UML Reflections

Frangois Pennaneac’h, Jean-Marc Jézéquel,
Jacques Malenfant, and Gerson Sunyé

IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, France
email: pennanea, jezequel,malenfant,sunye@Qirisa.fr

Abstract The UML shares with reflective architectures the idea that
self-definition of languages and systems is a key principle for building and
maintaining complex systems. The UML is now defined by a four-layer
metalevel structure, enabling a flexible and extensible definition of mod-
els by metamodels, and even a self-description of the meta-metamodel
(the MOF). This metalevel dimension of UML is currently restricted to
structural reflection. But recently a new extension to the UML, called
the Action Semantics (AS), has been proposed for standardization to
the OMG. This paper explores how this proposed extension brings a
behavioural reflection dimension to the UML. Indeed, we show that it
is not only possible but quite effective to use the AS for manipulating
UML models (including the AS metamodel). Besides elegant conceptual
achievements, such as a metacircular definition of the AS, reflective mod-
eling with the AS leverages on the UML metalevel architecture to provide
the benefits of a reflective approach, in terms of separation of concerns,
within a mainstream industrial context. A complete model can now be
built as an ideal model representing the core concepts in the application,
to which non-functional requirements are integrated as fully traceable
transformations over this ideal model. For example, this approach paves
the way for powerful UML-defined semantics-based model transforma-
tions such as refactoring, aspect weaving, application of design patterns
or round-trip engineering.

1 Introduction

The UML (Unified Modeling Language) shares with reflective architectures the
idea that self-definition of languages and systems is a key principle for building
and maintaining complex systems. In its recent versions, the UML adopted a
four-layer metalevel structure, which has enabled a flexible and extensible defi-
nition of models through metamodels, and even a self-description of the meta-
metamodel. We concur with Bézivin and Lemesle [1] that this metalevel archi-
tecture is both a sign that models are now becoming first-class entities, but also
that modeling now challenges the role of programming as the central activity
in software development. But this metalevel dimension of the UML is currently
restricted to structural reflection, a restriction that, in our view, holds up this
mutation. Fortunately, new additions to the standard are now introducing be-
havioural reflection capabilities that will, again in our opinion, play a major role
in this software development shift.

% :Device
:Operator

+controls E——
<<actor>> Device
Operator
1 0.*| +start()
+stop()

Static Dynamic

/Q ControllingSite RemoteSite
e
:Operator

:Operator

Functional Physical

Figure 1. Uml Dimensions

Until recently, the UML lacked precise and formal foundations for several
constructs such as transition guard expressions or method bodies, for which it
resorted to semantic loopholes in the form of “uninterpreted” strings. Some tools
use general purpose programming languages or specific proprietary languages,
but yet this is a rather ad hoc and non-standard answer to the problem. Be-
cause this was hampering the acceptance of the UML in some industrial circles
(e.g., the aerospace or telecom industry), where the strong emphasis on the crit-
icality of software is coped with using precise behaviour description languages
and formal verification tools, the Action Semantics (AS) [10] has been proposed
for standardization to the Object Management Group (OMG). The AS aims
at filling this gap by providing means to annotate UML models with action
statements as well as a model of execution for these statements. The AS is intro-
duced as a metamodel integrated into the UML metamodel. Building over what
already exists in the CCITT Specification and Description Language (SDL) com-
munity [6,11], the integration of the Action Semantics into the UML standard
should promote interoperability among tools, and allow for executable modeling
and simulation, as well as full code or test cases generation.

This paper explores how this proposed extension brings a behavioural reflec-
tion dimension to the UML. While the purpose of the AS is to annotate models
with executable specifications for applications source code, we show in this paper
that it is not only possible but quite effective to use the AS for manipulating
UML models, including even the AS metamodel. Besides providing grounds for
neat conceptual achievements, such as a metacircular minimal definition of the
AS itself, reflective programming with the AS leverages on the UML metalevel
architecture (the UML metamodel is itself an UML model) to provide the ben-
efits of a reflective approach within a mainstream industrial context. Indeed, a
model can now be built as an ideal model representing the core concepts in the
application, to which non-functional requirements are integrated as transforma-
tions over this ideal model.

This novel approach to metamodeling builds on the strong commitment to-
wards separation of concerns that UML also shares with approaches such as AOP
(Aspect Oriented Programming) and SOP (Subject Oriented Programming).
With its nine views which are like projections of a whole multi-dimensional sys-
tem onto separate plans, some of them being orthogonal, the UML indeed pro-
vides the designer with an interesting separation of concerns, covering four main
dimensions of software modeling (see Fig. 1): functional (use cases diagrams ex-
press the requirements), static (class diagrams), dynamic (statecharts, sequence
diagrams for the specification of behavioural aspects) and physical (implementa-
tion diagrams). By applying the AS reflectively to models and metamodels, we
have been able to show how designers can carry on, within the UML notational
context, activities such as behaviour-preserving transformations [23] (see § 4.2),
design pattern application [12] (§ 4.3) and design aspects weaving [15] (§ 4.4).

