
1

Model-Driven Engineering
with Contracts, Patterns,

and Aspects*

Prof. Jean-Marc Jézéquel
(Univ. Rennes 1 & INRIA)

Triskell Team @ IRISA
Campus de Beaulieu

F-35042 Rennes Cedex
Tel : +33 299 847 192 Fax : +33 299 847 171

e-mail : jezequel@irisa.fr
http://www.irisa.fr/prive/jezequel

*This work has been partially funded by the European IST project QCCS (IST 1999 20122)

© J.-M. Jézéquel, 2003 2

Rennes

IST domain, public lab
• 5 sites
• 2100 Persons
• 100 teams

Triskell Team (20 people):
OO Modeling (UML), MDA
• CBSE, Design by Contract
•AOD
• V&V

Irisa / Triskell http://www.irisa.fr/triskell

2

© J.-M. Jézéquel, 2003 3

Tutorial Outline

1. UML & Model
Driven Architecture

3. Design Patterns

2. Contract Aware
Components

4. Aspect
Oriented
Design

I. Model Driven Engineering

–Context: modeling component-based systems
–UML through one example
–Modeling is Aspect-Oriented (by definition)
–OMG’s Model Driven Architecture as a limited version of
AOM

3

© J.-M. Jézéquel, 2003 5

Modern Software Problems

n Importance of non-functional properties
– distributed systems, parallel & asynchronous
– quality of service : reliability, latency, performance...

n Flexibility of functional aspects
– notion of product lines (space, time)

Versions
(Time)

Variants (Fonctionalities)

Time
to

Market!1.1

1.2

1.01.0 1.0 1.0 1.0 1.0

1.1 1.1 1.1 1.1 1.1

1.2 1.2 1.2 1.2 1.2

1.3 1.3 1.3 1.3 1.3

1.4 1.4 1.4 1.4 1.4

© J.-M. Jézéquel, 2003 6

OO approach:
Models and Components

n frameworks

• Guarantees ?
Functional , synchronization, performance, QoS

• Changeable software, from distributed/unconnected sources
even after delivery, by the end user

4

© J.-M. Jézéquel, 2003 7

From the Object-Oriented Unification…

n From the object as the only one concept
– As e.g. in Smalltalk

n To a multitude of concepts
– Collaborations
– Design patterns
– Components
– Middleware
– Aspects

© J.-M. Jézéquel, 2003 8

Collaborations

n Objects should be as simple as possible
– To enable modular understanding

n But then where is the complexity?
– It is in the way objects interact!
– Cf. Collaborations as a
standalone diagram in UML
(T. Reenskaug’s works)

5

© J.-M. Jézéquel, 2003 9

Design Patterns
n Embody architectural know-how of experts
n As much about problems as about solutions

– pairs problem/solution in a context

n About non-functional forces
– reusability, portability, and extensibility…

n Not about classes & objects but
collaborations
– Actually, design pattern applications are parameterized

collaborations

© J.-M. Jézéquel, 2003 11

Middleware or Middle War?

COM+
DCOM

CORBA
IIOP

Microsoft
C# & .Net

XML
SOAP

Sun’s
Java &
EJB

HTTP
HTML

z No clear winner until now
z And probably not in the

near future
z Migration is expensive

and disruptive

z The OMG tried to send in
the ‘’blue helmets’’
with the MDA initiative

+ until the next ultimate
middleware platform (~2005)

Proprietary
Middleware
(eg. automotive)

It's difficult -- in fact, next to impossible – for a large enterprise
to standardize on a single middleware platform. (R. Soley)

6

© J.-M. Jézéquel, 2003 12

Aspect Oriented Programming
n Kiczales et al., ECOOP’97

– MIT’s one of 10 key technologies for 2010

n Encapsulation of cross-cutting concerns in OO
programs
– Persistence, contract checking, etc.

n Weaving at some specific points (join points) in the
program execution
– Hence more than macros on steroids

n AspectJ for AOP in Java
– Some clumsiness in describing dynamic join points

n What about Aspect Oriented Design ?

© J.-M. Jézéquel, 2003 13

Why modeling: master complexity
n Modeling, in the broadest sense, is the cost-effective use of

something in place of something else for some cognitive
purpose. It allows us to use something that is simpler, safer
or cheaper than reality instead of reality for some purpose.

n A model represents reality for the given purpose; the model
is an abstraction of reality in the sense that it cannot
represent all aspects of reality. This allows us to deal with
the world in a simplified manner, avoiding the complexity,
danger and irreversibility of reality.

Jeff Rothenberg.

7

© J.-M. Jézéquel, 2003 14

The World and the Model
A Model is a simplified representation of a
subset of the World
Consider modeling both the machine & its
environment (M. Jackson)

M0
(the world)

M1
(modeling
space)

Device

start()
stop()

Operator
<<Actor>>

0..*1 0..*1

controls

Class diagram

: Operator

: Device

start()

stop()

Sequence diagram

UseCase diagram

: Operator

ControllingSite RemoteSite

TCP/IP : Device

Implementation diagram

: Operator

Is represented by

© J.-M. Jézéquel, 2003 15

UML paved the way…

UML/MOF
OMT

Merise

SA/RT

ERD
SADT

DFD
etc.

Model
Driven

Engineering

JSD

From Object-Oriented Programming
to

Model-Based Software Engineering

(From J. Bézivin)

8

© J.-M. Jézéquel, 2003 16

UML: one model, 4 main
dimensions, multiple views

Device

start()
stop()

Operator
<<Actor>>

0..*1 0..*1

controls

Class diagram

: Operator

: Device

start()

stop()

Sequence diagram

UseCase diagram

: Operator

ControllingSite RemoteSite

TCP/IP : Device

Implementation diagram

: Operator

© J.-M. Jézéquel, 2003 17

The 9 diagrams of UML
n Modeling along 4 main viewpoints:

– Static Aspect (Who?)
» Describes objects and their relationships
» Structuring with packages

– User view (What?)
» Use cases

– Dynamic Aspects (When?)
» Sequence Diagram
» Collaboration Diagram
» State Diagram
» Activity Diagram

– Implementation Aspects (Where?)
» Component Diagram & deployment diagram

9

© J.-M. Jézéquel, 2003 18

Example
n Modeling a (simplified) GPS device

– Get position, heading and speed
» by receiving signals from a set of satellites

– Notion of Estimated Position Error (EPE)
» Receive from more satellites to get EPE down

– User may choose a trade-off between EPE & saving power
» Best effort mode
» Best route (adapt to speed/variations in heading)
» PowerSave

(Case Study borrowed from N. Plouzeau,
K. Macedo & JP. Thibault. Big thanks to them)

© J.-M. Jézéquel, 2003 19

Modeling a (simplified) GPS device
n Use case diagram

User

GPS

switchON/OFF

setPrecision

getInfo

getPosition

getSpeed

getHeading

«extends»

«extends»

«extends»

10

© J.-M. Jézéquel, 2003 20

Modeling a (simplified) GPS device
n Class diagram

+SetChannel(in Channel : int)
+GetData() : Data
+DataReady() : bool

Receiver

+ListenTo(in Channel : int)
+Activate(in value : bool)
+GetData() : Data
+DataReady() : bool

