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Abstract

This document describes a case study realized for the INTERVAL european project.
The aim of this study was to test time features of MSC’2000 and the real time exten-
sions proposed by the INTERVAL partners. The starting point for this study, was
an IETF document describing requirements for a multicast protocol called RMTP2.
Some significant requirements could not be modeled with MSC 2000, which lead to
extension proposals for MSC. The main extension proposed is the introduction of
multicast communications in MSC.
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1 Introduction

The standardization of Message Sequence Charts by I'TU can be divided in
three historical periods. At their very beginning (before 1992), MSC were
limited to very simple diagrams called basic MSCs, and mainly composed of
instances messages and timer operations (this version of MSC is often referred
as MSC’92). During the next study period (from 1992 to 1996), MSC have
been extended with composition mechanisms (inline expressions and HMSC),
allowing for the expression of more elaborated behaviors. This language is
known as MSC’96 [1]. Recent extensions have introduced data, object orien-
tation, time observation, and so on, leading to a standard called MSC’2000

[2].
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During each study period, the language has been used on practical examples.
|1] for example, uses MSC’96 to describe a telecommunication service called
CCBS ( Completion of Calls to Busy subscriber ). In [3], MSC’96 are used
as an input language for the specification of distributed reactive systems. [4]
uses MSC’2000 to specify the connection establishment part of the INRES
protocol. Putting MSC to practice allows to measure the expressiveness of the
language, points out inconsistencies, therefore providing useful feedback for
the next study period. [5], for example shows some inconsistencies in MSC’96
related to the use of gates in combination with loops. [6] shows that timers can
become a problem when they are used within an iteration. [7] exhibits some
cases in MSC’96 that are syntactically correct, but can lead to ambiguous
interpretations (these cases are called pathological Message Sequence Charts,
and are mainly due to a language misuse). So, an experiment with Message
Sequence Charts often provides useful information on necessary extensions,
but also gives guidelines on how to use the language.

This document presents a case study realized for the European project IN-
TERVAL. The aim of INTERVAL is to provide languages such as MSC, SDL
and TTCN with extensions for real time systems specification analysis, and
testing. Within this framework, some extensions have been proposed to the
standard MSC’2000 by I'TM Liibek. The existing time constructs of MSC and
the new extensions have been used to model requirements of a reliable mul-
ticast protocol called RMTP2. For this study, we took as a base document
a draft written by the IETF describing the protocol in natural language [8].
Some parts of the requirements that could be expressed by Message Sequence
Charts have been translated. From the beginning, it was obvious that the w-
hole document could not be described with MSC. The first reason is that in
some cases, MSC are not expressive enough to describe even very simple sce-
narios. For such cases, we propose extensions to the language, and apply them.
The second reason for leaving untranslated some parts of the IETF draft is the
abstraction level for requirement expression. When some requirement needed
low-level description, we have considered that MSC were not really adapted
for this, and left the concerned part.

This document is organized as follows: section 2 describes how time is repre-
sented in MSC’2000 and the extension that was proposed by the INTERVAL
project. Section 3 proposes extensions to the language that were needed to
model significant requirements of the RMTP2 protocol. Section 4 list and
justifies the design decisions that were taken at the beginning of the study.
Section 5 describes the RMTP2 protocol, and illustrates the use of MSC on
some peculiar parts of RMTP2 requirements. Section 6 concludes this work.



2 MSC and Time

This section describes how times is handled by the new standard MSC’2000
[2], and the timed extension that was proposed by the INTERVAL project [9].

2.1 Timers

Message Sequence Charts allow for operations on timers (set reset, and time-
out). Timers have the same semantics as in SDL, and should be set and reset
(or expire) on the same instance. However, timer constructs suppose that a
clock mechanism is used in an eventual implementation. The example of Fig-
ure 1 shows how timers may be used. This MSC could be translated in natural
language as "after sending ml, if m2 is not received within 10 ms, then an
error is detected".