The rest of the paper is structured as follows. Section 2 recalls the principles
of the UML metalevel architecture ; besides explaining the architecture itself, this
section also discusses the parallel with well-known object-oriented programming
languages metalevel architectures. Section 3 reviews the Action Semantics as it
is currently submitted for standardization at the OMG and it explains how it
can be used for reflective modeling. Section 4 shows the interest of using the
Action Semantics at the metamodel level for specifying and programming model
transformations in several contexts. Related work are discussed in Section 5, and
a conclusion summarizes our contributions.

2 The UML with the Action Semantics

2.1 From modeling to metamodeling

The UML is all about defining models for executable software artifacts, and
more precisely objects. Commonly, the UML is used to define models for ob-
jects that will eventually execute on some computer to carry on a computation.
A model usually abstracts implementation details of executable objects into
entities, which are depicted using a graphical notation and, more and more im-
portantly, a standard XMI serialization format. On the other hand, a model can
provide more information that a crude program, mainly by representing and by
giving details about relationships between objects, which are implemented by
only a few expressible relationships in programming languages (client, inheri-
tance, sometimes agregation and a few others).

If models can describe executable objects and their relationships, it has been
soon recognized that they could as well describe other artifacts, and more pre-
cisely models. After all, models are built of entities and relationships. Hence,
models of models, or metamodels, can describe what kinds of entities and rela-
tionships are found in models. Without surprize, metamodels being themselves
models, the idea of describing them using metametamodels comes immediately
to minds. To avoid a potential infinite metaregression, a fixed-point must be
sought to define precisely and completely a modeling architecture.

2.2 A standard four-layer metalevel architecture

The UML follows a four-layer modeling architecture, each layer being a model
of the layer under, the last one being a model of itself. The first layer, called M,
holds the executable (“living”) entities when the code generated from the model
is executed, i.e. running objects, with their attribute values and links to other
objects. The second layer M; is the modeling layer. It represents the model as
the designer conceives it. In UML, this is the place where well-known classes,
associations, state machines,... are defined (via the nine views, quoted above).
The running objects are “instances” of the classes defined at this level. The
third level My is the metamodel level, i.e. a description of what a syntactically
correct model is. Finally the fourth level M3 is the meta-metamodel level, i.e. the
definition of the metamodel syntax, such as the syntax of the UML metamodel.
UML creators chose a four-layer architecture because it provides a basis for
aligning the UML with other standards based on a similar infrastructure, such
as the widely used Meta-Object Facility (MOF).

This four-level architecture brings a form of structural reflection to the UML.
Each level defines the syntax and semantic constraints of models one level be-
low. Defining UML as a metamodel allows for easy extension of UML to serve
specific modeling needs, while the MOF serves as a unique root to define sev-
eral modeling languages, perhaps adapted to specific application areas. Bézivin
and Lemesle have explored the underpinnings and consequences of this met-
alevel architecture and predict a mainstream role to modeling in future software
development processes [1].

In terms of structural reflection, however, the UML architecture is somewhat
restricted. As the major restriction, notice that the relationship between levels
is neither explicitly defined nor explicitly used in the definition of UML [1]. This
relationship is not precisely instantiation, since it is a many-to-many relation-
ship, many elements of one level usually concur to the definition of one or more
elements one level below. Moreover, a more traditional instantiation relationship
can be depicted between elements of adjacent levels, such as between classes de-
fined at level M; and the objects at level My. Bézivin and Lemesle suggest the
term “based-on” to name this relationship between levels, a convention we adopt
here. Again, we concur with these authors that the two relationships, “based-
on” and “instance-of”, will have to be reified into UML and the MOF for this
metalevel architecture to fully bear fruits.

2.3 Comparisons with other reflective architectures

Unsurprisingly, the metalevel architecture of UML is reminescent of several well-
known architectures in reflective languages and systems. Loops [3] has a meta-
class/class/instance architecture where the metaclass Metaclass is the root of
the instantiation hierarchy, playing a role similar to the one of the MOF. The
metaclass Class defines the structure and behaviour of a Loops class and there-
fore plays a role similar to the one of the UML metamodel, which defines the
syntax of a UML model.