-SatTTime : Data
-SatPosition : 3DPoint
-SatDistance : double
-DistancePrecision : double
-IsActive : bool

Decoder

1
1

+SetEstimatePosition(in point : 3DPoint)
+ConfigureDecoders()
+GetPosition() : 3DPoint

-Position : 3DPoint
-EDE : double
-/ Speed : double
-/ Heading : double
-Precision:{BestEffort, BestTrack, PowerSave }

LocationComputer

+UpdateOrbit()

-Channel : int
-Number : int
-OrbitalCoordinates : Orbit

Satellite

1

12

1

32

+GetLevel() : int
+IsOnMainSupply() : bool

-BatteryLevel : int
-MainSupply : bool

PowerManagement

11

+GetTime() : Date
+SetTime(in date : Date)

Clock

1
1

3DPoint

1
{ordered}

*

knows

readsFrom

route

© J.-M. Jézéquel, 2003 21

Modeling a (simplified) GPS device
n Sequence diagram: configuring decoders

 : LocationComputer : Decoder : Receiver

ConfigureDecoders()

ListenTo(Channel)

SetChannel(Channel)

11

© J.-M. Jézéquel, 2003 22

Modeling a (simplified) GPS device
n Sequence diagram: interrupt driven

architecture

n Many more sequence diagrams needed…

 : LocationComputer : Decoder : Receiver

DataReady

GetData

return Data

DataReady:=DataReady()

© J.-M. Jézéquel, 2003 23

Modeling a (simplified) GPS device
n Targeting multiple products with the same

(business) model
– Hand held autonomous device
– Plug-in device for PalmTop
– Plug-in device for laptop (PCMCIA)
– May need to change part of the software after deployment

n We choose a component based delivery of
the software

12

© J.-M. Jézéquel, 2003 24

Modeling a (simplified) GPS device
n Component diagram

Required port Provided Port

<<Component>>
Decoder

DecoderIReceiverI

DataIDataI

<<component>>

Receiver

«provided interfaces>>
 ReceiverI
 DataI

<<component>>

Decoder

«provided interfaces>>
 DecoderI
 DataI
« required interfaces»
 ReceiverI
 DataI

<<component>>

LocationComputer

«provided interfaces>>
 ComputerI
« required interfaces»
 PowerManagementI
 ClockI
 DecoderI
 DataI

<<component>>

Management

«provided interfaces>>
 PowerManagementI
 ClockI

© J.-M. Jézéquel, 2003 25

Modeling a (simplified) GPS device
n Deployment diagram

«component»
receiver1 : Receiver

«component»
Receiver2 : Receiver

«component»
receiver3 : Receiver

«component»
Decoder1 : Decoder

«component»
decoder2 : Decoder

«component»
decoder3 : Decoder

«component»
lc : LocationComputer

«component»
manager : Management

ReceiverI, DataI

ReceiverI, DataI

ReceiverI, DataI

DecoderI, DataI

DecoderI, DataI

DecoderI, DataI
ClockI, PowerManagementI

ComputerI

13

© J.-M. Jézéquel, 2003 26

Models: from contemplative to
productive

+Applicant()
+ApplicantInfo()
+MakeApplication()

-companyName : CString
-experience : CString
-reference1 : CString
-reference2 : CString
-reference3 : CString

Applicant

+Person()
+PersonInfo()

-personID : unsigned long
-surname : CString
-givenName : CString
-middleInitial : char
-streetAddress : CString
-postCode : CString
-countryname : CString
-eMailAddress : CString

Person

-is taught by

1

-teaches

0..*
+CourseSession()
+CourseSessionInfo()

-courseSessionID : unsigned long
-courseDate : unsigned long
-courseID : unsigned long
-courseLocation : CString

CourseSession

+AppStatus()
+AppStatusInfo()

-statusCode : char
-statusName : CString

AppStatus

+CourseRegistration()
+CourseRegistrationInfo()

-registrationDate : unsigned long
-completionFlag : bool
-confirmedDate : unsigned long

CourseRegistration

+Test()
+TestInfo()

-testScore : unsigned long

Test

+Application()
+ApplicationInfo()

-productNr : unsigned long
-certificationLevel : unsigned long
-applicationDate : unsigned long

Application

+PermittedStatusChange()
+StatusChangeInfo()

-fromStatus : char
-toStatus : char

PermittedStatusChange

+ExamSession()
+ExamSessionInfo()

-examSession : unsigned long
-examlocation : CString
-examDate : unsigned long

ExamSession

-gives0..*

-is achieved1

-is made by

1

-makes

0..*

-allows change in

0..*

-has a

1..*

-is taken by1

-takes0..*

-is made by a1

-made a1..*

-is in1

-is filled by0..*

-uses

1

-is used in

0..*

-applies to a0..*

-is for a1

+Exam()
+ExamInfo()

-examID : unsigned long
-certificationLevel : unsigned long

Exam

+Employee()
+GetCurrentAge()
+EmployeeInfo()

-jobType : CString
-roomNr : unsigned long
-department : CString
-division : CString
-jobTitle : CString
-manager : unsigned long
-headsDept : CString
-headsDivision : CString
-mobileNr : CString
-birthDate : unsigned long

Employee

+registrationform()

RegistrationForm

-uses*
*

ApplicantApplicantList PersonList

findApplicant()

ApplicationRegForm

Applicant()

findPerson()

addPerson()

addApplication()

Application()

MakeApplication()

ApplicationList

class

sequence
Code
Java

"from human-readable to computer-understandable"

From J. Bézivin

© J.-M. Jézéquel, 2003 27

Assigning Meaning to Models
n If a UML model is no longer just

– fancy pictures to decorate your room
– a graphical syntax for C++/Java/C#/Eiffel...

n Then tools must be able to manipulate
models
– Let’s make a model
of what a model is!
– => meta-modeling

» & meta-meta-modeling..

ConstraintNamespace

Package

GeneralizableElement

0..*

0..*
+supertype

{ordered}0..*

+subtype

0..*

Generalizes

Classifier

Class AssociationDataType

Feature

BehavioralFeature StructuralFeature

Operation

AssociationEnd

Reference

0..*

1

+referent0..*

+referencedEnd
1

RefersTo

MofAttribute

ModelElement

0..*
0..1

+containedElement

{ordered}

0..*
+container

0..1

Contains

0..*

1.. *

0..*

+constrainedElement

1.. *
Constrains

14

© J.-M. Jézéquel, 2003 28

Modeling techniques at OMG: 3 steps

MOF

UML

aModel

UML

aModel

MOF

UML

UML_for_CORBA

aModel

SPEM Workflow etc.

Common Warehouse
Metadata

Action language

1995 1998 2001

© J.-M. Jézéquel, 2003 29

Comparing Abstract Syntax Systems

MOF

The UML
meta-Model

A Specific
UML Model

A Specific
phenomenon

corresponding to
a UML Model

EBNF

Pascal Language
Grammar

A specific
Pascal Program

A specific
execution

of a Pascal
program

A XML
document

A XML DTD
Or Schema

A XML
document

A XML DTD
or Schema

Technology #2
(MOF + OCL)

Technology #3
(XML Meta-Language)

M3

M2

M1

KIF
Theories

Upper Level
Ontologies

Technology #4
(Ontology engineering)

[XMI=MOF+XML+OCL]

Technology #1
(formal grammars

attribute grammars,
etc.)

