacOS, X, Solaris. There is one
installation that runs entirely in applets.

• Supported target platforms: In Ptolemy Classic, C implementations can be derived.
Ptolemy Classic can generate assembly code for some programmable DSPs. Ptolemy II can
generate Java code from a design.

• Status: Research Prototype under development.

• Availability: Free for download.
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• Degree of Automation: The Java Definitions of Components is parsed, and there is
support for construction of code generators.

• Analysis Support: Analysis support is mainly by the ability to simulate a system.

– Functional Properties: In principle, Models in the FSM MoC can be parsed and used
by external model checking tool. I have not found reports of significant facility.

– Timing Properties: Timing properties are analysed by simulation. Some means
must be devised for importing the timing properties of the actual platform. In some
applications, one can use an external hardware simulator.

5.3.3 Metropolis

Metropolis ( http://www.gigascale.org/metropolis/) is a research project coordinated at UC Berke-
ley. It is not a mature design environment; it is included here as an example of a research effort
which involves a component model, where components are composed at a model level, which is at
a higher level of abstraction than C or Java.

In Metropolis, an infrastructure is developed such that

1. heterogeneous components of a system can be represented uniformly, and

2. tools for formal methods can be applied naturally.

The core of the infrastructure is a meta model of computation, which allows one to model various
communication and computation semantics in a uniform way. The meta model is defined in a
variant of of timed automata. By defining different communication primitives and different ways of
resolving concurrency, the user can, in effect, specify different models of computation (MoCs). The
meta model is used to represent the function of a system being designed, to generate executables for
simulation, and as input to formal methods built in Metropolis for both synthesis and verification
in various design stages. There are stated plans to translate specifications given in many existing
languages automatically to an appropriate semantics specified using the meta model

A set of coordinated tools is being developed as part of the Metropolis project.

Analysis

Metropolis goes beyond a conventional component concept, because it takes source level com-
ponents and translates them into its own meta language before any simulation, verification, or
code generation takes place. Thus it eliminates some of the difficultires in specifying component
properties, at the expense of requiring translators from the respective source languages.

5.4 Hardware/Software Modeling Languages

In this section, we briefly mention some languages that are not component models, but can be used
to model embedded systems in a modular way. The models here are mainly included to describe
a part of the landscape that is adjacent to component models.

5.4.1 System C

SystemC (http://www.systemc.org/) is intended to be a standardized, highly portable technology
for system-level models, an alternative to languages such as Verilog or VHDL.

Similar to HDLs, users can construct structural designs in SystemC using modules, ports, and
signals. Modules can be instantiated within other modules, enabling stuctural design hierarchies

59



to be build. Ports and signals enable communication of data between modules, and all ports and
signals are declared by the user to have a specific data type. Commonly used data types include
bits, bit vectors, characters, integers, floating point numbers, vectors of integers, etc. As in VHDL,
concurrent behaviors are modeled using processes.

SystemC 2.0 aims at enabling system-level modeling, i.e., modeling of systems above the RTL level
of abstraction. One of the challenges in providing a system-level design language is that there are
a wide range of design models of computation, design abstraction levels.

5.4.2 VHDL

VHDL is a hardware description language. It is used in a wide variety of contexts that range
from complete systems like personal computers on one side to the small logical gates on their
internal integrated circuits on the other side. It supports a module concept, such that abstract
behavioral models may hide implementation details. The language VHDL covers the complete
range of applications and can be used to model (digital) hardware in a general way.

5.5 Component Models and Integration Platforms: Summary and Con-
clusions

Current Trends

With respect to the evolution of different component technologies for real-time and embedded
systems, we can observe the following.

• Independent Definitions. There are many efforts underway to define component technolo-
gies for embedded systems, often dedicated to applications in a certain domain. Examples
are Koala and PECOS. These component models seem not to spread very rapidly outside the
organization in which they were created. They serve the purpose of improving and software
development process of their organization. Some of these models define interfaces that are
not just syntactic, but include some properties that are essential for their application domain.
An advantage of these models is that they can be tailor-made for their application domain.
Disadvantages are the lack of synergy across application domains, that it is costly to develop
tool support, and that such development is harder to justify for proprietary component
technologies.

