
DISTRIBUTED DIAGNOSIS
FOR LARGE DISCRETE EVENT DYNAMIC

SYSTEMS 1

E. Fabre, ∗ A. Benveniste, ∗ C. Jard ∗∗

∗ IRISA/INRIA, Rennes, France
∗∗ IRISA/CNRS, Rennes, France

AbstractThis paper presents a framework to deal with large systems, which cannot be
handled as a whole. We propose to model them as a graph of interacting subsystems,
and to base all processings on this factorization of the large system.

Keywords: distributed system, large-scale system, discrete-event dynamic system,
diagnosis, state estimation, dynamic programming

1. INTRODUCTION

In many applications, systems are too large to
be handled as a whole : the number of possi-
ble states of the system explodes. The situation
can be worse : some distributed systems, like a
telecommunication network for example, are made
of independent components, evolving with their
own clock, and interacting on some particular
events. As a consequence, no notion of global
time is available. To make supervision problems
tractable, and in particular failure diagnosis, we
model a distributed system as a graph of interact-
ing subsystems, with the appropriate semantics of
trajectories and stochastic framework. A central-
ized supervisor, collecting all observations from
the system and knowing a model of the whole sys-
tem, may not be affordable. We advocate instead
a processing “by parts,” and push the idea up to
a completely distributed supervising architecture,
with one local supervisor sitting on top of each
subsystem, and coordinating its activity with su-
pervisors in its neighborhood. This framework has
very tight connections with Markov fields theory

1 This work was partially supported by RNRT (French
National Research Network in Telecommunications),
through project Magda, dedicated to the distributed
failure diagnosis of telecommunication networks (see
http://magda.elibel.tm.fr)

and Bayesian networks, which allows to adapt all
results and algorithms developed in these fields to
the processing of large DEDS.

Our approach to distributed systems combines
two key elements. The first one concerns the struc-
ture of a distributed system, which we define
as a graph of interacting subsystems (section 2).
They are first defined in a very simple setting,
assuming no dynamics, which emphasizes the ca-
pabilities of this framework. We particularly stress
the distributed processing aspects. The second
key point concerns distributed dynamic systems
(section 3). Dynamic systems lead to distributed
processings, and in particular to distributed mon-
itoring/diagnosis procedures, provided one adopts
the right semantics for trajectories. These seman-
tics make explicit use of the concurrency between
subsystems, which greatly reduces the combinato-
rial explosion of the number of possible behaviors,
compared to usual semantics. Given these two in-
gredients, section 4 proceeds to the explicit design
of distributed diagnosis algorithms.

A long version of this paper is in prepara-
tion (Fabre et al., 01), containing in particular the
extension of this work to stochastic distributed
systems and proofs of theorems. We only present
some salient features.

2. DISTRIBUTED SYSTEMS AND
ALGORITHMS

The systems we consider operate on sets of vari-
ables. Variables are denoted by capital letters :
A, B, V . . . and take values a, b, v . . . in domains
DA,DB,DV . . . Let V = {V1, . . . , Vn} be a set of
variables ; a configuration or state v is a function
which assigns to each variable of V a value of its
domain. By abuse of notations, configurations are
represented as tuples v = (v1, . . . , vn), assuming a
natural ordering of variables, and their domain is
denoted by DV = DV1×· · ·×DVn . For V ′ ⊂ V , ΠV′

is the canonical projection on configurations of V ′.

2.1 Factorization into subsystems

A system is defined as a pair S = (V ,O), where
V = {V1, . . . , Vn} is a set of variables, and O ⊆ DV
is the set of possible configurations or states of S.
O is a set of legal tuples (v1, . . . , vn) for S, or,
equivalently, O gathers constraints on S.

The composition (or product) of systems S1 =
(V1,O1) and S2 = (V2,O2) is defined as

S = (V ,O) = S1|S2 ⇔
{

V = V1 ∪ V2

O = O1 ∧ O2
(1)

Hence subsystems S1 and S2 “communicate”
through their common variables V1∩V2, and con-
figurations of S are obtained by the conjunction 2

of the constraints defining S1 and S2.

System S is said to be a distributed system as
soon as it can be expressed as the product S =
S1|S2| . . . |SN , where N ≥ 2, Si = (Vi,Oi) and
Vi ⊆ Vj never holds for 1 ≤ i 6= j ≤ N . In
particular, none of the Vi’s is as large as V , hence
S is defined by the conjunction of local constraints
on subsets of variables. A factorization imposes
some structure to S which is often displayed as a
hypergraph G : variables are nodes of the graph,
and subsystems Si appear as hyperedges, i.e. sets
of variables (fig. 1).