+Description
Logics

+Conceptual
Graphs
+etc.

+ Xlink, Xpath, XSLT
+ RDF, OIL, DAML
+ etc.

(From J. Bézivin)

15

© J.-M. Jézéquel, 2003 30

MDA: the OMG new vision
"OMG is in the ideal position to provide the model-
based standards that are necessary to extend
integration beyond the middleware approach… Now
is the time to put this plan into effect. Now is the time
for the Model Driven Architecture."

Richard Soley & OMG staff,
MDA Whitepaper Draft 3.2

November 27, 2000

© J.-M. Jézéquel, 2003 31

Mappings to multiple and evolving
platforms

COM+
DCOM

CORBA C#
.Net XML

SOAP

Java
EJB HTTP

HTML

zMOF & UML as the
core

z Organization assets
expressed as models

zModel
transformations to
map to technology
specific platforms

Platform neutral models based
on UML & MOF

16

© J.-M. Jézéquel, 2003 32

The core idea of MDA:
PIMs & PSMs

n MDA models
– PIM: Platform Independent Model

» Business Model of a system abstracting away the implementation
details of a system

» Example: the UML model of the GPS system

– PSM: Platform Specific Model
» Operational model including platform specific aspects
» Example: the UML model of the GPS system on .NET

n Possibly expressed with a UML profile (.NET profile for UML)

– Not so clear about platform models
» Reusable model at various levels of abstraction

n CCM, C#, EJB, EDOC, …

© J.-M. Jézéquel, 2003 33

A PSM for our GPS
n Here, the platform is .NET

17

© J.-M. Jézéquel, 2003 34

How to go From PIM to PSM?

n "just" weave the platform aspect !
n How can I do that?

– Through Model transformations
– Now hot topic at OMG with RFP Q/V/T

» Query/View/Transformation

© J.-M. Jézéquel, 2003 35

Weaving aspects into UML
Models?

n It’s what Model Driven Architecture is about!

Requirements Analysis Architectural
Design

Detailed
Design

Implementation Validation

Lifecycle

Modeling
point of views

Proofs,
QoS

Analysis,
Simulation

Technical
Aspects

Business
Aspects

Text
(e.g. XML)

PIM

Doc Doc Doc Doc Doc Doc

PIM PIM PSM

PIM PSM

Code Tests

Formal Models Formal Models

Endomorphic Transformations
Exomorphic Transformations
Outside UML scope

PIM=Platform Independent Model
PSM= Platform Specific Model

18

© J.-M. Jézéquel, 2003 36

But many more dimensions in
modeling!

n Beyond Design Model
– where UML is arguably good…

n Business model
n GUI model
n Development process model
n Performance & Resource model
n Deployment model
n Test model
n Etc.

© J.-M. Jézéquel, 2003 37

How to take these dimensions
into account?

n Within UML, use built-in extension
mechanisms to link with other semantic
domains

n Weave all these aspects into a design model

Service
model

Domain
model

Resource
model

Design
Model

Test
model

Installation
model

19

© J.-M. Jézéquel, 2003 38

Element stereotype

Design pattern application
(parametric collaboration)

History
cmd_executed : string

last_command() : string

<<persistent>>

S erviceProvider

<<command>> action_1()
<<command>> action_2()
<<command>> action_3()

Interpreter

execute()

0..*

1

0..*

1
1..*1..* 1..*

+invoker

1..*

…and also
Tagged values
& Contracts

Command pattern

receiver
invoker

Embedding implicit semantics into
a model

© J.-M. Jézéquel, 2003 39

…and the result we want...

History
cmd_executed : string

last_command() : string

<<persistent>>

History_StorageProxy

load_last_command() : string
store_last_command(cmd : string)

action_1_cmd

do()

action_2_cmd

do()

action_3_cmd

do()

ServiceProvider

<<command>> action_1()
<<command>> action_2()
<<command>> action_3()

+proxy

Interpreter

execute()

0..*

1

0..*

1

ServiceProvider_Command

do() 10..*

+cmdTarget

10..*1..*0..* 1..*

+commands

0..*

20

© J.-M. Jézéquel, 2003 40

0..*

1

History
cmd_executed : str ing

last_comm and() : string

<<persistent>>

Interpreter

execute()

ServiceProvider

<<command>> action_1()
<<command>> action_2()
<<command>> action_3()

History_StorageProxy

load_last_comm and() : string
store_last_command(cmd : string)

Persitence implementation

1..*0..*

ServiceProvider_Command

do() 10..*

action_3_cmd

do()

action_2_cmd

do()

action_1_cmd

do()

Command pattern implementation

How To: Automatic Model
Transformations

In some domains (e.g.; RT systems)
transformations can get more complex
than initial model!
=> must be managed with sound SE
principles

© J.-M. Jézéquel, 2003 41

UML & Model Driven
Architecture: Summary

n Modeling to master complexity
– Multi-dimensional and aspect oriented by definition

n Models: from contemplative to productive
– Meta-modeling tools

n Model Driven Engineering
– Weaving aspects into a design model

» E.g. Platform Specificities

n Model Driven Architecture (PIM / PSM): just
a special case of Aspect Oriented Design

21

© J.-M. Jézéquel, 2003 42

Tutorial Outline

1. UML & Model
Driven Architecture

3. Design Patterns

2. Contract Aware
Components

4. Aspect
Oriented
Design

II. Contracts

–Origin & interest, various levels of software contracts
–OCL for level 2 contracts
–QoS contracts in QCCS

22

© J.-M. Jézéquel, 2003 46

Validity of component integration
How can we (re)use a component?

© J.-M. Jézéquel, 2003 47

Ariane 501 Maiden Launch
Kourou, ELA3 -- June, 4 1996,12:34 UT

n H0 -> H0+37s : nominal
n Within SRI 2:

– BH (Bias Horizontal) > 2^15
– convert_double_to_int(BH) fails!
– exception SRI -> crash SRI2 & 1

n OBC disoriented
– Angle > 20°, huge aerodynamics

constraints

n boosters separating...

23

© J.-M. Jézéquel, 2003 48

Ariane 501 Maiden Launch
Kourou, ELA3 -- June, 4 1996,12:34 UT

n H0 + 39s: Self destruction (cost: € 500M)

© J.-M. Jézéquel, 2003 49

Why? (cf. IEEE Comp. 01/97)
n Not a programming error

– unprotected conversion = design decision (~1980)

n Not a design error
– Justified vs. Ariane 4 trajectory & RT constraints

n Problem with integration testing
– As always, could have theoretically been caught. But huge

test space vs. limited resources
– Furthermore, SRI useless at this stage of the flight!

24

© J.-M. Jézéquel, 2003 50

Why: (cf. IEEE Comp. 01/97)

n Reuse of a component with a hidden
constraint!
– Precondition : abs(BH) < 32768.0
– Valid for Ariane 4, but no longer for Ariane 5

» More powerful rocket

© J.-M. Jézéquel, 2003 51

How Can You Build Trust into a
Component?