The question of whether the UML four-level architecture can collapse into
three levels, in a similar way as Briot and Cointe did for Loops with the ObjVLisp
architecture [4,5,9] comes immediately to the mind; we will return to this next.
Maintaining a four-level architecture though has the strong advantage of allowing
many different metamodels that still share the same basis for their definition (see
11).

The fact that many different model elements concur to define one particu-
lar object is also reminescent of metalevel architectures for concurrent object-
oriented languages such as CodA [21], among others. The organization of these
model elements in nine views is similar to the multi-model reflection framework
of AL-1/D [22], which has been adopted by many object-oriented reflective mid-
dleware, such as OpenORB [2], and operating systems, such as pChoices [27].

2.4 Metamodeling in practice

As models are becoming growingly complex, the use of sophisticated tools to
build and manipulate them is now mandatory in industrial contexts. Thanks
to the metalevel architecture of UML, more and more of these tools are built
around this reflective representation of models and metamodels. For practical
reasons though, full-fledged four-level tools are still rare. One of the potential
simplification when the tools choose to specialize themselves into UML modeling
is to collapse the level M3 onto the level My, as we have pointed out before.

Although there is no strict one-to-one mapping between all of the MOF
meta-metamodel elements (M3z) and the UML metamodel elements, the two
models are interoperable. In fact, the UML core package metamodel and the
MOF are structurally quite similar. A reason explaining this similarity is that
self-described UML metamodels have been proposed before the standardization
of the MOF. Adding the obvious influence of UML on the design of the MOF
explains a relatively tight compatibility between a subset of the UML metamodel
and a subset of the MOF. This design implies that the UML metamodel (a set
of class diagrams) is itself a UML model (pretty much in the same way that
the metaclass Class in ObjVlisp is self-describing and therefore an instance of
itself). The Fig. 2 shows this inclusion. The chief interest of this property, as tools
are concerned, is the fact that tools built to manipulate UML models can very
well, and indeed do apply equally well to metamodels, a specificity we heavily
rely on for our study, as we will see shortly.

3 The Action Semantics and its reflective properties

3.1 Motivations for an Action Semantics in UML

Traditional modeling methods which do not have support for any action lan-
guage to specify the behaviour of model elements have focused on separating
analysis and design, i.e. the what the system has to do and the how that will
be achieved. If this separation clearly has some benefits, such as allowing the

a:Foo b:Foo MO

c:Foo
is instance of
M1
Foo
is instance of
M2
StateMachine [tehavior ity e e
Class P AssociationEnd
+child
2..% +connection
. +parent
+outgoing
State Transition A (ati
ssociation
+incoming
PseudoState FinalState

—- afinal state cannot have any outgoing transition
self.outgoing—>size=0

is instance of

1
Class |yPe AssociationEnd
+child

2..*| +connection
+parent

Association

Figure 2. UML layers (partial and simplified)

designer to focus on system requirements without spreading itself too thin with
implementation details, or allowing the reuse of the same analysis model for dif-
ferent implementations, it also has numerous drawbacks. The main one is that
this distinction is a hard job in practice, not to say impossible: the boundaries
are vague; there is no criteria for deciding what is analysis, and what is not. Re-
jecting some aspects from analysis makes it incomplete and imprecise; trying to
complete it often force to mix some how issues for describing the most complex
behaviour.

Therefore, three reasons essentially drive the inclusion of an Action Semantics
into UML:

1. First and fundamental, the incompleteness in models due to the inability to
state often crucial points about the behaviour of model elements becomes a
major shortcoming in many contexts.

2. Second, a consequence of the first, the inability to check models early in
the software development process, something common now in some critical-
software industries using the SDL and related tools, is hampering the accep-
tance of UML outside the traditional circles of business-management appli-
cations.

3. Third, as mentioned earlier, the UML pushes towards a shift of software
development efforts from programming to modeling, and a crucial technology
to enable this shift is code generation directly from models, which again needs
a complete specification of behaviour into models.

UML is quite crude at expressing behaviour. To date, no really defined el-
ement in the UML could specifically provide means for such expression. UML
allows user to include expressions, but only in the form of so-called “uninter-
preted” strings, for which no semantics is given. Interpretation is left to the user.
This is true for example in state diagrams, where the specification of a guard on
a transition is conceptually realized by a boolean expression, but nothing within
UML metamodel allows the designer to express such a condition on the guard
and check for at least this basic semantic constraint. This lack of more formal
foundations for important behavioural aspects of models is experienced by more
and more users.

Also annoying is the fact that models are neither executable nor checkable,
simply because they are incompletely specified in the UML. This makes it im-
possible to verify and test early in the development process, something common
now in some critical-software industries using the SDL and related tools. Model
checking techniques, for example, would be inapplicable to UML models if el-
ements as crucial as guards on transition cannot be expressed with a precise
semantics.