Given S = (V ,O) and knowing that S factor-
izes on G, given by V1, . . . ,VN , one can easily
determine possible sets Oi by restricting O to
variables in Vi, i.e. Oi = ΠVi(O), and by extension
Si = ΠVi(S). Although factorizations of S on
G may be numerous, the one obtained in that
way is canonical in the sense that the Oi’s are
minimal : every local state in Oi is the projection
of at least one global state of O. A factorization
property imposes some structure to S : let S be
any system, define Si = ΠVi(S), then the product

2 We use the “∧” as a shorthand ; a better expression
would be O = Π−1

V1
(O1)∩Π−1

V2
(O2) if O is considered as a

set, or O = (O1 ◦ ΠV1) · (O2 ◦ ΠV2) if O is considered as
an indicator function.

S1| . . . |SN is generally larger than S, i.e. allows
more configurations.

2.2 Working with factorized forms

The major advantage of factorized representations
resides in the compact description of a large set
of long vectors (O) by small sets of short vec-
tors (the Oi’s). It appears in an obvious man-
ner when subsystems have no interaction : S =
({A}, {a, a′, a′′}) | ({B}, {b, b′, b′′}) is a more com-
pact representation than the extended list of pos-
sible pairs of values for variables A, B. Therefore,
factorized representations are particularly suited
to large systems where the size and number of
state vectors explodes. Hence all computations on
such systems should be performed on their factor-
ized form. This is precisely the principle we adopt
in the present paper.

The most efficient algorithms handling large sys-
tems under their factorized form make an explicit
use of the graphical representation of interactions
between subsystems (fig. 2), see (Benveniste et
al., 95; Pearl, 86) for an overview. We describe
the simplest one here, as the prototype of sev-
eral processings we perform in the sequel. The
problem is the following : assume S factorizes into
S1| . . . |SN , one wishes to compute the “canonical”
sets O′

i = ΠVi(O) without computing O (which
would be too large). We first illustrate the princi-
ples on an example.

S2 3S

S1

Figure 1. System chain : S1 separates S2 from S3.

Example. Assume S = S1|S2|S3 and S1 sepa-
rates S2 from S3, i.e. V2,3 ⊆ V1 (see fig. 1). Then

O′
1 = ΠV1(O1 ∧ O2 ∧ O3)

=O1 ∧ ΠV1(O2 ∧ O3)

=O1 ∧ ΠV1(O2) ∧ ΠV1(O3)

=O1 ∧ ΠV1,2(O2) ∧ ΠV1,3(O3) (2)

where the third equality comes from the fact that
S2 and S3 have all their common variables inside
V1. Hence O′

1 needs the messages ΠV1,i(Oi) from
its two neighbors Si, i = 2, 3. In the same way, for
O′

2 (and symmetrically for O′
3) one has

O′
2 = ΠV2(O1 ∧O2 ∧ O3)

=O2 ∧ ΠV2(O1 ∧ O3)

=O2 ∧ ΠV2 [O1 ∧ ΠV1(O3)]

=O2 ∧ ΠV1,2 [O1 ∧ ΠV1,3(O3)] (3)

where the third equality derives from V2,3 ⊆ V1.
The merge equation (3) needs message ΠV1,2 [O1∧

ΠV1,3(O3)] from S1, which derives from a merge in
S1 of O1 and another message ΠV1,3(O3) received
from S3. This propagation phenomenon (from S3

to S2 through S1) reveals that sets O′
i can be ob-

tained by exchanging messages between systems
which are direct neighbors, and performing local
merges inside each system.

We now formalize the message passing algorithm-
for a factorization S = S1| . . . |SN defining the
hypergraph G. In the remaining of the paper, we
assume that G is a hypertree , or tree for short.

Definition 1. Let hypergraph G be defined by
edges V1, . . . ,VN , and let X ,Y,Z ⊆ V = V1 ∪
. . . ∪ VN be sets of nodes. Z is said to separate
X from Y on G iff there exists a partition I ∪
J ∪ K = {1, . . . , N} such that X ⊆ VI∪K , Y ⊆
VJ∪K , VK ⊆ Z and VI ∩VJ ⊆ VK . G is said to be
a tree iff one single Vk is enough to separate any
two Vi and Vj (fig. 2).