• Widely Used Approaches. Another trend is to start using more widely adopted compo-
nent technologies for embedded systems. Examples are COM [LCS02] and CORBA (or its
adaption to RT-CORBA). The trend is to try to avoid the cost (in terms of resources) of
these technologies by using only parts that are necessary.
An advantage is that there is already infrastructure available for these technologies, and
that systems can interoperate with other system that use these technologies. A disadvantage
is that these technologies do not a priori support several properties that are essential for
real-time systems.

• Lack of a Standard. In the landscape, we have also included design tools, in which sys-
tems are designed by putting together pieces that might be termed components. Examples
are MetaH and Ptolemy. The functions of these tools is more analogous to, e.g., MAT-
LAB/Simulink. The advantage is that they support a variety of design notations. However,
”components” can be assembled only in the supporting tool, meaning that different develop-
ments must all be developed in the same environment. In this perspective, these tools have
similarities to tools like SCADE or UML/SDL-based tools.

• Advanced Aspects are Still Evolving. Many efforts are dedicated to a proper handling
of extra-functional properties, including timing and QoS properties. There is a variety of
developments, and no clearly identifiable ”mainstream winner”.
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6 Findings, Synthesis, Needs

Major needs for the further development of component technology for embedded systems are the
following.

• Need for Widely Adopted Component Models and Frameworks for embedded sys-
tems. A problem is that several application domains have application-dependent require-
ments on such a technology.

• Need for light-weight implementations of Component Frameworks. In order to
support more advanced features in component-based systems, the run-time platform must
provide certain services, which however must use only limited resources.

• Incorporation of Proven Design Patterns and Idioms In many cases, new functionality
of component technology represents an incorporation and uniformization of well-understood
techniques from system development. This is the case, e.g., with timing analysis in platforms
like Rubus, PECOS, and MetaH, which uses well-understood schedulability analysis to per-
form this task. It can be expected that this trend will contribute to solving the next item on
this list.

• Uniform Specification of Rich Interfaces: Current specification techniques for Contracts
at levels 2 and up use notations and models that are quite different. It is very desirable to
achieve unification and uniformization of such notations. This is not an easy task, but appears
to be essential as a basis for building tool environmtns that can predict a variety of system
properties.

• Obtaining Extra-Functional Properties of Components: Timing and performance
properties are usually obtained from components by measurement, usually by means of sim-
ulation. Problems with this approach are that the results depend crucially on the environ-
ment (model) used for the measurements may not be valid in other environments, and that
the results may depend on factors which cannot easily be controlled. Techniques should be
developed for overcoming these problems, thereby obtaining more reliable specifications of
component properties.

• Platform and Vendor independence: Many current component technologies are rather
tighly bound to a particular platform (either run-time platform or design platform). This
means that components only make sense in the context of a particular platform. The conclu-
sion is that either we will see a future dominance of one platform (e.g., as MatLab/Simulink)
for each application domain, or that platform-independent models must be developed.

• Efforts to Predict System Properties: The analysis of many global properties from
component properties are hindered by inherent complexity issues. Efforts should be directed
to finding techniques for coping with this complexity, including to find architectures and
design principles that lower the complexity of predicting system properties.

• Addressing Timing Properties: The analysis of timing properties face the problem of
being dependent on the underlying platform. In the short term, it does not appear feasible to
find a technique for specifying timing properties in a platform-independent way, but rather
techniques for living with platform-dependence must be devised.

• Component Certification: In order to transfer components across organizations, tech-
niques and procedures should be developed for ensuring the trustworthiness of components.

• Component Adaptation: In order to meed the resource limitations of embedded systems,
there is a desire to be able to adapt components to use exactly the resources and services
that are need in a particular service. We have not found reports of significant techniques for
achieving this.

61



• Component Noninterference: Particularly in safety-critical applications, there is a need
to ensure separation and protection between component implementations, in terms of memory
protection, resource usage, etc. There are techniques for achieving this, but it is desirable to
turn such techniques into tools that can reliably and automatically ensure noninterference.