Specification
(e.g., based on UML)

Implementation V & V (e.g., tests)

Check Consistency between these 3 Aspects
- Inherent (test & resistance to mutations)
- Composability inter-components

25

© J.-M. Jézéquel, 2003 52

Specification = Contract between
the client and the component

n In real life, many kinds of contracts
– From Jean-Jacques Rousseau’s “Social Contract” to “cash

& carry”

n Likewise, many issues for software contracts
in a distributed setting

© J.-M. Jézéquel, 2003 53

Four levels of Software
Contracting

n Basic (syntactic)
– the program compiles…

n Behavioral
– Eiffel like pre/post conditions

n Synchronization
– e.g. path expressions, etc. [McHale]

n Quality of service (quantitative)
– Possible dynamic negotiation

Cf. IEEE Computer
July 1999

26

© J.-M. Jézéquel, 2003 54

Level 2 Contracts in UML: OCL
(Object Constraint Language)

n Constraint = Boolean expression (no side
effect) on
– Usual operations on basic types (Boolean, Integer...)
– attributes of class instances
– « query » operation (functions side-effect free)
– associations from the UML class diagram
– States from StateCharts

© J.-M. Jézéquel, 2003 55

Behavioral Contracts
n Inspired by the notion of Abstract Data Type
n Specification = Signature +

– Preconditions
– Postconditions
– Class Invariants

n Behavioral contracts are inherited in
subclasses

27

© J.-M. Jézéquel, 2003 56

Bank_Account
{balance>=lowest}

balance: Money
lowest: Money

deposit (Money)
withdraw(Money)

Class invariants in UML
n Contraints can be added to UML model

– notation: between { }

n Invariant = Boolean expression
– True for all instances of a class in stable states...
– Expressed with the OCL (Object Constraint Language)

» e.g. {balance >= lowest}
» Can also navigate the associations

© J.-M. Jézéquel, 2003 57

Precondition:
Burden on the client

n Specification on what must be true for a
client to be allowed to call a method
– example: amount > 0

n Notation in UML
– {«precondition» OCL boolean expression}
– Abbreviation: {pre: OCL boolean expression}

28

© J.-M. Jézéquel, 2003 58

Postcondition:
Burden on the implementor

n Specification on what must be true at
completion of any successful call to a
method
– example: balance = balance @pre + amount

n Notation in UML
– {«postcondition» OCL boolean expression}
– Abbreviation: {post: OCL boolean expression}
– Operator for previous value (idem old Eiffel):

» OCL expression @pre

© J.-M. Jézéquel, 2003 59

To be Abstract and Precise
with the UML

Bank_Account
{balance>=lowest}

balance: Money
lowest: Money

deposit (amount: Money)
{pre: amount> 0}
{post: balance = balance @pre + amount}

withdraw(amount: Money)
{pre: amount> 0 and montant<=balance-lowest}
{post: balance = balance @pre - amount}

•In memory implementation
•straightforward
•list of transactions

•Data base implementation
•etc.

29

© J.-M. Jézéquel, 2003 60

Non-local contracts:
navigating associations

n Each association is a navigation path
– The context of an OCL expression is the starting point
– Rolenames are used to select which association is to be

traversed (or target classname if only one)

Person Car1 owner ownings *ownership

Context Car inv:
self.owner.age >= 18

© J.-M. Jézéquel, 2003 61

Navigation of 0..* associations
n Through navigation, we no longer get a scalar

but a collection of objects
n OCL defines 3 sub-types of collection

– Set : when navigation of a 0..* association
» Context Person inv: ownings return a Set[Car]
» Each element is in the Set at most once

– Bag : if more than one navigation step
» An element can be present more than once in the Bag

– Sequence : navigation of an association {ordered}
» It is an ordered Bag

n Many predefined operations on type collection
Syntax::

Collection->operation

30

© J.-M. Jézéquel, 2003 62

Basic operations on collections

n isEmpty
– true if collection has no element

n notEmpty
– true if collection has at least one element

n size
– Number of elements in the collection

n count (elem)
– Number of occurrences of element elem in the collection

Context Person inv:
age<18 implies ownings->isEmpty

© J.-M. Jézéquel, 2003 64

select Operation
n possible syntax

– collection->select(elem:T | expr)
– collection->select(elem | expr)
– collection->select(expr)

n Selects the subset of collection for which
property expr holds

n e.g.

n shortcut:

context Person inv:
ownings->select(v: Car | v.mileage<100000)->notEmpty

context Person inv:
ownings->select(mileage<100000)->notEmpty

31

© J.-M. Jézéquel, 2003 65

forAll Operation
n possible syntax

– collection->forall(elem:T | expr)
– collection->forall(elem | expr)
– collection->forall(expr)

n True iff expr holds for each element of the
collection

n e.g.

n shortcut:

context Person inv:
ownings->forall(v: Car | v.mileage<100000)

context Person inv:
ownings->forall(mileage<100000)

© J.-M. Jézéquel, 2003 66

Other OCL Operations
n exists (expr)

– true if expr holds for at least one element of the collection

n includes(elem), excludes(elem)
– True if elem belongs (resp. does not belong) to the collection

n includesAll(coll)
– True if all elements from coll are also here

n union (coll), intersection (coll)
– Classical set operation

n asSet, asBag, asSequence
– Type conversion

32

© J.-M. Jézéquel, 2003 67

Interest of Behavioral Contracts
n Specification, documentation

– Not a software fault tolerance gadget
– Might help system fault tolerance...

n Help V&V
– When assertions are monitored

» Must go from model to instrumented code: Transformations
– Never doing debugging again

n Help allocate responsibilities during
integration
– No longer have to find a scapegoat ;-)

© J.-M. Jézéquel, 2003 68

Unhandled exception: Routine failure. Exiting program.
Exception history:
===
Object Routine
Type of exception Description Line
===
#<BANK_ACCOUNT5f0c0> BANK_ACCOUNT:deposit
precondition violated positive_amount 63

#<USER 5f000> USER:test
Routine failure 90

#<DRIVER 5f010> DRIVER:make
Routine failure 18

Contract Violations: Preconditions
n The client broke the contract.

– The provider does not have to fulfill its part of the contract.
– If contracts are monitored, an exception should be raised

» making it easy to identify the exact origin of the fault.

33

© J.-M. Jézéquel, 2003 69

Contract violations:
Postconditions

n The implementation of a method did not
comply with its promise: This is a bug

n Again, easy to trace...(between lines 63-70)

Unhandled exception: Routine failure. Exiting program.
Exception history:
===
Object Routine
Type of exception Description Line
===
#<BANK_ACCOUNT5f0c0> BANK_ACCOUNT:deposit
postcondition violated deposited 70

#<USER 5f000> USER:test
Routine failure 90

#<DRIVER 5f010> DRIVER:make
Routine failure 18

© J.-M. Jézéquel, 2003 70

Application to Component Testing
(Self-Testable Components)

n Embed the test suite inside the component
– Implements a SELF_TESTABLE interface
– Component Unit Test suite =

» Test data + activator
» Oracle (mostly executable assertions from the component

specification)

n Useful in conjunction with
– Estimating the Quality of the Component
– Integration Testing

34

© J.-M. Jézéquel, 2003 71

QCCS: an IST Project
n QCCS = Quality Controlled Component-based

Software development
n Contract Aware Components

– Including QoS

n Aspect Weaver for
Implementing Contracts

n Apply methodology and tools
to 3 case studies

n Partners:
– INRIA, TU Berlin, Univ. Cyprus
– SchlumbergerSema, KD Soft

Aspects (PSM level)