S5 S

1S
S4

3

5

S6

S1

S2

6S

3S

S4S

2

S

Figure 2. A hypertree with 6 edges (top) and its
tree structure evidenced (bottom) by associat-
ing neighbors to each edge. Some nodes are
duplicated, and the correspondence between
them indicate the neighboring structure.

To display the tree structure of G, one must
determine which systems are direct neighbors.
This can be done recursively by cutting off leaves
of the tree. An edge Vi is said to be a leaf of G
iff there exists another edge Vk which separates it
from all remaining edges. The edge Vi is made a
direct neighbor of Vk and is removed from G. The
remaining hypergraph keeps the tree property,
hence one can repeat the procedure (fig. 2). Notice
that the neighboring relation constructed in that
way is not unique. In the sequel, the term “tree”
will denote such a neighboring structure on G.

Let us denote by N(Si) the set of subsystems Sj

which are direct neighbors of Si, and let us say
there is an oriented link from Si to Sj (and sym-
metrically) as soon as they are direct neighbors.
The algorithm computing sets O′

i on the tree G is
based on messages “circulating” on these links.

Algorithm A1

(1) initialization : for each link Si → Sj , define
the message

MSi→Sj =DVi,j

(2) repeat until no message can be changed

(a) choose one link Si → Sj

(b) update the message on that link by

Ōi = Oi ∧ (
∧

Sk ∈N(Si)\Sj

MSk→Si)

MSi→Sj := ΠVi,j (Ōi)

(3) for each Si, define O′
i by

O′
i =Oi ∧ (

∧
Sk ∈N(Si)

MSk→Si)

The proof of convergence extends ideas appearing
in the previous example, and of course heavily
relies on the separation property. We omit here
for lack of space. Nevertheless, let us mention
that A1 remains valid if sets Oi evolve during the
processing and eventually stabilize. We use this
property in the sequel.

3. DYNAMIC SYSTEMS AND
CONCURRENCY

We now move to dynamic systems with con-
currency, viewed as a generelization of Petri
nets (Esparza and Romer, 99).

3.1 Systems and tiles

Definition 2. A dynamic system S is a triple
(V , T , I, Σ) where V = {V1, . . . , Vn} is a set of
variables, I ⊆ DV is a set of initial values v =
(v1, . . . , vn) of the system, Σ is a set of labels and
T is a set of transitions or tiles defined on variables
of V and on the label set Σ.

Definition 3. A tile t ∈ T is a 4-tuple (Vt,v−
t , σt,

v+
t) where Vt ⊆ V is a set of variables, v−

t ,v+
t ∈

DVt are respectively the pre-state and the post-
state of t, and σt ∈ Σ is a label.

The composition of systems extends the definition
of section 2. Let Si = (Vi, Ti, Ii, Σi), i = 1, 2, then

S = (V , T , I, Σ) = S1|S2 ⇔




V = V1 ∪ V2

T = T1 ∪ T2

I = I1 ∧ I2

Σ = Σ1 ∪ Σ2

(4)

In the same way, a system S is said to be a
distributed dynamic system as soon as it can be
expressed as S = S1|S2| . . . |SN where N ≥ 2,
Si = (Vi, Ti, Ii, Σi) and Vi ⊆ Vj never holds for
1 ≤ i 6= j ≤ N . Notice that the factorization of
S limits the size of its tiles (in terms of variables
involved).

3.2 Partial order semantics on trajectories

Let t ∈ T be a tile and v a configuration of S, t is
connectible to v, denoted by v[t〉, iff vVt = v−

t . By

connecting t to v, one gets the new configuration
v′ defined by v′

Vt
= v+

t and v′
V\Vt

= vV\Vt
. By

analogy with Petri nets, the connection is denoted
by v[t〉v′. The most straightforward definition of
a run (or trajectory) ω of S would be as usu-
ally a sequence (v, t1, . . . , tn) such that v ∈ I,
t1, . . . , tn ∈ T , and v[t1〉v1[t2〉v2 · · · vn−1[tn〉vn.
However, the number of possible sequences ex-
plodes, because of concurrency, as shown by the
next example.

Consider the run ω1 = ((v1, v2), t1, . . . , t8) of
fig. 3, where transitions appear as rectangles, the
grey part of which identifies impacted variables.

2

1t 2
v

v
4

1

t

t

5t

3

6t

:V
7t

2

:

8tt

1V

Figure 3. Graphical representation of a run, as a
sequence of transitions.

