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ABSTRACT
Separation of concerns is a basic engineering principle that is often
applied in object-oriented analysis and design by dissociating
functional aspects (business objects) from non-functional ones,
such as persistency, fault-tolerance and so on.  The Unified
Modeling Language (UML) then gives the designer a rich, but
somehow disorganized, set of views on her model as well as many
features, such as design pattern occurrences, stereotypes or tag
values to add non-functional annotations to a model. In this paper,
we explore a possibility to organize all of these features around
the central notions of (1) quality of service contracts (for
specifying non-functional properties a la QML) and (2) aspects
for describing how they can be implemented. We propose to
model contracts in UML with a small set of stereotypes, and to
represent aspects a bit like design pattern occurrences, that is using
parameterized collaborations equipped with transformation rules
expressed with meta-level OCL2. The design level aspect weaver
is then just a meta-level OCL2 interpreter, that takes a UML
model as entry point, processes the various aspect applications as
specified by the designers, and outputs another (detailed design
level) UML model that can serve as a basis for code generation.

1. INTRODUCTION
Separation of concerns [12] is a basic engineering principle that
can provide many benefits: additive, rather than invasive, change;
improved comprehension and reduction of complexity;
adaptability, customizability, and reuse. With its nine views that
can be though of as projections of a whole multi-dimensional
system onto separate plans, the Unified Modeling Language
(UML) [22] provides the designer with an interesting separation of
concerns that Kruchten calls the 4+1 view model (Design view,
Component view, Process view, Deployment view, plus Use Case
view) [15]. In turn , each of these views has two dimensions, one
static and one dynamic. Furthermore the designer can add non-
functional information (e.g. persistency requirements) to a model
by “stamping” model elements, for instance with design pattern
occurrences [8], stereotypes or tag values. In this paper1, we
explore a possibility to organize all of these features around the
central notions of  quality of service contracts (for specifying non-
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functional properties) and aspects for describing how they can be
implemented. In Section 2, we propose to model contracts in
UML with a small set of stereotypes, and to represent aspects a bit
like design pattern occurrences, that is using parameterized
collaborations equipped with transformation rules expressed with
meta-level OCL2. The design level aspect weaver presented in
Section 3 is then just a meta-level OCL2 interpreter, that takes a
UML model as entry point, processes the various aspect
applications as specified by the designers, and outputs another
(detailed design level) UML model that can serve as a basis for
code generation. Section 4 gives an illustration of our approach on
a toy example. We discuss related work in Section 5 and conclude
on the interest and perspectives of our approach.

2. DESIGNING WITH ASPECTS AND UML
The aim of this section is to extend the ideas expressed in aspect-
oriented programming (AOP) [14] to the software modeling level.
In [2], the authors explicit the gap that exists between
requirements and design on the one hand, and between design and
code on the other hand. AOP should then be extended to the
modeling level where aspects could be explicitly specified during
the design process. Indeed, we believe that with the support of an
open transformation framework, it is possible to weave these
aspects into a final implementation model.

We use UML as our design language because it is an open
standard [22], as well as general purpose object-oriented modeling
language. UML supports the concept of multiple views that allow
a software designer to express various requirements, design and
implementation decisions using each view independently. The
design is founded on the meta-model of UML, ensuring the
coherence of the various views. The extension features of UML
also allow it to be customized for a specific modeling
environment.

2.1 Expressing Aspects with UML
The various modeling dimensions of UML can already provide a
good separation of concerns when modeling software. But in order
to specify additional non-functional information or cross-cutting
behavior (e.g. persistency), we need to resort to UML built-in
extension mechanisms. Using these, the designer can add a great
deal of non-functional information to a model by “hooking”



annotations to model elements.  We propose to organize all of
these features around the central notions of (1) quality of service
contracts (for specifying non-functional properties a la QML [32])
and (2) aspects for describing how they can be implemented.

2.2 Modeling Contracts in UML
With the word contract we mean the specification of constraints
that have to be met when some entity requests a service from
another entity. Document[31] defines four different levels of
contracts. The first level deals with parameter type compatibility,
the second level with pre and postconditions, the third with
synchronization constraints and the fourth with non-functional
features such as request completion time, throughput and so on. In
this paper we briefly recall our contract metamodel for this fourth
level.

Our model is based on the QML concepts for expressing non-
functional values, adapted to fit component-based designs. From
the point of view of an application designer, contract types are
entities used in class diagram to state non-functional constraints. A
contract type is an instance for the Contract meta entity that we
have added to the UML metamodel. This Contract entity is a
specialization of the Interface standard entity of the metamodel. A
contract type contains dimensions. Each dimension can be seen as
an axis of some quality measure. Hence a contract type defines a
quality space. At run time contract instances describe a point in
that quality space or a subspace defined with comparison
operators.