• Tool support: The adoption of component technology depends on the development of tool
support.

7 Missing pieces

Technical problems that are not yet overcome are the following

• In the landscape, we have observed the two seemingly conflicting trends of developing pro-
prietary component models with rich interfaces, and of using (parts of) widely adopted
component technologies. Might it be possible to unify these trends by developing compo-
nent technologies with rich interfaces that are compatible with CORBA or .NET? (e.g.,
they could use the syntactic standards imposed by CORBA or .NET, and add important
functional/extra-functional properties)

• Component verification and certification are so far unsolved problems. There seem to be no
standardized procedures for ensuring component trustworthyness.

• There are several suggestions for how to handle functional and extra-functional properties of
system design (timing, QoS, etc.). Widely accepted techniques for specifying functional and
extra-functional properties of components and of middleware remain to be developed. (see
further in Section 4)

• There is a clearly perceived need to be able to predict system properties from properties
expressible in component interfaces. Such properties could include timing, QoS, memory
and power consumption. A major motivation is to support system integration. Practical,
widely adoptable solutions remain to be developed. (see further in Section 4)

8 Clearly-Identified Priorities

In this section, we discuss prioritized areas for further work.

• Predicting System Properties. A research challenge today is to predict system properties from
the component properties. This is interesting for system integration, to achieve predictability,
etc. Some kye obstacles to overcome in order to address this challenge are as follows.

– Predicting system properties from component properties is often computationally expen-
sive. A possible remedy is to devise design principles for architectures and components
that yield tractable analysis procedures for interesting classes of properties.

– Extra-functional properties of components are hard to obtain in a reliable way. They
can be obtained by measurement (e.g., in simulations), but care must be taken for gen-
eralizing the measured properties across varying environment and platform conditions.
For safety-critical systems, static analysis of execution time can be developed further.

• Development of Widely Adopted Component Models for Real-Time Systems. From the re-
port, it is obvious that such a model should support key extra-functional properties, including
timing and QoS. Such a model should be supported by technology for generating necessary
runtime infrastructure (which must be light-weight), generation of monitors to check con-
formance with contracts, etc. The trend towards open an integrated systems implies that it
should be possible for a system to use both a component model specific for real-time systems,
and some of the widely used component technologies.
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9 Standardization Efforts

Corresponds to Deliverable 4.1.2:

This section provides an overview of standards that are relevant to the ARTIST components work-
ing group. It is broadly split into two main sections: specification standards and implementation
technology standards. The aim is to distinguish between standards for specification and modeling,
such as UML, that define modeling concepts related to real-time modeling and components, and
implementation standards, which are focused at realizing these concepts at the implementation
level.

9.1 Specification Standards

Over the last decade, there has been an increasing emphasis on the development of modeling and
specification languages appropriate for describing software engineering concepts. The Unified Mod-
eling Language (UML) was one of the first modeling languages to standardize software engineering
concepts, and it and related OMG standards are currently the de-facto route for incorporating new
concepts into the software industry. This section briefly introduces some of the key standards and
describes work currently being done to incorporate real-time components into existing standards
such as UML.

9.1.1 UML 2.0

The Unified Modeling Language (UML) is now the de-facto industry language for specifying and
designing software systems. Since its inception in 1997, the scope of the language has become ever
wider. UML now provides support for a wide variety of modeling domains, including real-time
system modeling.

Unfortunately, the success of UML has come at a cost, resulting in a bloated and complex language,
as new modeling concepts have been repeatedly “mud-packed” into the definition. Furthermore, the
specification of the language (a meta-model of its abstract syntax with weakly defined semantics)
has also become difficult to manage and hard to understand due to its size and complexity.

The UML 2.0 effort is an attempt by the OMG to address these shortcomings. The aim is that
UML should become a family of languages, each based on a common semantic core. Thus, spe-
cific variants of UML will be defined for specific application areas: e-business, real-time, systems
engineering, warehouse meta-data and so on. Another important aim is that UML 2.0 should be
defined more precisely in order to facilitate the more rigorous use of the language.