By definition of connectibility, a run ω2 obtained
by inverting say t2 and t3, or t6 and t7, is also
valid and finishes with the same configuration.
More generally, one can (recursively) exchange in
ω1 any two successive transitions t and t′ such
that Vt ∩ Vt′ = ∅. In this case, firing t and t′

in any order, or even simultaneously, yields the
same result : they are said to be concurrent in the
run. Concurrency is a very important notion in
(distributed) systems based on tiles : it identifies
areas of independent behaviors in a run. For
example, the order of firings between t1 and t5

is irrelevant in ω1. Therefore, one should define
define a trajectory not any more as a sequence of
firings, but as an equivalence class of sequences for
concurrency. This amounts to considering a run as
a partial order , or a puzzle , of tiles (fig. 4).

v1

v2

4t
2

t t

:
t

5

8t
V

1t 6

3t

:
2t

7

1V

Figure 4. A run as a partial order of tiles.

Given a run ω as a sequence of transitions, the
partial order ≺ representing its puzzle is defined as
follows : for any pair t, t′ of transitions, appearing
in this order in ω, t ≺ t′ iff Vt ∩ Vt′ 6= ∅. The
partial order ≺ is then completed by transitivity.
In other words, and referring to fig 4, ≺ appears
to be defined by the total ordering of transi-
tions impacting each variable. One easily checks
that the set of linear extensions of ≺ define the
equivalence class of ω. From now on, we adopt
the so-called true concurrency semantics (TCS)
for trajectories, which doesn’t distinguish runs of
the same class, or equivalently considers runs as
partial orders of firings, i.e. puzzles.

Practical implementation. The definition of ≺
suggests a very convenient way to implement the
true concurrency semantics in practice. A puzzle
ω on variables V = {V1, . . . , Vn} is equivalently
described as a tuple (ωV1 , . . . , ωVn) where ωVi is
the restriction of ω to variable Vi, i.e. the ini-
tial value vi followed by the sequence of tran-
sitions concerning Vi. On the example of fig 4,
this yields ωV1 = (v1, t1, t2, t5, t6, t8) and ωV2 =
(v2, t1, t3, t4, t5, t7, t8). Observe that ω can be
recovered without ambiguity from the tuple of
sequences ωVi since there exists a unique way
to “synchronize” these sequences : if t concerns
variables Vi and Vj , its kth occurence in ωVi nec-
essarily corresponds to its kth occurence in ωVj .

Notation. We denote by ω � t the connectibility
of t to puzzle ω, and by ω · t the resulting puzzle
after connection.

3.3 Diagnosis

The diagnosis problem for DEDS usually amounts
to testing a property on the hidden trajectory of
the system, given some observable events. For a
matter of space, we simplify it here to infering all
possible runs matching the observations.

Let us define the visible part φ(ω) of run ω by
replacing each tile t in the partial order ≺ by its
label σt (see fig. 4, left). Hence φ(ω) = (L,≺),
where L is a sequence of labels. The diagnosis
problem then amounts to recovering all ω’s such
that φ(ω) coincides 3 with a given (L,≺).

1 5t

7t3 4

t86tt t

t t

2
σ σ σ σ

7

σ

t σσ

t

σ

σ
6

σ

t5
σt8

σtσ
2

σt3
σt4

σt1

Figure 5. Left : partial order of labels φ(ω) as-
sociated to the run ω of fig. 4. Right : an
observation of this partial order as a pair of
sequences (dotted lines are lost relations).

In practice, one hardly observes an entire partial
order of events, for two reasons. First, in a dis-
tributed system S = |iSi, observations may be col-
lected at different locations in the system instead
of being centralized. Typically, one can assume
that observations (i.e. tile labels) of each compo-
nent Si are collected by a local supervisor. Partial
order relations between observations collected on
different supervisors cannot be obtained without
extra communications. So we assume that such
relations are lost. Secondly, in each supervisor, one
generally observes a sequence of events, which is
a linear extension of this partial order, relying on
the so-called causal observation assumption. This

3 Silent tiles are excluded, for simplicity.

assumption states that if t ≺ t′ in ω, one cannot
observe σt′ before σt.

We thus reduce observations to a tuple (L1, . . . ,
LN) of sequences of events, one per component
Si : relations ≺ between sequences are unknown,
and each Li is a linear extension of the “true”
(L,≺), restricted to Si (fig. 5, right). Therefore, a
run ω is compatible with (L1, . . . ,LN) iff there
exists a linear extension of φ(ω) that matches
some interleaving of sequences L1, . . . ,LN .