Our fourth level contract also takes contract dependencies into
account. In real life, service providers (components, objects,
methods) declare that they will comply with a given contract type
if and only if their environment does comply with a set of contract
types. For instance, a bound on a request execution time is valid if
and only if the maximum network delay is less than 100
milliseconds. So with respect to a contract aware piece of
software, we distinguish between provided contracts and required
contracts (this notion is similar to the distinction between pre and
post conditions). We use the UML dependency association to
express this provided/required relationship in UML models.

2.3 Realizing Contracts with Aspects
An aspect can be used to show how a contract is implemented.
Typically the pieces of the design that realize a certain contract are
scattered across the entire design. That is the reason why AOP is
an appropriate solution for separating the implementation of a
contract from the rest of the model. At some point in time we have
to weave the aspect with the target UML model to produce the
final implementation model. Therefore, the aspect weaver has to
know where exactly the aspect touches the target model. That
brings us to one of the important AOP topics, the question of how
to define join-points.

Before we talk about the how it has to be resolved where join-
points are defined. In typical AOP extensions of programming
languages the join-points are usually part of the aspect. That
means the aspect weaver needs to know about the target and the
aspect and then it can start weaving. In our approach that is a bit
different, since this approach couples the aspect tightly with the
target model. There are little chances to reuse the same aspect for
another target model. We decided to remove this shortcoming.
Therefore, the definition of join-points is no longer an integral part

of the aspect itself. Instead they form a third entity that connects
the target model with the aspect. To some degree that blurs the
borders between aspects and parametric collaborations.

Since aspects do not have hard coded join-points anymore we have
to pass them as arguments to formal parameters of the aspect. In
AspectJ join-points are related to constructs of the target language
such as functions, classes, etc. Since our aspects live in the context
of the UML our join-points are elements of the UML meta-model.
Each instance of a meta-class may be passed as an argument to the
formal parameter of an aspect. These formal parameters have a
type: a meta-class of the UML meta-model. Thus, the formal
parameters of an aspect are conceptually very close to the
signature of functions in procedural languages like C. The type of
the parameters can be automatically derived since each parameter
has a corresponding element inside the aspect’s definition.
Otherwise the type has to be stated explicitly in the aspect’s
signature. Figure 2 show the three entities together in one diagram:
target model, join-points and aspect.

In order to provide support for more complicated aspects a simple
list of formal parameters is not sufficient. Imagine that the formal
parameters of an aspect are a class and a method. To make it more
complicated we want to pass one class and multiple of its methods
as join-points (respectively: arguments) to the aspect. That is
impossible with a flat list of formal parameters. We allow for the
definition of 1:n relationships between parameters. In figure 2 this
is illustrated by the curly braces around the second formal
parameter. The second parameter is in fact a set.

It is important to notice that an aspect has now a well defined
interface that explains how it can be woven with the target model.
In order of using an aspect that is all a designer needs to know. On
the other hand, the implementation is entirely encapsulated inside
the aspect. That in turn means that it is possible to reuse an aspect
with other – comparable – target models.

In the next chapter we discuss how we can actually define an
aspect, because until now we did more or less only declare an
aspect and showed how to bind it to the target model. The
modeling elements inside the aspect can be thought of as a meta-
program that is interpreted by the aspect weaver.

3. WEAVING UML DESIGNS
Kase is a tool for drawing UML models. Unlike other tools it does
not enforce the concept of certain diagram types. Everything that
is allowed by the meta-model can be drawn. This is especially
important for modeling aspects since they do not fit in any existing
diagram category. Additionally, Kase can import UML profiles
and provide enhanced notation for the stereotyped UML elements.
Thus, we can provide a new notation for aspects while we still
rely solely on standard UML extension mechanisms.

UMLAUT is a framework  dedicated to the manipulation of UML
models. Since UML is itself described by a meta-model in UML,
manipulating the meta-model is the same as manipulating any
model. Hence we deal with the weaving of AOD designs by
handling the model at the meta-model level. To this aim we are
developing a meta-level OCL2 interpreter (connected to Kase)
where to execute the weaving operations as specified in each
relevant aspect applied onto the initial model.



We advocate that the UML has indeed enough expressive power
to fulfil all our needs. In particular, the Object Constraint
Language (OCL) [27] which is a standardized part of the UML is
the language of choice for expressing the selection criterion of a
transformation, as it was specifically designed to provide powerful
constructs (such as select, forAll and other iterate operators)
dedicated to collection processing.