Aspect Weaver

Target
Program
(or PSM)

UML + Contracts (PIM level)

© J.-M. Jézéquel, 2003 72

QCCS Challenges
n Model for QC Component Specification

– accounting for the various levels of contracts in UML

n Infrastructure for QC Components
– runtime contract management
– integration into standard component technology:

CORBA/EJB and .NET

n QCCS-specific development process
– methodology and tool support based on AOSD

35

© J.-M. Jézéquel, 2003 73

QoS Contracts in QCCS (Level 4)
n QoS Dimension (from QML)

– Name (responseTime, throughput…)
– Type (float, int, bool, enum…)
– Direction (up, down)
– Unit (seconds, bytes, none …)

n QoS Categories
– To group a set of QoS Dimensions

n Contracts
– Inherit one or more QoS categories
– Bound to ports

QML: A Language for Quality
of Service Specification
HP Labs Technical Reports
http://www.hpl.hp.com/
techreports/98/HPL-98-10.html

© J.-M. Jézéquel, 2003 74

Example for the GPS
n Getting location data from a receiver should

be done quickly enough
– Can take a long time in case of radio reception problems
– Big power consumption while the receiver is active

n TimeOut contracts for the GPS
– Just one QoS dimension

» Name = responseTime
» Type = int
» Direction = down
» Unit = us

TimeOutC

36

© J.-M. Jézéquel, 2003 75

Example
n Adding QoS contracts to our GPS device

+SetChannel(in Channel : int)
+GetData() : Data
+DataReady() : bool

Receiver

+ListenTo(in Channel : int)
+Activate(in value : bool)
+GetData() : Data
+DataReady() : bool

-SatTTime : Data
-SatPosition : 3DPoint
-SatDistance : double
-DistancePrecision : double
-IsActive : bool

Decoder

1
1

+SetEstimatePosition(in point : 3DPoint)
+ConfigureDecoders()
+GetPosition() : 3DPoint

-Position : 3DPoint
-EDE : double
-/ Speed : double
-/ Heading : double
-Precision:{BestEffort, BestTrack, PowerSave }

LocationComputer

+UpdateOrbit()

-Channel : int
-Number : int
-OrbitalCoordinates : Orbit

Satellite

1

12

1

32

+GetLevel() : int
+IsOnMainSupply() : bool

-BatteryLevel : int
-MainSupply : bool

PowerManagement

11

+GetTime() : Date
+SetTime(in date : Date)

Clock

1
1

3DPoint

1
{ordered}

*

TimeOutC

TimeOutC

© J.-M. Jézéquel, 2003 76

Motivations to go beyond atomic
contracts => λ-Contracts

n Contracts can provide trust
– But you cannot (completely) hide the platform
– abstraction ? hiding

n Components have offered and required
interfaces
– need to express dependencies between interfaces

n Component contracted interfaces:
– Implies dependencies between offered and required

contracts

37

© J.-M. Jézéquel, 2003 77

Component contracts
n Component Based Systems are not layers of

functionalities
– networks of interdependent pieces

n Provided but also required contracts
– Engagements valid only if clients and providers observe

their own ones

nMost offered contracts explicitly depend upon
required ones
– E.g. response time depends on platform spec
– And even for objects, this can happen (callback)

© J.-M. Jézéquel, 2003 78

Examples of contract
dependencies in the GPS

n The TimeOutContract on the LocationComputer
depends on TimeOutContracts from the active
Decoders

n The TimeOutContract on the Decoder depends
on a ReceptionQuality contract on the Receiver
– Monitoring the quality of the reception of satellite data
– Known at runtime only in this case

38

© J.-M. Jézéquel, 2003 79

Contract space
n A component actually offers a range of

contracts
– One contract will be enforced (hopefully)
– Depending on the obtained required contracts
– At binding time or at run-time

nMany possible ways to compute:
– Logical deduction
– Functionally dependent parameters
– ...

© J.-M. Jézéquel, 2003 80

Contract Management is
Crosscutting

n Contract Description
n Contract Subscription, Termination
n Contract Checking

– static/dynamic, sequential/concurrent/distributed…
– Level of Service actually provided

n Dealing with Contract Violations
– ignore, reject, wait, negotiate ...

n Model Transformations Needed
– To go from PIM to PSM

39

© J.-M. Jézéquel, 2003 81

How to implement these contracts
for this .NET PSM?

© J.-M. Jézéquel, 2003 82

Weave contract management
n Problem: it depends on the semantics of

each contract type
– QML does not capture the semantics
– Sometimes quite complicated

» E.g. bounded throughput variation implies non-instantaneous
monitoring and the collecting of statistics

» May heavily depends on the platform!

n There exist known solutions to these
problems
– Apply design patterns?
– Weave design pattern applications into the PSM model

40

© J.-M. Jézéquel, 2003 83

Contract Aware
Components: Summary

n Components must have explicitly defined contracts
– Four levels of contracts
– Modeling in UML based on e.g. QML
– Reasoning on models with components & contracts

» Bottom-up or top-down

n Contracts to declaratively express non-functional
aspects
– Dependencies between contracts

n Monitoring of contracts is
– Complex, Cross-cutting, Platform dependant

© J.-M. Jézéquel, 2003 84

Tutorial Outline

1. UML & Model
Driven Architecture

3. Design Patterns

2. Contract Aware
Components

4. Aspect
Oriented
Design

41

III. Design Patterns

– Origin & interest
– Precise modeling with UML and Meta-level OCL

© J.-M. Jézéquel, 2003 86

Origin of Design Patterns
n GoF’s Book: A catalog

– Design Patterns: Elements of Reusable Object-Oriented Software
(Gamma, Helm, Johnson, Vlissides). Addison Wesley, 1995

n Earlier works by Beck, Coplien and others...
n Origin of Patterns in Architecture (C. Alexander)

– Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to this problem in such a way that you can use this
solution a million times over, without ever doing it the same way
twice.

42

© J.-M. Jézéquel, 2003 87

Example: A Distributed File
System

root
Eiffel

Source
Bin

Latex

Documents

root

Eiffel

Source Bin

Latex Documents

Remote File Server

root
Eiffel

Source
Bin

Latex

Documents

root
Eiffel

Source
Bin

Latex

Documents

Client PC

Client PCClient PC

© J.-M. Jézéquel, 2003 88

The Observer Pattern

n Intent
– Dependency from a subject to observers so that when the subject

changes state, observers are notified

n Key constraints
– Any number of observers
– Each observer can react specifically to the notification of change
– The subject should be decoupled from the observers (dynamic

add/remove of observers)

43

© J.-M. Jézéquel, 2003 89

Structure of the
Observer Pattern

foreach o in observers loop
o->update()

end loop

Subject

notify()
attach(observer)
detach(observer)

Concrete

get_state()

subject_state
Subject

Observer

update()

Concrete

update()

Observer

*

subject -> get_state()
return subject_state

{abstract}
{abstract}

1 < subject

© J.-M. Jézéquel, 2003 90

Collaborations in the Observer
Pattern

Concrete
Subject

Concrete
Observer 1

Concrete
Observer 2

set_state()

notify()

update()

get_state()

update()

get_sta te()

44

© J.-M. Jézéquel, 2003 91

Another Problem...
n Any number of views

on a Data Table in a
windowing system…
– close, open views at will…
– change the data from any

view
» … and the other are updated

0
10
20
30
40
50
60
70
80
90

1er trim. 2e trim. 3e trim. 4e trim.