MSC M1

ml

10 |
MSC M2 MSC M3
A B A B
[ [

Fig. 1. Use of Timers

In some case, a designer does not wish to specify how time constraints are
implemented, but only express requirements such as "the execution of a given
scenario should be performed within at least 10 ms and at most 100 ms".
Timers are not adapted for expressing such time constraints. Furthermore, a
system under design may naturally fulfill a time constraint without imposing
an interruptive timer definition.



2.2 Time i MSC’2000

The new ITU standard MSC’2000 |2] allows for the definition of very elabo-
rated timed constraints, without defining how they are implemented. The new
constructs that were added to the MSC’96 language [1]| are occurrence dates
and time interval definitions.

2.2.1 Occurrence dates

The new temporal extensions provided by MSC’2000 allow for the definition of
a date of occurrence for each event in a MSC. MSC Datel in Figure 2 shows a
scenario in which emission of m1 occurs at date datel, and reception of m2 at
date2, where datel and date2 are time variables referring to event occurrence
dates. MSC Date2 shows the same scenario with imposed dates. Note that in
the first MSC, emission of m1 or reception of m2 can occur at any time and
the occurrence date is recorded, while in scenario Date2, emission of m1 must
occur at date 0, and reception of m2 at date 335 ms.

MSC Datel MSC Date?
A B A B
@datel . — (@] . —
ml ml
\ \
m2 m2
@date2 . | [@335ms] . |
] ] ] ]

Fig. 2. Definition of dates

2.2.2 Time intervals

MSC’2000 also allow for the definition of time intervals elapsed between the
occurrence of two events. The definition of a duration is done by a double
arrow, one extremity pointing on the first even of the interval, the second
on the last event of the interval. The example Intervall of Figure 3 shows
the definition of a time interval called interl. As previously for dates, it is
possible to give values instead of naming an interval. The example Interval2
of Figure 3 shows a scenario in which the time elapsed between the emission
of m1 and the reception of m2 should be included in the interval [10, 100 ms].
The example Interval3 of Figure 3 shows how a duration can be associated
to a message transmission. It is also possible to reuse intervals defined to
express more elaborated timed constraints. The example Interval4 of Figure 3
indicates that the time elapsed between the emission of m1 and the emission



of m3 should be greater than twice the time needed for transmitting m1, and
lower than 3 times this duration.
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Fig. 3. Time intervals definition

In the standard, time intervals can be defined between any pair of events
contained in a MSC document. This means that an intervals starting in a
MSC and ending in another are considered as valid. However, an interval
definition may lead to ambiguous interpretation due to iteration: an interval
start event may be matched to more than one end event (a similar problem
was stated in [6] for timers setting and timeout).

2.3 Periodicity proposed by INTERVAL

Periodicity has been introduced to allow the definition of time intervals be-
tween two consecutive occurrences of the same event. The example of Figure 4
shows a scenario where a message m1 must be sent regularly. The time elaps-
ing between two consecutive emissions should be greater than 2 seconds and
lower than 3 seconds.

3 Extensions needed

This section proposes some extensions to MSC. A better definition for data
was not a clear necessity for this work: assuming that data were local and could



MSC period

Fig. 4. Periodicity

be used in guards defined by conditions was sufficient. However, an extension
of loop constructs and a definition of multicast were needed to complete the
modeling of important parts of the requirements.

3.1 Data

Data have only been introduced in the MSC’2000 standard. They can be
manipulated by actions, be carried by messages, or be used in predicates for
conditions. Yet, some clarification are still missing:

e The scope of variables is still undefined. It has not been decided if variables
should be local (in such case, their use in guards may be restricted to condi-
tions on one single instance) or global (in which case it may not be possible
to implement such a variable).

e Data of a MSC document are defined in a declaration part, which can con-
tain a data definition zone expressed in an external language. However, the
standard is not precise on how these externally defined types are used. For
example, a message can carry information ¢ of type T defined externally
as a structure, and a guard can refer to a specific field of . Hence, a data
language ( such as ASN.1 or a C-like language) should be chosen for M-
SC, allowing for the definition of new types such as structures, and defining
precisely how these types must be used.