4. DISTRIBUTED DIAGNOSIS
ALGORITHMS

We now assume that the dynamic system S fac-
torizes into S1| . . . |SN , and has produced some
unknown puzzle. Observations L = (L1, . . . ,LN),
with Li = (σi,1, . . . , σi,Ti), have been collected in
a distributed manner, with one local supervisor
associated to each component Si. The objective of
this section is to solve the diagnosis problem with
a distributed algorithm. As already suggested in
section 2, the architecture of this distributed algo-
rithm parallels the structure of the system itself :
each local supervisor is performing some computa-
tions and exchanges messages with its neighbors.
Let us stress the fact that the supervisor of compo-
nent Si only knows the local observation sequence
Li, the model Si, who are its neighbors and what
are the common variables with this neighbors.
Most building blocks of this distributed procedure
were presented in section 2. We focus now on the
missing part, which concerns specific aspects of
the diagnosis problem see also (Fabre et al., 00).

4.1 Centralized diagnosis, single player

Let us first ignore the factorization of S and as-
sume all transition labels are collected by a global
supervisor into the sequence L = (σ1, . . . , σT),
still assuming causal observation. Let O denote
the (possibly infinite) set of all trajectories of S,
and O(t) the subset of trajectories which have a
prefix matching the first t observations in L. For
convenience, we handle O(t) as this set of prefixes,
suggesting that the rest of the trajectory is free.
Obviously, O(t + 1) ⊂ O(t) : collecting more and
more observations amounts to recursively filtering
(or constraining) O. And prefixes in O(t + 1)
are clearly obtained by connecting a new tile t
to elements of O(t), provided σt = σt+1. We
rather adopt in algorithm A2 an “asynchronous”
construction of O(T), which updates a set A of
prefixes with different lengths. Let |ω| represent
the number of tiles in ω, we define the extension
of a single trajectory by

Ext(ω) = {ω · t : t ∈ T , ω � t, σt = σ|ω|+1} (5)

Algorithm A2

(1) initialization : A = {(v) : v ∈ I}
(2) repeat until ∀ω ∈ A, |ω| = T

(a) choose ω ∈ A such that |ω| < T
(b) replace ω by its extension

A :=A \ {ω} ∪ Ext(ω)

(3) define O(T) as A

4.2 Centralized diagnosis, two players

In the distributed case, (5) cannot be performed
at once since a local supervisor only knows part
of the tile set T . So it must collaborate with
other supervisors and perform (5) by parts. Let
us partition T into two sets TA, TB associated
to players A and B respectively. We consider
the standpoint of player A : only tiles of TA are
observed in L, hence tiles of TB are silent for A.
We denote by ExtA(ω) operation (5) where tiles
are taken in TA instead of T , and by |ω|A the
number of tiles of TA in ω. Trajectories already
extended by player A are not discarded but stored
in a “waiting set” W , in order to allow possible
extensions by player B.

Algorithm A3 (Player A)

(1) initialization

A = {(v) : v ∈ I}, W = ∅

(2) repeat until ∀ω ∈ A, |ω|A = T and player B
has sent “finished”
(a) on reception of message ω ; ω′ from B,

A :=A ∪ {ω′}

(b) otherwise,
(i) choose ω ∈ A : |ω|A < T , if any
(ii) replace ω by its extension

A :=A \ {ω} ∪ ExtA(ω)

W :=W ∪ {ω}

(3) set O(T) = A
Message ω ; ω′ means that ω has been extended
into ω′ by player B. The extension policy of B is
unspecified, but B must read prefixes in W ∪ A,
extend them by one tile only, and eventually stop.
Observe that B does refine the current solution
set A ∪ W by connecting a tile to ω, but this
refinement remains “hidden” until the prefix ω
is removed form W , i.e. recognized as completely
extended. In A3, removals occur all at once at the
end, when B declares its termination : trajectories
in W are finished for both A and B.

4.3 Distributed diagnoser

We now gather all elements in view of a dis-
tributed diagnosis algorithm. The “players” are

naturally the supervisors of components Si, which
refine trajectories in order to satisfy their local
observations Li. But for a matter of efficiency,
runs of S are handled under their factorized form,
thanks to the following result.