Currently, a number of consortia are submitting a variety of proposals to the OMG for the revised
standard. The work has been split into four main areas: infrastructure (the core modeling concepts
supported by UML), superstructure (the modeling concepts that are used to model specific views of
a system, e.g., state behavior), OCL (the object constraint language that supports the semi-formal
specification of constraints) and diagram interchange (tool interchange of diagrammatical syntax).
The intention is that the infrastructure model will define the semantics for the core concepts used
by UML. The superstructure will then be defined in terms of this core, thus providing a firmer
interpretation of the UML language as a whole.

The task involved in refactoring UML as a family of languages is not straightforward. Much work
needs to be done to define an infrastructure that will successively support the definition of a wide
spectrum of languages. Furthermore, first class extension mechanisms are required to support the
incremental extension and combination of language components to create new languages. Finally,
defining a semantics for these language components is a significant challenge in itself - necessitating
that UML has a well defined semantic domain and appropriate semantic mappings.
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9.1.2 Components at the Model Level

Components being the now most widespread structuring entities at implementation level (seen
as executables, binaries or library elements), the component paradigm tends also to play such
role at the modeling stage. One of the motivations is related to the difficulty to have reusable
components having totally known and mastered dynamics, in particular, on RT and concurrency
aspects. Incoming component-based approaches ([DW99, HS99, ABM00, GPJ02]) tend to use
components as a higher-level modeling artefact that may be used whatever the nature of the
model (specification design, implementation, ...) and derived throughout the system development
till implementation. Implementation part of a component becomes one of its aspects only relevant
for the implementation stage.

The evolution of this concept from UML1.x to UML 2.0 confirms this tendency. Components in
UML 2.0 are likely to get a more extensive treatment than in previous versions of UML. Considered
as a modular, deployable, and replaceable part of a system that encapsulates implementation and
exposes a set of interfaces in the UML1.x, components become more abstract structuring entities
in UML 2.0. They will be defined in the superstructure of UML 2.0.

UML 2.0 components are then a modular part of a system that may be modelled and refined
throughout the development life cycle. A component is viewed as an autonomous unit within a
system or subsystem. It has one or more ports, and its internals are hidden and inaccessible other
than as provided by its interfaces. As a result, the aim is that components and subsystems can
be flexibly reused and replaced by connecting (“wiring”) them together via their provided and
required interfaces. Components also support reuse through an import mechanism, which permits
the elements of a component to be imported into another component. UML 2.0 component model
is very close to the main frame of the component model described in previous section 2 allowing
thus to use very easily UML as modeling language or ADL to support a CBSE methodology.

Although, this approach is not yet mature, at least due to the introduction of the concept only in
the incoming version of UML standard, some proposals already introduce this notion in relation
with real-time preoccupation through attaching RT QoS to the component interfaces [GPJ02]. In
this context, component composition issue at design stage becomes a question of QoS composition
among the component models. This raised a strong interest on MDA techniques that facilitate:
model weaving (http://www.qccs.org/) for the component composition; and the mapping and
transformation of abstract models into detailed models for the implementation synthesis [GTT02].

9.1.3 Real-time UML Profile

The UML contains in native some capabilities to support real-time aspects: either for qualitative
aspects such as concurrency (Active objects, concurrent states, ...), or for quantitative aspects
such as time event. Nevertheless, these real-time features of the UML are inadequate. For that
reason, OMG has initiated a work dedicated to define a UML profile specific to real-time systems
development.

The real-time UML profile [OMG01b] (actually the profile for Schedulability, Performance, and
Time Specification) defines standard paradigms of use for modeling of time-, schedulability-, and
performance-related aspects of real-time systems. The intention is to

• enable the construction of models that could be used to make quantitative predictions re-
garding these characteristics,

• facilitate communication of design intent between developers in a standard way,

• enable inter operability between various analysis and design tools.