3.2 For loops

In the ITU standard, loops are defined by an expression of the kind loop <
x,y > where = and y are respectively the minimal and the maximal number
of repetitions of a scenario. The RMTP2 requirements point out the need
for more general concepts of loops: for example, a retransmission should be
performed for each missed packet. In some other parts of the IETF document,



behaviors are repeated for a set of instances (for example for each child of a
control node). We propose the following definition: loop < varname in X >,
where varname is a variable name that can be used in the body of the loop,
and X is a set of elements. Note that this definition remains compatible with
the previous notations, as expressions such as loop < 1,7n > will just be noted
loop < 1in l.n >.

3.3 Arrays of timers

In order to avoid message loss, RMTP2 associates a timer to each missed
packet. It seems more convenient for applications with many timers to define
array of timers, as in SDL. Set, reset and timeout remain the same, the only
difference is the possibility to add an index to a timer name, (for example
set(Timer _Datali],10ms)). Timers definition could be integrated to the data
definition part mentioned previously.

3.4  Multicast

The following behavior is an extract from the IETF draft: “the sender ap-
plication provides Data packets to the sender node. The sender node assigns
consecutive sequence numbers to the Data packets and multicasts the packets
on the data channel”.

O

MSC AssignSequence
Sender Application Sender Node Multicast Group
L1 L1
1 Multicast
Sequence_Number ++
Data(StreamID,
il
] ] ]

Fig. 5. Sequence number assignment



The only assumption about communications in Message Sequence Charts is
that messages are asynchronous. There is no way of defining multicast, or
synchronous communications. We propose to define multicast for MSC the
following way :

e Instance can be multicast groups, which is indicated by a "multicast" com-
ment attached to the instance axis (as shown in Figure 5). Of course, any
message sent from an instance to a multicast group is a multicast message.

e Multicast sending and receiving are differentiated from the classical send
and receive events.

In addition to these requirements, a semantics of multicast in MSC should
preserve some rules:

e Map one single emitting event to multiple receptions,

e Allow the evolution of groups of receivers,

e Preserve the semantics of sequential composition in MSC (weak sequential
composition).

Note that the semantics proposed below is just a tentative semantics defined to
allow the use of multicast within the INTERVAL framework. As such, some of
the choices made are open to discussion, and the semantics should be subject
to major improvements.

Let us give a new definition of MSC extending the notations of [11], and
integrating the concept of multicast. Following the definitions of [12,13|, we
will consider a MSC as a partial order between events. A MSC is a tuple
M =< E,<,A, I, o, ¢,m, NG > where:

E is a set of events

< is a partial order relation on events, due to sequential ordering on instance

axis, and ordering imposed by messages,

A is a set of labels,

I is a set of instance names,

o EF— A is a function associating an action name to each event,

¢ : E — I'UNG is a function associating a location to each event of a

MSC,

e m: FF — F is a mapping associating a sending event to its corresponding
receiving event. Note that due to message crossing, non uniqueness of mes-
sage labeling, and transitivity of the order relation, this mapping can not
always be deduced from < and ¢.

e NG is a set of multicast group names,

In addition to usual actions allowed in a MSC (send, receive, timers set /reset /timeout),
we define the following ones:



Join(Instance_ Name,Group_Name)

Leave(Instance_ Name, Group_ Name)

mcast _Send(Emitting Instance, message, Receiving Group)

mcast _Receive(Emitting Instance, message, Receiving Group | receiving instance)

We propose the following semantics rules. First, the behaviors defined by a
multicast MSC will depend on the configuration of multicast groups. There-
fore, the semantics rules will be of the form:

Preconditions

M, ctxt _action , M’',ctxt’

Where M =< E, <, A, I,a,¢,m, NG >and M' =< E' <" A" I' /,¢',m', NG' >
are MSC and ctzt = (R, G) and ctzt’ = (R, G") are contexts. A context will
contain two functions :

e G: NG — P(I) indicating the current composition of a group.

e R : E — P(I) indicating the instances that have to perform an event
(for multicast receptions). For a multicast reception e, R(e) is fixed by the
corresponding emission. If m~!(e) has not been executed then R(e) = 0.