Writing transformations mostly consists in navigating through
instances of UML meta-elements. For example, retrieving
applications of the Command pattern (which are Collaborations)
in a Package may be realized with the following filtering
operation declaration:

context Package::commands()

post: result = self.contents()->select(item:ModelElement |
   item.oclIsKindOf(Collaboration)) -
>select(name=“Command”)

Then finding Classifiers playing the role of a receiver in the
Command pattern is done with the following receivers() operation,
navigating through the UML metamodel, from Collaboration to
ClassifierRole, then via ClassifierRole to Classifier:

context Package::receivers()

post : result = commands()->ownedElement ->select(name =
“receiver”) ->base

An OCL interpreter integrated in UMLAUT performs the
evaluation of these operations on a model.

However, most transformation operations on UML involves
addition, modification or removal of model elements. These
operations are not side-effect free and cannot be expressed with
the OCL version 1.0. To deal with this situation, we propose to
describe actions with the help of the newest version of the OCL,
based on the OCL2 proposal which is currently being standardized
at the OMG. This introduces in the UML metamodel classes such
as CreateAction, DeleteAction, CreateLinkAction,
DeleteLinkAction, or AssignmentAction that can be used as
primitive operations for model transformations.

The weaving process is thus implemented as a model
transformation process: each weaving step is a transformation step
applied to a UML model. Hence the final output is a UML model,
too. Using the UML meta-modelling architecture and OCL2 for
specifying transformations is appealing: the development of meta-
tools capitalizes on experience designers have gained when
modeling UML applications. Some recurrent problems then
disappear: portability of transformations is ensured for all UML-
compliant tools with access to the meta-model, there is no
learning-curve for the writing of new meta-tools, as it is pure
UML and any development process supporting the UML applies
to the building and reuse of transformations. This paves the way
towards off-the-shelf transformation components.

Using OCL2 as a transformation language is a very powerful
choice. However, many developers know how to use most of the
UML concepts, but they do not know about the UML meta-model.
This knowledge is crucial to write correct OCL expressions. Thus,
it would be helpful to provide a notation for the transformation that
is close to the standard UML notation and does not require

knowledge of the meta-model. We do not intend to provide just a
graphical notation for OCL expressions like in [27]. That is just
tweaking the notation without simplifying anything. Aspects for
programming languages such as AspectJ consist to a large degree
of normal program code enriched with some AOP-specific bells
and whistles. We propose to follow the same path when modelling
design aspects. If for example an aspect consists of two methods
that have to be woven with some class, then it seems straight
forward to show these two methods in standard UML style inside
the aspect’s notation. We base our ideas on work that has already
been done in the field of modelling collaborations and model
composition [29]. In the next chapter we provide a small example
that illustrates how this notation of an aspect can look like.

In our approach we combine the benefits of both approaches.
Using OCL2 we have full control of the model transformation and
we do not need any proprietary aspect weavers since the weaving
can be done with an standard OCL2 interpreter. On the other hand
we have a smarter notation that makes aspects easy to design and
to understand. The trick is to compile the information given by the
graphical notation into OCL2 expressions. The graphical notation
is used during the design of the aspect’s implementation but it is
not directly executed. We execute the OCL expressions instead.
Additionally, these OCL expressions can be used to exchange
aspects between developers and different UML tools since they
rely solely on standard (or soon to be standardized) UML
technology.

For the Kase tool AOP is just an additional UML profile together
with a module that provides the new notation. So internally the
model consists of standard UML with some stereotypes and
tagged values hidden behind the new notation. The OCL2
counterpart is executed by the UMLAUT framework. Since Kase
uses internally an observer pattern the user can follow the changes
of the model step by step. In contrast passing the aspects and
target model as XMI to some command line tool and reading in
the resulting XMI document is less comfortable, since the resulting
XMI document won’t include any layout information.
Furthermore, debugging an aspect is much easier if you can follow
the weaving process step by step on the screen.

4. EXAMPLE
In this Section we want to illustrate our ideas with an example.
Figure 1 shows one component. It realizes two interfaces. In
addition a non-functional contract is associated with the
component. Contracts are depicted like a convoluted sheet. The
compartment below the name is used for QoS-dimensions. In our
example a performance contract defines the maximum response
time for a function call in seconds. The little arrow in front of the
dimension indicates that a smaller value is better than a larger one.



Figure 1: A component with contract and interfaces

The diagram shown in figure 1 is completely declarative. It does
not show how the non-functional contract is implemented. Our
intention is to separate the non-functional aspect from the
remaining design using aspects. Figure 2 shows how that can look
like.