To support this, the specification defines (as a meta-model) a complete, but generic model of some
of the key concepts association with scheduling, performance modeling and times events. Main
concepts introduced in the SPT profile are Quality-of-Service (in short QoS) and Resource. From
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these concepts, it then defines in specific sub-profiles more adequate concepts for performance and
schedulability analysis. Thus it includes models of the semantics and mappings to common real-
time middleware standards such as real-time CORBA. The final version of this standard should
be delivered for summer 2002. The main issue regarding to this standard is that it is relative to
UML1.x, and that it should have to be revised for incoming UML2.x

The QoS concept introduced in the SPT profile was mainly an abstract concept. So following
the SPT profile initiative, the OMG has started another reflection soliciting proposals for a UML
profile that defines standard paradigms of use for modeling QoS and fault tolerance aspects of
real-time systems. To achieve this goal, the following RFP has then been launched: UML profile
for Modeling QoS and Fault Tolerance Characteristics and Mechanism (ad/2002-01-07).

9.1.4 EDOC

EDOC is a UML Profile for Enterprise Distributed Object Computing [OMG01c]. It describes
how UML concepts can be used to model system component structures and behavior through
the definition of the Component Collaboration Architecture (in short CCA). A component that
meets CCA criteria is known as a ProcessComponent. Such components can be subsequently
implemented by physical components using special technology.

The architecture of this profile is broken down into various levels and permits description of both
same level component interactions and exchanges between different level components.

A CCA component can define the properties required to configure it for use. These components
intercommunicate through ports, which are in turn linked together by connections. Each port can
be transactional and synchronous. A port also has a direction: Initiates or Responds. An initiator
port sends a message to begin a conversation. A responder port answers this message and may, if
appropriate, pursue the conversation.

A port is further broken down into specialized FlowPort, ProtocolPort and OperationPort con-
cepts. The simplest of these is the FlowPort, which defines entering or exiting data flows. An
OperationPort contains a set of FlowPorts representative of typical operation call/return behav-
ior. Only one of the FlowPorts acts as initiator and represents the operation call. The others act
as responders and provide operation return values.

A ProtocolPort defines the use of a protocol for complex communications between components. A
protocol defines the type of conversation held between an Initiator and a Responder. This definition
states which messages are sent and received but also defines their choreography as modeled by an
activity graph. A protocol is made up of subports that may themselves be ProtocolPorts but in
fact break down, at the finest level, into FlowPorts.

An interface is a special protocol case, with all the usual possibilities of an object interface. It can
therefore only contain OperationPorts and FlowPorts.

To be executable, a ProcessComponent must have a “technology profile”. This profile provides
specifications for automatic translation of CCA components into implementation models (Java,
CORBA, etc.).

CCA can only be expressed using basic UML 1.4 notation. A few extensions and additional
notations have, however, been defined to enhance readability and compactness for those tools that
support CCA.

9.1.5 MDA

The Model Driven Architecture (MDA) is the OMG’s new flagship architecture that aims to inte-
grate its (and other) standards within a model driven approach to system development ([StOG00,
MM01, StOG01]). MDA encapsulates many important ideas - most notably the notion that real
benefits can be obtained by using modeling languages to integrate the huge diversity of languages
used in the development of systems.
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In MDA, modeling languages are categorized as being platform independent (i.e. specification
oriented) and platform independent (i.e. implementation oriented). Note that a modeling language
can be a language at any level of abstraction. Examples of platform independent languages include
UML itself (when used for specification). Middleware standards such as CORBA and programming
level languages (e.g. Java Beans) are examples of platform specific languages.

Mappings (a key component of MDA) define the relationships between these languages. By ab-
stracting away from platform specific details, the intention is that system development is driven
through platform independent models that can be semi-automatically translated into any platform
specific language for which a standard mapping has been defined. Thus, platform independence
is obtained along with greater flexibility in deployment - if a new technology emerges (e.g. .Net),
then all that is required is to apply a new set of mappings.

Platform independent and platform specific mappings are good examples of vertical transforma-
tions. However, MDA goes potentially far beyond this. For example, horizontal mappings between
platform specific languages may be defined as a means of integrated different modeling perspec-
tives at the specification level (e.g. process models, system artefacts, software specifications). In
short, MDA offers a framework that has the potential to model and integrate all aspects of system
development.