The contents of a multicast group may change before a multicast message is
received. For this reason, we impose that the group of receivers for a given
message is set when the message is sent, which explains why R(e) can be
different from G(¢(e)) for a multicast reception. For a given MSC M, we
define as Min(M) the set of minimal event with respect to the order relation:

Min(M)={e€ E|fe' € E,e# ¢ Ne' <e}

Furthermore, for any set E, and any subset £/ C FE, the projection of the
order relation < on E'is <|zr=<NE' x E' and the projection of a function f
.. e
on F’ is the restriction: fipr E s B
e — f(e)

The operational semantics rule for non-multicast events will be as usual:

de € Min(M), a(e) = act

M=<FE, <A I,a,¢,m NG >, ctxt _act,
M’ =< Ela S|E’aA7 Iaa|E’a ¢|E’am|E’aNG >, ctat

with ' = E — {e}.



3.4.1 Joining and leaving a multicast group

When an instance ¢ joins a multicast group ng, it is allowed to receive all
messages sent to this group.
e € Min(M),a(e) = Join(i,ng)
M=<E, <A I,a,p,m,NG > ctzt = (R,G) Join(i,ng)
e
M =< E', <jg, A I o, ¢pr,m, NG >, ctat’ = (R,G")

G': NG —s P(I)
Where E' = E — {e}, and g — G(g)u{i}if g =ng
g — G(g) otherwise

After an instance 7 has left a multicast group ng, it should not receive messages
sent to this group.
e € Min(M),a(e) = Leave(i, ng)
M=<E, <A I o ¢,m NG >, ctat =(R,G) Leave(i,ng)
M =< E’, S\E’, A, o, ¢|El, m, NG >, ctxt’ = (R, G’)

G': NG —s P(I)
With B = F — {e} and g — Glg)—{i} it g=ng
g — G(g) otherwise

3.4.2 Multicast message emission

e € Min(M),a(e) = mcast__send(i, msg,ng)

M=<E <A I« ¢,m NG > ctxt =(R,G) mcast send(i,msg,ng)
M' =< F', S|E1,A,I, o, ¢|E:,m|E:,NG > ctat = (RI,G)

N
7

R : NG — P(I)
Where E' = E — {e}, and f— R(f) if f € dom(R)

e/ — G(ng) if ¢ = m(e)

We suppose that multicast messages are still asynchronous, but that the list
of recipients is set at message emission. When a message is sent in multicast,
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the function R’ associates the contents of the multicast group ng to the corre-
sponding reception €’. So, a message m will be received by all instances that
belonged to group ng when m was sent.

3.4.8 Multicast message reception

A reception of a multicast message can be performed by any member ¢ of the
destination group ng if the message has already been sent, and ¢ has performed
all its preceding receptions in ng.

de € E,a(e) = mcast_receive(sender,msg,ng),i € R(e),|R(e)| > 1,
Ve' < e such that ¢(e') = ng,i & R(e'),

Pe” < e such that m(e”) = e

M=<E, < AIa¢,m NG > ctzt=(R,G) mcast_receive(sender,msg,i)

M, ctzt' = (R, G)

R : NG — P(I)
with f— RU)iff#e
e — R(e) — {i}

de € E,a(e) = mcast_receive(sender,msg,ng),i € R(e),|R(e)| =1,
Ve' < e such that ¢(e') =ng,i & R(¢'),