Theorem 1. For S factorizing into S1| . . . |SN , let
O be the set of trajectories of S, and Oi be
the restriction of these trajectories to variables
of component Si : Oi = ΠVi(O). Let us associate
a variable V H to every variable V ∈ V , with
DV H = DV ×T ∗ ; a value of V H denotes a history
on V . Let S̄ (resp. S̄i) be the (non dynamic)
system (VH ,O) (resp. (VH

i ,Oi)), then one has
the factorization S̄ = S̄1| . . . |S̄N . The same result
holds for O the set of trajectories matching some
observation L = (L1, . . . ,LN).

The reader is referred to (Fabre et al., 01) for a
proof. Thanks to theorem 1, the solution set O
can be obtained under its factorized form, the
supervisor of Si being in charge of constructing
Oi. Each Oi is obtained by recursively refining
a current set of projections ωVi , either by local
extensions in Si, in order to satisfy observation
Li, or by incorporating constraints due to the
neighbors. Let us denote by |ωVi |i the number of
tiles of Ti in ωVi , and by Exti(ωVi) the extension
with tiles of Ti matching the next observation
in Li. Just like messages from player B in A3

section 4.2, every extension of ωVi into ω′
Vi

must
be communicated to neighbors. But only changes
on shared variables are necessary to a neighbor
Sj . Therefore extentions ωVi ; ω′

Vi
in Si generate

the update messages ωVi,j ; ω′
Vi,j

towards Sj . By
symmetry, on reception in Si of such a message
from Sj , every current solution ω̄Vi with the right
projection on common variables must accept the
update :

Upd(ω̄Vi ; ωVi,j → ω′
Vi,j

) =
{
∅ if ω̄Vi,j 6= ωVi,j

ω̄′
Vi

otherwise

where ω̄′
Vi,j

= ω′
Vi,j

, ω̄′
Vi\Vj

= ω̄Vi\Vj

By organizing these operations, one gets

Algorithm A4 (Supervisor of Si)

(1) initialization

Ai = {(vi) : vi ∈ Ii}, Wi = ∅

(2) repeat until global-end is detected
(a) on reception of message µ from Sj

(i) update the current solution set

Ai :=Ai ∪ Upd(Ai ∪Wi ; µ)

(ii) to every other neighbor Sk, propa-
gate message µ reduced to Vi,k

(b) on decision to extend a local trajectory,
(i) select ωVi ∈ Ai : |ωVi |i < Ti, if any

(ii) replace ωVi by its extension

Ai :=Ai \ {ωVi} ∪ Exti(ωVi)

Wi :=Wi ∪ {ωVi}

(iii) send the corresponding updates to
neighbors Sj , j ∈ N(i)

(c) set the boolean value of local-end

local− end= [∀ωVi ∈ Ai, |ωVi |i = Ti]

(d) if local-end, start detecting global-end
(3) set Oi(Ti) = Ai

global-end is characterized by the fact that all
supervisors are in the local-end state, and no
more message is in circulation, which could reac-
tivate a supervisor. This is a classical distributed
termination detection.

Observe that A4 is identical in nature to A1

provided sets Oi are allowed to evolve in time.
Only the construction of messages differ : in A1

messages propagate all possible configurations (of
shared variables), while in A4 they only propagate
changes in these sets of configurations.

5. CONCLUSION

We have proposed a general framework making
the link between dynamic systems and graph-
ical models, which greatly opens the range of
affordable processings for large systems. Many
variations are possible, including distributed state
estimation, maximum likelihood estimation (for
stochastic systems, non presented here), etc. The
promising turbo algorithms have also natural
counterparts in this setting. Finally, let us men-
tion that a prototype based on this framwork
is being experimented for failure diagnosis in
telecommunication networks.

6. REFERENCES

Benveniste, A., B.C. Levy, E. Fabre and P. Le
Guernic (95). A calculus of stochastic sys-
tems: specification, simulation, and hid-
den state estimation. Theo. Comp. Sci.
(152), 171–217.

Esparza, J. and S. Romer (99). An unfolding algo-
rithm for synchronous products of transition
systems. In: proc. CONCUR’99. Vol. 1664 of
LNCS.

Fabre, E., A. Benveniste and C. Jard (01). Dis-
tributed algorithms for bayesian networks of
dynamic systems. in preparation.

Fabre, E., A. Benveniste, C. Jard, L. Ricker and
M. Smith (00). Distributed state reconstruc-
tion for discrete event systems. In: proc. of
39th Conf. on Detection and Control, Sydney.

Pearl, J. (86). Fusion, propagation, and structur-
ing in belief networks. Art. Intel. 29, 241–288.