0%

50%

100
%

1er trim. 2e t r im. 3e t r im. 4e trim.
E s t 20,4 27,4 90 20,4
Ouest 30,6 38,6 34,6 31,6
Nord 45,9 46,9 45 43,9

1er trim. 2e trim. 3e trim. 4e trim.
Est 20,4 27,4 90 20,4
Ouest 30,6 38,6 34,6 31,6
Nord 45,9 46,9 45 43,9

© J.-M. Jézéquel, 2003 92

Yet Another Problem...

SUBJECT
MODEL

REAL-TIME
MARKET

DATA FEED

STOCK
QUOTES

OBSERVERS

45

© J.-M. Jézéquel, 2003 93

What Design Patterns are all
about

n As much about problems as about
solutions
– pairs problem/solution in a context

n Not about classes & objects but
collaborations

n About non-functional forces
– reusability, portability, and extensibility…

n Embody architectural know-how of experts

© J.-M. Jézéquel, 2003 94

Interest of Documenting Design
Patterns

n Communication of architectural knowledge
among developers

n Provide a common vocabulary for common
design structures
– Reduce complexity
– Enhance expressiveness, abstractness

n Distill and disseminate experience
– Avoid development traps and pitfalls that are usually

learned only by experience

46

© J.-M. Jézéquel, 2003 95

Precise Modeling of Design
Pattern Applications

n Go beyond mere documentation
n Specifying reusable applications of design

patterns
– Structural properties
– Behavioral properties

n Using design patterns in a model
– Pointing out or detecting pattern occurrences
– Checking for missing structural properties

© J.-M. Jézéquel, 2003 96

Example in UML

SpreadSheet

update()

DataValues

getValue(i))

Observer

observer
subject

View

update()

Histogram

update()

PieChart

update()

47

© J.-M. Jézéquel, 2003 97

UML Current Solution (UML 1.4)
n Patterns in UML rely on collaborations

– That is, sets of collaborating roles
– A role in a collaboration is a placeholder for objects

conforming to the role’s base classifier
– Additional constraining elements can be used

n Collaboration diagrams or sequence
diagrams are used to represent expected
interactions among participant objects

© J.-M. Jézéquel, 2003 98

UML Current Solution (continued)
n Reusability of the pattern is obtained

by turning the bases of roles
into formal template parameters

n A pattern occurrence is then a template
instantiation (a.k.a. binding) providing the
actual participants for each template base

n The binding is represented using
the intuitive ellipse notation

48

© J.-M. Jézéquel, 2003 99

Using Templates to Express
Structural Constraints?

n Using templates as “prototypical”
structural constraints was a good idea:
– Placeholders share the same notation as

the “real” modeling elements
– No need to introduce M2 (Meta-Model) level entities

n But...

© J.-M. Jézéquel, 2003 100

Limitations of the approach (1/2)

n Template parameters provide only a fixed
number of placeholders for modeling elements
– Problem in Composite, Visitor, etc.

n Almost everything must be parameterized
(including so-called constraining elements)...

n … which leads to numerous parameters.
n Some parameters are “compound”.

49

© J.-M. Jézéquel, 2003 101

Limitations of the approach (2/2)

n Template expansion is only used to link and
check the conformance of the actual
modeling elements to this set of
“prototypical” structural constraints.

n Moreover, no conformance rules are
specified in the UML documentation.

© J.-M. Jézéquel, 2003 102

Patterns as Meta-Level Constraints
n Use explicit constraints at the M2 level

– instead of implicit template constraints
n A pattern is modeled a set of constraints

– similar to UML Well-Formedness Rules, but with
» Pre-conditions stating the initial situation
» Post-conditions to describe the result of the pattern application

– These supplementary constraints apply only
to the participants in the pattern occurrences

n The profile mechanism could be used as a
way to build a repository for pattern
definitions

50

© J.-M. Jézéquel, 2003 103

About Collaborations and
Constraints

n Collaborations as contexts for OCL
expressions
– Some constraints involve several elements
– The context of an OCL expression

is normally made of a single element - “self”
– Collaborations and their roles help describe complex

contexts

© J.-M. Jézéquel, 2003 104

Collaborations of modeling
elements

n A pattern can be thought of as a constrained
collaboration of UML modeling elements.

n Refinements can be specified by specializing
the collaboration and adding new constraints

n Each occurrence of the pattern in the model
corresponds to a M2 collaboration
occurrence

51

© J.-M. Jézéquel, 2003 105

Model of the Visitor Pattern

n visit->size() = element->size()
and visit->forall(v | visitor->feature->includes(v)

and v.parameter->size() = 1
and element->exists(e | v.parameter.type = e)
and …

)

© J.-M. Jézéquel, 2003 106

Model of the Observer Pattern

52

© J.-M. Jézéquel, 2003 107

Meta-Model for Pattern
Occurrences

role: string

role1

role4 role3

role2

Meta-Model Notation

© J.-M. Jézéquel, 2003 108

Pattern Occurrences

<< <<>> >>

53

© J.-M. Jézéquel, 2003 109

About Behavioral Properties
n Interactions (sequence diagrams) are

representations of expected behavior
– They are to be interpreted as properties

n Precise specification requires a model
of the execution semantics
– HMSCs, Action Semantics

n Behavioral properties should be constraints
restraining the set of possible executions

© J.-M. Jézéquel, 2003 110

Design Patterns in the Model
Driven Architecture

Design

Software Design Expert

Domain

Model of the problem

Constraints
(flexibility,

...)

Model of the implementation

 Patterns
Catalog

Expert

reusability,
performances,

54

© J.-M. Jézéquel, 2003 111

Let’s look at a business model...
(pre-state)

History
cmd_executed : string

last_command() : string

<<persistent>>

S erviceProvider

<<command>> action_1()
<<command>> action_2()
<<command>> action_3()

Interpreter

execute()

0..*

1

0..*

1
1..*1..* 1..*

+invoker

1..*

Command pattern

receiver
invoker

• Instantiate command design pattern.

• Implement persistence that stores the

command string to a given database.

© J.-M. Jézéquel, 2003 112

…and the wanted design model...
(post-state)

History
cmd_executed : string

last_command() : string

<<persistent>>

History_StorageProxy

load_last_command() : string
store_last_command(cmd : string)

action_1_cmd

do()

action_2_cmd

do()

action_3_cmd

do()

ServiceProvider

<<command>> action_1()
<<command>> action_2()
<<command>> action_3()

+proxy

Interpreter

execute()

0..*

1

0..*

1

ServiceProvider_Command

do() 10..*

+cmdTarget

10..*1..*0..* 1..*

+commands

0..*

How to go
from pre-condition
to post-condition?

Aspect Weaving with
Automatic Model Transformations!