Pe” < e such that m(e”) = e

M=<E, < AIa¢,m NG > ctzt=(R,G) mcast_receive(sender,msg,i)

M'=< EI, S|E’;A,I; o|E, ¢|Ez,m, NG >,Ct$t’ = (RI,G)
where &' = E' — {e} and R' = R

The first rule describes a multicast reception when the set of instances that
must receive message msg is composed of more than one instance, and the
second rule depicts a situation where the last member of a group receives the
message. Note that actions associated to multicast groups are only receptions.
This restriction could be removed to allow the definition of generic behaviors
associated to groups of communication, but this is beyond the scope of this
article. An example of MSC containing a multicast group and the correspond-
ing semantics are provided Figure 6. Figure 7 provides another example of
multicast MSC. Messages m1, m2, and m3 are multicast to group G. Initially,
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G is only composed of instance B, so message ml is only sent to B. Then,
instance C'is added to G. So, message m?2 is sent to B and C. Finally, B leaves
the multicast group, so message m3 is only sent to C.

O
A G={B,C}

— — Alm2

O

Multicast Alml

B'?ry/o \Ci?ml
o T

m2 AN

Fig. 6. Example of multicast communications and corresponding transition system

Some confusion may occur when a MSC contains a multicast emission to
a group G, and an instance [ that is also a member of G (see MSC M in
Figure 8 for an example). The intuitive behavior defined in such a case is that
multicast receptions on I for group G and separate events on I should be
concurrent. However, a MSC similar to M can be obtained by composition of
a MSC containing the multicast communication between Sender and G, and
another containing only action A. The semantics of both should be the same,
but this makes the definition of sequential composition very uneasy. A safe
restriction would be to limit the use of multicast to MSC where groups and
set of instances remain disjoint.

3.4.4 Sequential composition of multicast MSC

MSC allows for the composition of elements, with operators such as choice,
iteration, and sequential composition. Usually, the sequential composition of
two MSC M1 and M2 is noted M1o M2. According to the sequential compo-
sition semantics, an event e of M2 can not be executed in M1 o M2 if there
is one event on the same instance ¢(e) to be executed in M1. The sequential
composition of MSC with multicast should remain consistent with the previous
semantics of sequential composition [11]. However, the contents of multicast
groups can only be known at execution time. Consider two MSC M1 and M2.

12



A G={B}
| — —
ml

\ N multicast
C Joins

*

B Leaves
*
I ]

Fig. 7. Example of multicast with join and leave and corresponding transition system

MSCM
Sender G={A,B,C.D} A
— — —
ml\ ‘ multicast
Action a
[ ] [ ]

Fig. 8. Ambiguous MSC containing a multicast operation

Two behaviors can be defined. Either any event e of M2 is forbidden if a mul-
ticast message can be received by ¢(e) in M1. Or any event e can be executed
if it is minimal for M1 o M2, and that no multicast message reception has to
be performed by ¢(e) at the moment of the execution of e. We will adopt the
second approach, which seems to be less restrictive. Then, the semantics of
sequential composition when MSC can contain multicast messages becomes:
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M1, ctxt _x, M1V, ctzt’

M1oM2,ctet _x, M1 o M2,ctxt’

M2, ctet _x, M2, ctat’ and
Ve € ¢1 (1), da(x) # b1(e) and
Ve € ¢1 ' (NGh), ¢o(x) € R(e)

M1o M2, ctet _x, M1o M2, ctxt’

All minimal events of M1 can be executed, but an event e of M2 can not
be executed if there is a reception by a group G in M1, and G is known
to contain ¢(e). Figure 9 provides an example of sequential composition with
multicast messages. At the beginning, G only contains instance C'. The behav-
ior described by the example will differ if B is added to the multicast group
G before or after emission of message m2 The associated transition system

calculated using the operational semantics is provided in Figure 10.

msc H msc M1

ml

G={C}
I

v/
Y multicast

]
msc M2
A B
] ]