Many vendors are already claiming support for MDA (e.g. a code generator could be viewed as a
mapping tool!). However, in practice there are significant issues to be addressed. Mechanisms must
be defined that support executable, but declarative mappings between languages. The semantics
of these languages must be defined well enough to ensure that mappings are semantic preserving,
whilst more powerful extension mechanisms are required to support the reuse of mappings. These
and many other issues are all currently being debated within the OMG (see www.omg.org/mda).

9.1.6 MDA & current industrial Real-time-UML tools

In the real-time application area, this model-oriented trend is also very active and promising.
Currently, there are four main model-oriented industrial approaches supported by tools: UML-RT
used with Rose-RT, ROPES with Rhapsody, ARTiSAN and UML/SDL with the Tau UML/SDL
suite.

Within UML-RT, an application is seen as a set of entities called ”capsules”’ which support logical
concurrency. These capsules have a state machine as behavior specification and may exchange
signals to communicate. Models built in this way are said to be executable, meaning that at any
moment in design, it is possible to produce an executable application matching the UML model.
In this case, the mapping is achieved via code generation.

For ROPES and ARTiSAN approaches, real-time application modeling is a 3-stage process: i)
building a ”functional”’ model with class and state diagrams; ii) building a specific tasking model
with class diagrams containing only active objects ( execution tasks); iii) describing the mappings
between the two models. The main drawback of this ”family” of methods is that it requires
advanced real-time development skills to build the tasking model and map it with the ”functional”
model. While there are some ”shortcuts” available ([AKZ97, p. 482]) to facilitate this activity, no
transformation rules are provided as could be done within a fully MDA-based approach.

The approach proposed by Telelogic is based on the use of both UML and SDL languages. It
consists of building UML models at the analysis stages using active objects as concurrency supports
and SDL within design-time. Reference document [IT99] defines modeling rules for mapping a
UML-oriented model into an SDL-oriented model. When SDL models are finished, the engineer
may generate code to produce an executable application.

All these methodologies may be considered as MDA-based approaches for mainly two reasons.
Firstly, they clearly promote the model paradigm to develop applications; and secondly, they pro-
vide code generation taking into account structural and behavior specifications for model mapping
to implementation languages such as C, C++, JAVA, ... Nevertheless, they do not exploit all the
potentialities of MDA. Their application models are often only PSM-like for ”executable” reasons.
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For modeling purposes, the user is thus led very quickly to resort, for an executable model, to
a programming language such as C++, . Although action semantics have been standardized by
OMG [OMG02] there are still only a few tools that have integrated this feature, which allows
building of executable models independently of any programming language.

While these approaches are usually based on a several stage process, they do not provide the
refinement mapping rules that could facilitate application development and, above all, be highly
useful in promoting seamless development processes. Finally, the existing UML-based methods for
real-time applications still require considerable knowledge of real-time software technology (and
the different programming models promoted by these tools) to develop real-time systems.

9.1.7 Towards MDA components?

MDA approach has given rise to a particular interest of the RT community (e.g., the first edition of
the Summer School on MDA for embedded systems held in Brest, Sept. 2002, http://sancy.ensieta.fr/mda/)
[Dou02]. However, this subject remains largely open, in particular, to identify and structure
the various artefacts related to MDA, such as: dedicated metamodels (e.g., for business do-
main and technical domain), specific target models (also called PSMs Platform Specific Mod-
els), transformation procedures, model weaving, mapping and transformation rules, in particu-
lar, concerning RT QoS, but also for implementation synthesis, test generation, proof synthe-
sis (see for example Josephil Challenge launched for the second edition of the summer school:
http://sancy.ensieta.fr/mda/JOSEFIL/).

Incoming MDA-based workbenches will consist of various parts that may interoperate:

• (i) Documents (method book, guide lines, user guides, ); ¿(ii) Profiles (SPT, SPEM, EDOC,
); ¿(iii) Tools (UML modeler, Code generator, Model transformer, Model validator, ).