55

© J.-M. Jézéquel, 2003 113

Design Patterns: Summary
n Design Pattern applications as constrained

collaborations
n Many different variants of applications

– E.g. observer push or pull

n Identification of occurrence
– UML ellipse notation

n Weave the pattern application through model
transformations
– Correspondance with PIM vs PSM

© J.-M. Jézéquel, 2003 114

Tutorial Outline

1. UML & Model
Driven Architecture

3. Design Patterns

2. Contract Aware
Components

4. Aspect
Oriented
Design

56

IV. Aspect-Oriented Design &
Model Transformations

– Modeling Aspects in UML
– Weaving Static Aspects
– Weaving Dynamic Aspects
–The Grand Unification of Contracts/Patterns/Aspects
– Through an OCL2 Meta-level interpreter

© J.-M. Jézéquel, 2003 116

Modeling Aspects
n Aspects are defined separately from any given model

(=> reuse across models)
– Stereotyped packages
– Well defined interfaces
– Have (M2 level) formal parameters

» parameters may be typed or
constrained (with OCL)

» cardinality on a per parameter basis

n Join-points can be bound (with standard extension
mechanisms) to any element in a UML model
– class, method, state,…
– event occurrence, method call,...

<<aspect>>
D

A,b

+b()

A C

See also
S. Clark's
works

57

© J.-M. Jézéquel, 2003 117

Weaving Aspects in UML

Component realization

Contract realization

Aspect invocation

Parameters

New class

© J.-M. Jézéquel, 2003 118

Woven Aspects in UML

Woven component

New association

New generalizations

58

© J.-M. Jézéquel, 2003 119

Dynamic Aspects
n Templates not enough for dealing with

dynamic aspects
– Those represented by (H)MSC, etc.
– Useful for e.g. behavioral patterns

n Must deal with interaction protocols among
objects
– If new operations added on target object, must add calls to

these operations at relevant places in the client objects.

© J.-M. Jézéquel, 2003 120

Observer Revisited:
The Observer Protocol

s : ConcreteSubject o : ConcreteObserver

setState

notify

update

Must insert a
Call to notify

59

© J.-M. Jézéquel, 2003 121

Observer again

+attach(in o : Observer)
+detach(in o : Observer)
+notify()

Subject

+update(in s : Subject)

Observer

notify : for all o in observers { o.update(self) }

+attach(in o : Observer)
+detach(in o : Observer)
+notify()
+getState()
+setState()

ConcreteSubject

+update(in s : Subject)

ConcreteObserver

-subject

*

-observers

1

© J.-M. Jézéquel, 2003 122

Observer pattern reference

Observer

Subject
Observer

+update()

Temperature control::Alarm

Observer

+read()
+update(in subject : Sensor)

-contents

Temperature control::ValueDisplay

+update(in who : Sensor)

«interface»
Temperature control::SensorObserver

+getTemp() : float
+doRead()
+notify()
+attach(in newObs : SensorObserver)
+detach(in obs : SensorObserver)

-observers : SensorObserver

Temperature control DP::Sensor

60

© J.-M. Jézéquel, 2003 123

Template for Observer

Observer
Template

+update(in subject : subjectType)

Observer Template::Observer

subjectType

+notify()
+attach(in newObserver : obsType)
+detach(in obs : obsType)

-observers : obsType

Observer Template::Subject

obsType

+subjects*
+observers *

© J.-M. Jézéquel, 2003 124

Observer
Definition

as an
Aspect

<<aspect>>
Observer

Subject,setState,Observer,update

+setState()
+attach()
+detach()

Observer aspect::Subject

+update(in source : Subject)

Observer aspect::Observer

sd weave

s : Observer aspect::Subject observers : Observer aspect::Observer

setState()

 : Observer aspect::Notifier

notify(s)

update(s)

+notify(in source : Subject)

Observer aspect::Notifier

-source *
-notifier1 * -observers*

region

However, automatic
processing of these
dynamic aspects
specified with such
a declarative formalism
is still under research

61

© J.-M. Jézéquel, 2003 125

Observer Aspect Instantiation

«aspect»
Observer

aspect

+getTemp() : float
+doRead()
+attach(in obs : ValueDisplay)
+detach(in obs : ValueDisplay)

Sensor with aspect::Sensor

<<bind>>(Sensor,doRead,ValueDisplay,update)

Sensor with
aspect

+update()

Sensor with aspect::ValueDisplay

© J.-M. Jézéquel, 2003 126

Result of Weaving
Weaved
observer

+getTemp() : float
+doRead()
+attach()
+detach()

Weaved observer::Sensor

+update()

Weaved observer::ValueDisplay

+notify(in source : Subject)

Weaved observer::Notifier

-source

*

-notifier

1

*

-observers

*

62

© J.-M. Jézéquel, 2003 127

Back to the GPS example

«component»
receiver1 : Receiver

«component»
Receiver2 : Receiver

«component»
receiver3 : Receiver

«component»
Decoder1 : Decoder

«component»
decoder2 : Decoder

«component»
decoder3 : Decoder

«component»
lc : LocationComputer

«component»
manager : Management

ReceiverI, DataI

ReceiverI, DataI

ReceiverI, DataI

DecoderI, DataI

DecoderI, DataI

DecoderI, DataI
ClockI, PowerManagementI

ComputerI

TimeOutC

© J.-M. Jézéquel, 2003 128

Implementation of Contract
Checking

n How to graft checking code onto existing
application code?

n For real-time related contracts, contract
checking code can be tricky & tedious
– Specialist task, hard to devise general purpose solutions
– Platform dependent

n Definition as an aspect

63

© J.-M. Jézéquel, 2003 129

Contracts, Aspects and MDA

PIM model

PSM modelAspect
library

Contracts
library

PSM Code

© J.-M. Jézéquel, 2003 130

Timeout
Aspect

Definition

Practical solution:
Resort to some
meta-level explicit
weaving code…

64

© J.-M. Jézéquel, 2003 131

Aspect weaving in UML

n Generic aspect weaver
– Interprets the UML model, looking for

» Aspect invocation
» Aspect signature
» Multiplicities, etc.

n Using aspects
– Aspect developer ?Aspect user
– Using an aspect means running the aspect weaver
– Problem: Special tool support needed

© J.-M. Jézéquel, 2003 132

Aspect Weaving Based on OCL2
Meta-Level Interpretation

n Solution: Use “standard” UML tools for weaving
– OCL 2.0
– Action Semantics Language

n Transform an aspect into an OCL 2.0 expression
– Weaving the aspect = Executing the OCL expression

Aspect
in UML

Aspect
in OCL

UML Model

Woven UML ModelSpecial
Tool OCL

65

© J.-M. Jézéquel, 2003 133

Implementation (1998-2001):
Using UMLAUT transformation

engine
n Semantics of annotation interpreted by

transformation rules
– The same annotation can be interpreted differently

depending on context
n Extensible framework

– transformations = reusable components
– expressed as compositions of other transformations down

to primitive operations

© J.-M. Jézéquel, 2003 134

Implementation of the engine

A B B C

composition

operators

A

iterator

model

map, filter, reduce, …
(borrowed from BMF)

66

© J.-M. Jézéquel, 2003 135

Ongoing work (2002-?):
Integration with OCL / AS*

n Transformation engine driven by OCL / AS.
– User-defined M2-level (Meta-Model) manipulations