Fig. 9. Sequential composition and multicast

4 Deign decisions

MSC are supposed to provide clear understanding of typical executions. This
intuitive understanding can be easily limited by inappropriate use of the lan-

14




Fig. 10. Transition system associated to the Example Figure 9

guage. One may, for example, describe control structures similar to while loops
in C programs. Clearly, MSC were not designed for such use, and the graphical
syntax does not bring any help in understanding low level code-like descrip-
tions. Our opinion is that MSC should remain clear, and rather abstract. As
we are dealing with requirements, and that our intention is not to provide an
exhaustive description of all possible runs of a system, this should not be seen
as a limitation. Thus, we shall leave parts of the RMTP2 requirement when
they are considered as too low level. Figure 11 shows how the simple loop
below can be specified using MSC.

i:= 0

while (i <= 10) {
Act(i);
i++

}

With gates, MSC can also be used as communicating automata. As shown
in [10], the uncontrolled use of gates limits the decidability results proved on
closed MSC (ie compositions of patterns in which any message sent is received
in the same pattern). Our opinion is that languages such as SDL are bet-
ter adapted for describing communicating processes at a low level. From the
beginning, MSC has been designed to define sequential compositions of com-
munications, and using them to define parallel composition of communicating
sequences seems to be a nonsense. Figure 12 shows how MSC can be used in
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a SDL-like style. For this study, we have tried to limit the use of gates, to
preserve clarity of requirement representation.

\/
mSCM: msc M2 msc M3
P T
Cw ) (w] |

M3
L] A

Fig. 11. While loop expressed by a MSC

msc Communicating_Machines msc Send_Data msc Send_End

V V A A

4’—%—‘ % Data EndData
[Send Data} [ Send End} ‘ ‘ [Receive_Data] [ Receive_End] 9 g
— A A
msc Receive_Data msc Receive_End
B B

EndData
Data
o022 ot

Fig. 12. Using MSC like communicating state machines

Another weak point for MSC is the lack of semantics for the new constructs
that were added to the language in the 1996-2000 period. For example, data
definition is not yet clear. For the scope of this study, we have considered that
data were local, could be carried by messages, and used in predicates for guard
definitions in conditions.

5 Modeling RMTP2 with MSC

5.1 Short description of RMTP2

This section briefly describes the main functionalities of RMTP2 (Reliable
Multicast Transport Protocol). A more complete description can be found
in [8]. RMTP2 provides a reliable transmission of data sequences for large
groups of receivers. The objectives of RMTP2 are guaranteed reliability, high
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throughput, and low end-to-end delay on any network topology, while pro-
viding the network manager with control over transmission traffic. In a lossy
environment, reliability can only be obtained if data packets are acknowledged.
However, due to the large number of receivers for each data channel, direct
acknowledgment of packets from each receivers to the source would result in
an immediate network congestion. For this reason, the network is organized
as a tree. Receivers are grouped in local regions, and in each region a special
control node is responsible for maintaining receiver membership and for ag-
gregating the acknowledgments from the receivers in its region and forwarding
them to the sender. The network comports a descending way, on which data
are send using IP multicast to all members of the RMTP2 tree. Data are re-
ceived from a sending application by a node called Sender Node, and are then
multicast on the data channel. Packets for acknowledgment are aggregated
by multiple levels of control nodes, which forward information about missed
packets to the Sender Node. Control Nodes may be of two types : Aggregator
Nodes, which only aggregate and forward information about missed packets
to the upper level, and Designated Receiver Nodes, which can keep a copy
of data packets, and retransmit missed data to the subtree situated below
them. Acknowledgments are eventually aggregated at the top of the tree by a
node called Top Node, which retransmits this information to the Sender Node.
Each node in the tree provides multiple services such as data transmission,
tree integrity control, quality of service maintenance. Figure 13 shows how a
RMTP2 tree with 3 hierarchical levels is organized.