Moreover, these MDA parts may be plug on a bus in order they interoperate. For example,
the ECLIPSE initiative (www.eclipse.org) provides a specific plug-in, EMF (Eclipse Modeling
Framework), ensuring the construction of UML-based MDA plug-ins of ECLIPSE.

Even if it is not well defined today, it seems logical that components will also play this structuring
role [BG02]. And near future should give rise to ”MDA-Components” whose nature could be
clarified thanks standard stereotypes such as Tool, UML Profile, Document,

In fact, currently not a lot of things have been set related to MDA and it still remains a lot of work
to do to clarify MDA and its related concepts. In particular, as CBSE methodology have been
developed to support more efficient the use of the component artefact, Model Driven Engineering
methodologies have to be define to exploit the all the potentialities of the MDA technologies and
concepts.

9.2 Implementation Technology Standards

The majority of implementation standards relevant to components tend to focus on middleware,
i.e. the communication and interface aspects of components. Each of these standards emphasizes
the important of independence from the technology use to implement the internal functionality of
components. Because of this, we will not discuss the plethora of programming languages, etc, that
can be used to implement components in this section.

CORBA is described in Section 5.2.5.
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9.2.1 SOAP

SOAP provides a simple and lightweight mechanism for exchanging structured and typed informa-
tion between peers in a decentralized, distributed environment using XML. As such, SOAP can
be seen as an important standard for interchanging date between distributed components. SOAP
does not itself provide implementation specific semantics; rather it defines a simple mechanism for
expressing application semantics by providing a modular packaging model and encoding mecha-
nisms for encoding data within modules. This allows SOAP to be used in a large variety of systems
ranging from messaging systems to RPC.

SOAP consists of three parts:

• The SOAP envelope, which defines an overall framework for expressing what is in a message;

• The SOAP encoding rules defines a serialization mechanism that can be used to exchange
instances of application-defined datatypes. These may be simple or structured datatypes.

• The SOAP RPC representation defines a convention that can be used to represent remote
procedure calls and responses.

Just as with CORBA, the key advantage of SOAP is that it is platform independent and is not
tied to any implementation specific messaging mechanism or software architecture.

9.3 Conclusions and Challenges

All the above standards are relevant to the ARTIST component working group as they each attempt
to standardize a variety of aspects of real-time and component based design in isolation. As a
result, there are many opportunities for additional work to unify both the real-time and component
perspectives and also to provide a stronger foundation for their definition and deployment. These
include the following:

• Integration of Real-time and Embedded QoS within UML2 component model: Currently,
little consideration has been given to the expression of real-time and QoS aspects in UML
component models. Such an approach would require the definition of additional notational
facilities to facilitate the capture of these aspects, along with a definition of their semantics.

• Traceability management/control of Real-time QoS of a component all along the develop-
ment process: By providing a model of change management/control it should be possible to
provide support for the management of components throughout its lifetime (an essential re-
quirement for change management and upgrades). Such a facility could potentially be based
on an extension to emerging process management modeling languages being developed in the
industry such as SPEM.

• Definition of Performance/schedulabilty analysis methodology well-suited for such MDA
component-based approaches: It is clear that the deployment of components within an MDA
life cycle could be developed whereby components could be specified in a platform inde-
pendent way, and then mapped to various component technologies. In order to achieve this,
significant work needs to be done to develop models of platform specific component languages
and to define rules for mapping from platform independent components to platform specific
models or to middleware standards such as CORBA and SOAP. These mappings must be
shown to be correct with respect to certain semantic preserving properties, including QoS.

• Link between extra-functional engineering requirements and Real-time/Embedded QoS of
UML-based models: By modeling extra-functional properties of real-time systems, it should
be possible to build rich, component based modeling languages that capture a variety of
system engineering perspectives. This would tie in nicely with work going on in the OMG
to define a UML profile for systems engineering.
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Glossary (for the Component Part)

What is a component? In classic engineering disciplines a component is a self-contained
subsystem that can be used as a building block in the design of a larger system. The
component provides the specified service to its environment across well-specified component
interfaces. An example of such a component is an engine in an automobile, or the heating
furnace in a home. The component can have a complex internal structure that is neither
visible, nor of concern, to the user of the component. An ideal component should maintain
its encapsulation when used in a larger context. The larger system should be constructed
from nearly autonomous components that can be integrated without violating the principle
of composability: that properties that have been established at the component level will also
hold at the system level.