*OCL=Object Constraint language
AS=Action Semantics

apply_command_pattern_to_package(p:Package)
setOfClasses := p.ownedElement->select(m:ModelElement | m.oclIsKindOf(Class))
for class in setOfClasses->select(pattern.name = «command»)

apply_command_pattern_to_class(class)
end

apply_command_pattern_to_class(c:Class)
for feature in c.feature->select(stereotype.name = «command»)

cmd_class := uml_builder.make_new_class(p)
cmd_class.set_name(feature.name + ‘_command’)

end

Iterate model
*

filter isClass
*

filter pattern «command»
*

map apply_command_pattern_to_class

© J.-M. Jézéquel, 2003 136

Tiny Example: Transform public
attributes into private ones

and add accessors
processPackage(p:Package)
-- For each public Attribute of each Class of the Package,
-- we apply the privatizeAttribute transformation
forAll attribute in

p.ownedElement->select(m:ModelElement |
m.oclIsKindOf(Attribute)
and m.visibility = #public
and m.owner.oclIsKindOf(Class)
) {

privatizeAttribute(attribute)
}

67

© J.-M. Jézéquel, 2003 137

Example (cont.):
privatizeAttribute

privatizeAttribute(a:Attribute)
-- Set attribute a to private & create public setter/getter
a.visibility := #private
-- create setter & link it
add_link(a.owner.feature, -- the enclosing class’ features

newSetter(a))
-- create getter & link it
add_link(a.owner.feature, -- the enclosing class’ features

newGetter(a))

© J.-M. Jézéquel, 2003 138

Example (cont.): newSetter

newSetter(a:Attribute) : Operation
-- Creates a setter for attribute a

Operation result := new Operation()
result.visibility := #public
result.name := 'set_' + a.name
-- We prepare the input parameter
Parameter newName := new Parameter()
newName.name := 'new_' + a.name
newName.kind := #in
add_link(newName.type, a.type)
add_link(result.parameter, newName)
-- return result

68

© J.-M. Jézéquel, 2003 139

Example (cont.): newGetter

newGetter(a:Attribute) : Operation
-- Creates a getter for attribute a

Operation result := new Operation()
result.visibility := #public
result.name := ‘get_' + a.name
-- We prepare the return parameter
Parameter returnParam := new Parameter()
returnParam.kind := #return
add_link(returnParam.type, a.type)
add_link(result.parameter, returnParam)

© J.-M. Jézéquel, 2003 140

Weaving TimeOut Contracts into
our GPS device

n E.g. Sequence diagram for nominal behavior

 : LocationComputer : Decoder : TimeOutC

{pre:
size(collect
 (d |self.Decoder ->
 DataReady()=true)) >2
}

return Data

{ for d:Decoder in self.Decoder}

return 3DPoint

GetPosition

GetData

start()

isValid()

return true

69

© J.-M. Jézéquel, 2003 141

Step 1
n Check that the contract can be applied here

TimeOut
C

With a lot of
boring OCL
code

© J.-M. Jézéquel, 2003 142

Step 2: add required packages

70

© J.-M. Jézéquel, 2003 143

Step 2 code
class Contract {

attribute:
reference : Class;

constructor:
+ (name : String) {

importContractModel;
self(Component::Core::Classes::Class.allInstances->any(i |

i.qualifiedName = name));
}

+ (reference : Class) {
self.reference := reference;

}
}

© J.-M. Jézéquel, 2003 144

Step 3
n Add association LocationComputer-TimeOutC

71

© J.-M. Jézéquel, 2003 145

Step 3 code
class Contract {
// cont. From previous slide

if not component.getBaseClass.feature->
select(oclIsKindOf(EndPoint)).otherEnd.featuringClassifier->

includes(self.reference) then

UMLManager.associate(Sequence{component.getBaseClass,
self.reference}, Sequence{1, 1}, Sequence{1, 1}, Sequence{true, true},
Sequence{'',''})
endif
…

© J.-M. Jézéquel, 2003 146

Step 4: add "delegates"

72

© J.-M. Jézéquel, 2003 147

Step 4 code

UMLManager.associate(Sequence{subCompone
nt.getReference, getMyDelegate}, Sequence{1, 1},
Sequence{0, 0}, Sequence{false, true},
Sequence{'','BeginMyContract'})

UMLManager.associate(Sequence{subCompone
nt.getReference, getMyDelegate}, Sequence{1, 1},
Sequence{0, 0}, Sequence{false, true},
Sequence{'','EndMyContract'})

UMLManager.setTaggedValue(subComponent.g
etReference, getTagDefinitionIdentifier,
self.reference.name)

© J.-M. Jézéquel, 2003 148

Step 5: create constructor

73

© J.-M. Jézéquel, 2003 149

Step 6: rename setPrecision,
duplicate its prototype

© J.-M. Jézéquel, 2003 150

Step 7:
associate
Activity to
construc-

tor
+

tagValue

74

© J.-M. Jézéquel, 2003 151

Step 8:
associate
Activity to
getPosition

V. Wrap up

75

© J.-M. Jézéquel, 2003 153

Transformations are Assets
n Must be Modeled

– with the UML, using the power of OO
n Must be Designed

– Design by Contract (of course), using OCL
n Must be Implemented

– Made available through libraries of components, frameworks…
n Must be Tested

– test cases
» input: a UML Model
» output: a UML Model, + contract checking

n Must be Evolved
– Items of Configuration Management

© J.-M. Jézéquel, 2003 154

Looking into the future
n Model of PIM and Model of Transformation side

by side on the CASE tool

n Rely on
– Libraries & Frameworks at M2 level

– The unifying notion of aspect to give the power of meta-modeling &
model transformation to the masses

PIM

PSM2PSM1

Transformations

76

© J.-M. Jézéquel, 2003 155

UML/OCL2
Meta-ProgramsUML Model

UML Model

XML XML

Java/Eiffel/C#
AST

Java/Eiffel/C#
Source Code

XSLT

Java/C#/etc.
executable

GUI XMI
Parser

XMI
Generator

Interpreter

Compilers Compiler
XMI

Generator

XMI
Parser

Our UMLAUT New Generation

© J.-M. Jézéquel, 2003 156

Conclusion
n Model Driven Engineering is really about

weaving Aspects at model level
– MDA focuses on PIM->PSM

n Contracts & Patterns can be used to abstract
Aspects within UML
– Aspect Oriented Design ?
– Designing with aspects: still a research avenue (cf. AOSD)

n UMLAUT: an OO Framework
– for working at meta-model level
– with operators combined in BMF style

n Towards a Model Transformation Language
– RFP Q/V/T

77

© J.-M. Jézéquel, 2003 157

References

n “Design Patterns and Contracts”
– Addison-Wesley, 1999. ISBN 0-201-30959-9

n “Making Components Contract
Aware”, IEEE Computer, July 1999

– A. Beugnard, J.-M. Jézéquel, N. Plouzeau, D. Watkins

n “Precise modeling of design
patterns’’, - In Proc. UML2000, LNCS 1939

– A. Le Guennec, G. Sunyé, and J.-M. Jézéquel

n “A toolkit for weaving aspect oriented UML
designs.’’ – In Proc. of AOSD 2002,

– W.M. Ho, J.-M. Jézéquel, F. Pennaneac'h, and N. Plouzeau.