Hacks
,,,,,,,,,,,,,,, TOPNODE  )--------------mmmomm - SENDERNODE

Hacks 3 / \ !
Data Channel

/+ JIN TN

@ Aggregator Nodes

@ Designated Receiver Nodes

Receiver Nodes

Fig. 13. A 3-level RMTP2 Tree

MSC allowed us to describe a large subset of the requirements written in the
IETF Draft [8]. We have followed the document in a linear way, and tried
to design a MSC for most of the behaviors described. The following sections
provide a sample of the requirements. For each example, we provide the IETF
requirement as it was expressed, and the MSC translation follows.
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5.2 Heartbeat Packets

One of the main functions of nodes is to ensure tree integrity. A child node
must be able to detect its parent failure, and join another parent. So, a parent
node periodically sends heartbeat messages to its children, to notify it is alive.
The following textual requirements appear in the IETF draft: “ A control node
periodically sends Heartbeat packets to notify its child nodes that it is alive.
T'hb: the number Thb is the time interval at which control nodes multicast
Heartbeat packets.”

MSC Send_Heartbeat Packet
Control Node Children
L] L]
Loop
ho .
R R i Heartbesat r multicast
\\ A
[ ] [ ]

Fig. 14. Periodical Heartbeat packet emission

This part of RMTP2 requirements emphasizes the need for periodicity. Note
that Heartbeat messages are sent on a multicast local channel (the definition
of multicast will be discussed later). This behavior applies to any part of
the RMTP2 tree composed of a control node and its children. Furthermore,
nothing is specified about how such a time constraint should be implemented.
Another possibility for illustrating this requirement is to use timers, as in
Figure 15. Note that the meaning of Figures 14 and 15 are slightly different.
Figure 14 requires that a heartbeat message is sent every Thb time units (this
can be considered as a property to be checked on an implementation), while
Figure 15 describes a timer mechanism for heartbeat emission.

5.3 Parent Failure detection

As indicated before, a child node waits for heartbeats packets from its parent.
If Heartbeat packets have not been received for a too long time, the parent
is considered to have failed. The following requirements are extracted from
the IETF draft: “If the child does not receive any Heartbeat from the parent
in an interval F' % Thb, it declares the parent failed. F': the failure threshold
constant, F', determines the threshold time for failure detection.” Figure 16
describes a timer mechanism that allows the parent failure detection.
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MSC Tout_Heartbeat

V Control Node

CID Timer_Thb

‘ Send_Heartbest ‘
| Z z

‘ Tout_Heartbeat ‘

I

MSC Send_Heartbeat

Control Node Children

Heartbeat

Timer_Thb
X—\ ) Multicast
Thb

Fig. 15. Timers associated to Heartbeat packets

5.4 Join Algorithm

Data transmission is considered as a continuous flow of information that can
be joined at any time. Connection to a data channel is immediate, but in order
to be able to acknowledge data packets, or ask for retransmission, a receiver
must be connected to the RMTP2 tree. A receiver has to contact its parent
to be authorized to join the RMTP2 tree. The following requirements appear
in the IETF draft:

“When a receiver node is created, it sends a separate JoinStream packet for
each of the streams that it intends to receive. When a receiver node rejoins a
stream after a parent failure, it may send a single JoinStream packet to join
multiple streams.

Aggregator and designated receiver nodes send a JoinStream packet with
StreamID value zero to join the RMTP tree, without joining any stream. An
aggregator or designated receiver later joins the streams that their children
join.

A node sends a JoinStream request to its parent node. It waits a time interval,
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Fig. 16. Parent Failure detection
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Tjoin_response, for a response from the parent node. A parent node responds
to a JoinStream request with a JoinAck packet or a JoinConfirm packet. If
the parent node cannot process the request immediately, it responds with a
JoinAck packet. Otherwise, it sends a JoinConfirm packet.