What is a component in software engineering?
That’s a question of point of view. According to [BBB+00], advocates of software reuse
equate components to anything that can be reused; practitioners using commercial off-the-
shelf (COTS) software equate components to COTS products; software methodologists equate
components with units of project and configuration management; and software architects
equate components with design abstractions.

The best accepted definition in the software industry world is based on Szyperski’s work
[Szy98]:
a component is a unit of composition with contractually specified interfaces and fully ex-
plicit context dependencies that can be deployed independently and is subject to third-party
composition.

In this report, we follow the definition by Szyperski, and in particular stress the separation
between component implementation and component interface. We will view a component as a
software implementation that can be executed on a physical or logical device. The component
implements one or more interfaces. Idealy, there should be no context dependencies that
are not captured by the component interface. This last sentence must be applied with
some common sense, because in practice most interfaces capture only certain aspects of a
component’s behavior.

Component Model A component model prescribes how components interact with each other
and with the component framework, in order that independently developed component can
be deployed in the composition environment. The model thereby specifying the standards
and conventions imposed on developers of components. A component model states what it
means for a component to implement a given interface; it imposes constraints on components
so that they can be located, communicate using agreed protocols, etc.

Component Framework A component framework provides a variety of services to support and
enforce the component model. In many respects component frameworks are like special-
purpose operating systems. Using an analogy, components are to frameworks what processes
are to operating systems. The framework manages resources shared by components, and
provides the underlying mechanisms that enable interaction between components. Note that
it is not necessary that the framework have a runtime existence independent of components.
For example, the framework can be a run-time executive that is bundled with a component
system during compilation.
A few authors use the term ”component framework” in a wider sense, to encompass both
”framework” and ”component model”.

Interface An interface is a specification of an access point for a component. A component
can exhibit several interfaces. The interface specifies its externally visible features, which
are both necessary on one hand for the user of a component and on the other hand for
an implementer. Ideally, there should exist no communication between a component and
its environment that is not specified in its interface; this statement must be used with care,
however, since an interface often specifies only syntactic properties, and often ignores sharing
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of resources, timing properties, etc. An interface that also specifies behavioral or extra-
functional properties is called a rich interface. We note that our definition of interface (for
components) is more general than the meaning of interface, e.g., in OO programming, where
an interface is simply the signature of a collection of methods.

Contracts A contract is a specification of obligations of a component, in terms of properties
that can be observed in its interface. Contracts ensure that independently developed com-
ponents obey certain rules so that components interact (or can not interact) in predictable
ways, and can be deployed into standard build-time and run-time environments. An often
cited classification of contracts is given in [BJP99], where 4 levels of contracts are defined:
syntactic (conformance of signature), behavioral (expressed e.g. by pre- and postconditions),
synchronization, and quality of service (response time and so on). The component tech-
nologies mostly used today (COM, EJB, .NET) provide support only for contracts at the
syntactic level.

Functional Properties: properties relating to the data handled by a system influencing its func-
tionality. This includes protocol aspects that relate to the order in which data are exchanged.

Extra-Functional Properties (or non-functional properties): properties not directly influencing
the functionality of a system, but rather its ”quality”. Example of such extra-functional
properties concern response-time, memory-use, energy consumption, etc. In the domain of
time related properties, the distinction between functional and extra-functional properties is
not always clearly defined, as the system behavior is often explicitly time dependent, and
timely response may be part of the functionality of a system.

Introspection Introspection is the ability of a system to monitor itself, e.g., to answer queries
about its interfac(es) or to monitor its extra-functional properties.

Middleware

Port: a port defines an interaction point between a component instance and its environment. The
terms ”port” and ”connector” originate in architecture description languages.

Connector: a connector connects 2 or more ports and restrict the possible interactions between
different objects of a systems to those defined by its

What is an integration environment ?
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