OCL as a Core UML Transformation Language
WITUML 2002 — Position Paper

Damien Pollet Didier Vojtisek
Jean-Marc Jézéquel
INRIA / IRISA, Campus de Beaulieu
F-35042 Rennes cedex, France
email: {dpollet, dvojtise, jezequel}Qirisa.fr

8th April 2002

Abstract

Software developers spend most of their time modifying and maintain-
ing existing products. In a recent article [7] we focused on the definition of
UML refactorings (i.e. behavior-preserving transformations) specified by
meta-level OCL pre- & post-conditions. In this paper we propose to ex-
tend OCL with model modification features, thus allowing to implement
model transformations at the same abstraction level as their specifica-
tion. We then describe the global architecture of a model manipulation
tool based on an OCL core.

1 Introduction

The technology of models is receiving more and more attention in the software
engineering domain. UML formalism has now evolved enough so the industry
is interested in such a standard. However, in the industry, underlying concepts
are still not completely introduced in the development lifecycle. One of the key
points of model engineering methodologies is the use of technologies for model
transformation.

For example, the OMG new proposition about MDA (Model Driven Archi-
tecture) consists in the separation of platform dependent and platform indepen-
dent models. This allows the architect to have a better abstraction in his models
for a good reusability. Then, the architect can go from a model to another by
applying transformations to it. But soon enough, the transformations can get
as complex as the initial model itself, and need to be organized and managed
using sound software engineering principles. This is the case for instance in
some application domains like real time where PIMs can be very different from
PSMs due to heavy constraints on the design.

So, there is a need for a language to write transformations and then the
specification of a tool for transforming models. For this purpose, we propose
here to extend the OCL language which is integrated with UML and partially
standardized. We will also propose a global tool architecture that might be able
to implement this approach.



2 UML transformations

2.1 A whole world of transformations

Software design is not limited to the creation of new applications from scratch,
and even then, it is not a straightforward process. Designers use multiple trans-
formations of multiple types:

Creational: typically model import from an external source such as XMI or
by reverse engineering;

Endomorphic i.e. from UML to UML, such as refinement, refactoring or high-
level design;

Exomorphic: from UML to other languages such as XMI or source code.

2.2 OCL description

In [7] we focused on the definition of a special kind of transformations: UML
refactorings, i.e. the adaptation to UML of Opdyke’s behavior-preserving trans-
formations [4]. We specified each transformation using pre- and post-conditions,
expressed as OCL constraints at the metamodel level. This is illustrated in the
following example.

Example: attribute privatization This refactoring makes a public at-
tribute from a given class private, and creates the associated getter operation
(see fig.1).

Square
Square idth - Int
-width : Integer
+width : Integer > 2
_ +area() : Integer
+area() : Integer +getwidth() : Integer

Figure 1: Privatization of an attribute

context Class::privatize(a : Attribute)
pre:
self.feature->includes(a) and
a.visibility = #public
post:
a.visibility = #private and
self.feature->exists(getter : Operation]|
getter.name.body = ’get’.concat(a.name.body) and
getter.parameter->isEmpty and
getter.isQuery)



2.3 One step further: OCL actions

As of UML 1.4, OCL is restricted to an expression language: while it is quite
useful to navigate the model or to express constraints between model elements,
it cannot be used to effectively modify a model. One of the submissions to the
OMG UML/OCL 2 RFPs [1] proposes to extend the expression language with
action features. This is particularly interesting as it would allow to define model
transformations in OCL along with their pre/post-conditions:

context Class::privatize(a : Attribute)

pre: —— ...
action: -- pseudo-0OCL syntax for actions
a.visibility := #private;
var getter := new Operation in
getter.name := ’get’.concat(a.name.body) ;
getter.isQuery := #true
post: -- ...

Why OCL ? Model transformation languages or tools have already been
developed, following two main approaches:

o XMI-level transformations based on XSLT,
e dedicated transformation languages.

XSLT is a popular approach, but in our opinion it is too low level: XSLT
transformations apply to XML trees, and thus add another level of representa-
tion to the manipulated concepts. This is clearly not desirable since express-
ing model transformations already implies complex reasoning between multiple
meta-levels. Some tools address this problem by using a dedicated transforma-
tion language, or by which offers higher-level constructs. This language is used
to transform models either directly or through an XSLT generation phase.

Dedicated languages address these problems by providing specialized con-
structs or paradigms; the model is then transformed directly or through com-
pilation to XSLT [5]. Over other dedicated transformation languages, OCL has
the advantage of being integrated and used as an expression language in the
UML norm. Modeling and transformations can then be done using only one
language; more precisely, constraints and specifications will use ‘traditional’
side-effects free OCL, while methods bodies or model transformations will use

the imperative OCL extension!.

3 UML manipulation architecture

In this section we briefly describe the architecture of an OCL-based model ma-
nipulation tool.

OCL interpreter This is the core of the tool: it executes OCL expressions
over a given model, and accesses that model either to retrieve information
or to modify it;

IFor designers to easily identify side-effects free (*traditional’ OCL) expressions, side effects
features should use specific constructs even in the concrete syntax.



OCL Interpreter Client
* ~
Bridge ----____ \\\
A \\‘\‘\\\ \/\,_\
~ \,/ ] \\
I | . Bridge :
Abstract - T
UML XM Syntax Tree

Figure 2: Architecture diagram

UML repository The repository contains the model, represented at the meta-
model level (i.e. a class is represented by an object, instance of the M2
concept named Class);

Bridge The OCL interpreter itself should not know anything of UML, but
rather manipulate it through a bridge pattern. This bridge maps manip-
ulated MOF-compliant concepts to OCL types and properties.

The bridge is important for multiple reasons:

e it allows easy evolution and interchange of the UML repository, which can
be generated from the OMG specification for a given version of UML;

e multiple bridges Implementations can be developed, to enable manipula-
tion of non-UML concepts, such as abstract syntax trees for code genera-
tion or XML trees for XMI import/export; these bridge implementations
could be seen by the OCL interpreter as libraries for instance;

e multiple repositories can be used simultaneously, enabling transformations
between multiple models or notations.

4 Conclusion

Typically, case tools tend to be big and complex software, and to force their
users to cope with too much tool-management complexity. We have proposed
the extension of OCL to support multiple types of model manipulations and
transformations, within a uniform and integrated environment and sketched
a tool architecture supporting these ideas. In such a tool, concepts needed
to design model transformations are the same as concepts needed to design
programs.

As future work, we plan to include structural constructs in OCL, as was
done in MMT [3].

References

[1] Initial submission to OMG RFP’s ad/00-09-01 & ad/00-09-03. OMG docu-
ment ad/01-08-35, August 2001.



2]

Xavier Blanc. E’changes de spécifications hétérogénes et réparties. PhD
thesis, Université Pierre & Marie Curie — Paris VI, November 2001.

A. Clark, A. Evans, S. Kent, and P. Sammut. The mmf approach to engi-
neering object-oriented design languages.

William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois, Urbana-Champaign, 1992. Tech. Report UTUCDCS-
R-92-1759.

Mickaél Peltier. Transformation entre un profil UML et un métamodele
MOF. In Michel Dao and Marianne Huchard, editors, Langages et Modéles
a Objets, volume 8 of L’Objet.

Mickaél Peltier, Jean Bézivin, and Gabriel Guillaume. Mtrans: A general
framework, based on XSLT, for model transformations. WTUML position
paper, 2001.

Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel.
Refactoring uml models. In Proceedings of UML 2001, volume 2185 of LNCS,
pages 134-148. Springer Verlag, 2001.