If no response is received, the node retransmits the JoinStream request. The
node retransmits the JoinStream request a maximum number of times, Rjoin.
If a node does not receive a response for the JoinStream requests after Rjoin
tries, it reports a Parent-Unreachable failure after Rjoin retries.

If a node receives a JoinAck packet, it continues transmitting JoinStream
requests at exponentially longer times, until it receives a JoinConfirm rather
than a JoinAck. Every time that a node does not receive a response from
its JoinStream request, it increments a local variable NumberFailures. Every
time that it does not receive a JoinAck in response to its JoinStream request,
it increments NumberFailures. If NumberFailures exceeds Rjoin, it reports a
Parent-Unreachable failure. A node receives the tree’s constant parameters
and the parent’s multicast control channel address from the JoinConfirm.”
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Figure 17 and 18 describe the connection algorithm for a node joining a stream
already owned by its parent. On this example, it is easy to detect that the be-
havior described by MSC Joinack can be iterated forever. We assume that this
is an error in the protocol, and that a maximal number of acknowledgments
should limit the number of iteration of the behavior described in Joinack.
This shows that a light formalization of textual requirements can help finding
inconsistencies during the early stages of design.

5.5 Hack

The following requirements are extracted from the IETF draft: “a HACK or
NACK indicates which packets have not been received. A sender retransmits
the missed packets on the data channel. The time interval between successive
retransmissions for a data packet is doubled for each retransmission, with an
upper limit of 64 seconds (exponential backoff).” Figure 19 shows how loop
generalization can be used for retransmitting lost data packets.
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Fig. 18. MSC for Tree Connection

5.6 Ezxpression of a QoS constraint

Data sent by the application are admitted at a variable rate. The following
sentences were found in the IETF document: “Fixed, rate-based flow control
limits the transmission speed to a predefined value. Radmit _rate main: This
is the minimum admission rate that the sender can use for Data packets.
Radmit _rate _max: This is the maximum admission rate that the sender can

use for Data packets.”

The MSC of Figure 20 shows how periodicity can help expressing admission
rate for one single message. Constraint on data transmission rate for more than
one kind of message can be more difficult to implement, as it may involve more

than one communication pattern.
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6 Conclusions

This study has proposed some extensions to MSC in order to model require-
ments of distributed systems. Improvements such as loop generalization or
timer arrays are mainly syntactic extensions. On the other hand, the multi-
cast extension is more complex, and new semantics rules have been proposed.
Further studies on extensions of communications in MSC is probably needed
to make sure that the rules proposed are consistent with all the other MSC
constructs, but also for the integration of new communication modes such as
synchronous communications.

The expression of a part of RMTP2 requirements using MSC has lead to the
definition of 38 scenarios. This study has shown that early formalization of
requirements can help finding inconsistencies. Of course, the error detection of
section 5.4 is more due to the formalization effort than to MSC, and another
language would probably have helped pointing out the same mistake. Yet, M-
SC appear as a good candidate for illustrating the requirements of distributed
systems while allowing some formal manipulations.

Each scenario designed could be considered as a peculiar "view" of the com-
plete RMTP2 tree behavior. From this set of scenarios, a question immediately
arises : what is the set of behaviors defined by these views? A first interpreta-
tion is to consider that the behaviors defined by a set of views can be expressed
as sequential and parallel compositions of the views. We think that this ap-
proach is too strict and does not really correspond to our understanding of
views. The set of RMTP2 requirements defined by means of MSC may con-
tain a lot of redundancy. The reason for this is that the initial requirements
were designed according to functionalities, and also according to a level in the
RMTP2 tree. An acknowledgment message from a child node to its parent
may play a role for data transmission, but also for the control of the tree
integrity. Hence, the combination of sets of views is far more complex than
simple interleavings and serializations of behaviors. Furthermore, some views
describe implementation details, such as timers use, while some other can be
considered as global constraints (such as QoS requirements). An ideal compo-
sition operator should consider executions of a product of all behavioral views
restricted by the constraint views.
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