Figure 2: Implementation with aspects

The package called Component contains the implementation of
the aspect. In our example there is one class that implements the
interfaces and one helper class. To achieve a certain performance
our aspect introduces the concept of load balancing. The load class
that implements the load balancing has to offer the same interfaces
as the component. Furthermore it uses the original implementation
as a kind of replica. That means the aspect weaver will perform
basically three actions:

1. Insert the new class called LoadBalancer.

2. Create a generalization between each supported interface
and the load balancer class.

3. Create an association between the load balancer and the
original implementation class.

The two classes called Iface and Impl correspond with the
parameters of the aspect. Parameters are shown in a dotted box on
the top right corner of an aspect. That means they are just
placeholders for the classes that have to be passed to the aspect.

As denoted by the curly braces around Iface in the aspect’s
parameter list, we may pass multiple interfaces for one
implementation class. This leads to the problem of multiplicities.
The aspect weaver can not know whether it should create a new
LoadBalancer class for every interface or one for every
implementation class. This problem does not appear in simple

parameter lists. To solve this we have to provide the aspect weaver
with additional information. By appending @Impl to the name of
the load balancer class, we indicate that the multiplicity for this
new UML element is the same as for the parameter Impl. The
multiplicities for the new generalization and the new association
can be derived automatically from the multiplicities of the classes
they connect.

The aspect is now transformed into a set of OCL2 expressions,
which are then executed. The result is shown in figure 3. The
LoadBalancer derives from both interfaces and is connected
via an association with the ImplementCalc class.

Figure 3: The final model

In this example we have shown how aspects can be used in class
diagrams. The same principles can be applied to all other kind of
UML diagrams such as state charts and activity diagrams. For
example we can pass two states to the formal parameters of
another aspect. This aspect can then add new states and transitions
to a state chart. This way aspects can be used to model behaviour,
too.

5. RELATED WORK
5.1 Aspect and Subject-Oriented
Programming
Adaptive programming [21], aspect-oriented programming [14],
and subject-oriented programming [10] have taken software
development beyond the class concept of object-oriented
programming. They address explicitly additional dimensions that
constitute the inherent complexity of software. We believe that
these works at the implementation level can be broaden to the
entire software cycle and lead to aspect-oriented design (AOD).
The use of UML in the context of AO modeling is already evident
in [13], [2], [3], [26] and [3] has proposed to explicit multi-
dimensional concerns for the entire software development cycle.
Our work aims at providing an automated tool to support the
expression of aspects at the design model level. The provision of
meta-level interpreter has the added advantage that the user can
define weaving strategies by composing the transformation
operations. Using transformations during the weaving process is
demonstrated by [19] and [7]. Relative to their source code



oriented approach, UMLAUT addresses transformation with a
design oriented, meta-modelling approach.

In short, we use UMLAUT to apply aspect-oriented concepts for
the entire software development cycle. We express weaving of
software aspects in terms of model transformations. Its
implementation as a meta-level OCL2 interpreter makes it open
for extension and customization.

5.2 UML Model Transformation
Using a functional programming paradigm in an object-oriented
context has been proven to be a versatile technique (see [4], [18],
[16]), especially when flexible composition and list-like
processing are involved. The UMLAUT transformation framework
has taken this idea to provide an extensible AOD environment.
The main interest of this extensibility is the possibility of defining
the weaving strategy by recomposition of primitive transformation
operators. The transformation of software models is widely
applied in tool automation for design patterns , software
refactoring [23][24], equivalence transformations [9], [1], [25],
and formal reasoning [17]. UMLAUT's transformation
incorporates ideas from these works, and extends them to
automate the definition of weaving operations in the context of
AOD. In addition, UMLAUT exposes the concept of explicit
model transformation to a software designer so that she can benefit
from the versatility of this open approach.

6. CONCLUSION
We have proposed to organize non-functional and cross-cutting
behavior in UML model around the central notions of  quality of
service contracts (for specifying non-functional properties) and
aspects for describing how they can be implemented. Based on
QML concepts, we propose to model contracts in UML with a
small set of stereotypes, and to represent using parameterized
collaborations equipped with transformation rules expressed with
meta-level OCL2. The design level aspect weaver presented is
then just a meta-level OCL2 interpreter.

With this possibility of modeling aspects and contracts in UML,
we believe that aspect-oriented programming core ideas could be
extended to the entire software development cycle. Each aspect of
design and implementation should be declared as a contract linked
to the business model, and expanded during the design phase so
that there is clear traceability from requirements through source
code.

We are currently developing a proof of concept tool, connecting
the UMLAUT tool from INRIA and the Kase tool from TU-Berlin
in the framework of the IST Quality Controlled Component based
Software engineering (see http://www.qccs.org).
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