Finally, code generation from models is a feature of many commercial tools
today. Although the generation of code templates to be filled by programmers
already boosts productivity, few projects never come back to models during the
implementation. When they do, keeping models and source code in synchroniza-
tion is more and more a burden. Therefore, the ideal would be to work out the
application by modeling from end to end. That is, the model should be defined

with enough precision, including behaviour, to enable the generation of the entire
application source code, therefore collapsing all problems due to the dual evolu-
tion of models and source code. Maybe less important, but increasingly present
in tools, the ability to simulate, that is to execute, the model prior programming
also requires completely specified models.

Faced with these shortcomings, tool providers came with several ad hoc solu-
tions, such as adopting a particular programming language to write behavioural
expressions in otherwise “uninterpreted” strings (e.g., Java or C++). This kind
of ad hoc solutions merely and inevitably trade incompleteness for inconsisten-
cies in UML models when different languages are adopted in different models.
Indeed, the interpretation is delegated to the modeling tool, therefore breaking
the interoperability of models, a hardly gained property through years of long
and painful unification and standardization processes.

The Action Semantics proposal aims at providing modelers with a complete,
software-independent specification for actions in their models. The goal is to be
able to use UML as an executable modeling language [13], i.e. to allow designers
to test and verify early and to generate 100% of the code if desired. It builds on
the foundations of existing industrial practices such as SDL, Kennedy Carter’s
[16] or BridgePoint [24] action languages!. But contrary to its predecessors,
which all were proprietary, the Action Semantics aims at becoming an OMG
standard, a common base and formalism for all the existing and future action
languages (mappings for existing languages to Action Semantics are proposed).

3.2 A quick reference to the AS
The Action Semantics proposal is based upon three abstractions:

— A metamodel: it extends the actual UML1.4 metamodel, augmenting the un-
interpreted items with a precise syntax of actions (see Fig 3). New subclasses
of metaclass Action are introduced to cope with the usual programming con-
structs : primitives action such as the creation, deletion or modification of
objects, creation or deletion of links between objects, control structures or
the sending of a message are defined. Mechanisms for grouping actions (into
procedures, for instance) while specifying their partial order of execution
are provided. The Action Semantics proposal for the UML does not enforce
any notation (i.e. surface language) for the specification of actions. This is
intentional, as the Action Semantics goal is certainly not to define a new
notation, or to force the use of a particular existing one. But the Action
Semantics was conceived to allow an easy mapping of classical languages
such as Java, C++ or SDL2. Thus, designers can keep with their favorite
language, without any learning overhead for a new one.

— A model of execution: it is the UML model of a virtual machine for executing
UML specifications. It defines abstractions for modeling the evolutions of the

L all the major vendors providing an action language are in the list of submitters.
2 Some of these mappings are illustrated in the AS specification document [10].

Method | 0-1 0.1/ procedure |! 0. Expression

o
+body language:String
body:Strin
0.1 y g
+action
Action

Figure 3. Action Semantics immersion into the UML

objects in a system at runtime. The life of an object is modeled by its history,
i.e. a sequence of snapshots. Each snapshot shows the value of attributes and
links to other objects, and is immutable. Each change to an object, either
to one of its attribute values or links, yields a new snapshot in the history.

— A semantics of actions: the execution of an action is precisely defined with
a life-cycle which unambiguously states the effect of executing the action
on an instance of the execution model. Every life-cycle is made of basic
steps of execution called productions. A production has a precondition and
a postcondition. The precondition is evaluated with respect to the current
snapshot. When it is true, execution proceeds to the next step in the life-cycle
and a new snapshot validating the properties stated in the postcondition is
computed.

3.3 Making the AS reflective

The AS was originally conceived for precisely specifying the behaviour of models.
We advocate the extension of its scope beyond this basic role. An UML execu-
tion engine, i.e. an implementation of the AS model of execution is originally
dedicated to the manipulation of My instances of UML models. Such manipula-
tions are specified at the M; level, as part of the whole model of the application.
But since both (1) the UML meta-model and (2) the UML execution model for
the AS are themselves UML models, we can use the AS to specify the evolution
of these models:

— In the first case, thanks to the four-level architecture of the UML, an AS
specification would manipulate instances of M level, i.e. UML models. Then,
an AS specification describes a model transformation (meta-programming).

— In the second case, an AS specification would manipulate instances of the
execution model, i.e. the objects at runtime (a representation of M, level
called a snapshot). Then, the AS specification describes the transformation
from one snapshot to the resulting one, that is the semantics of the AS itself
(reflexivity applied to the execution engine specification).

We propose to combine these two approaches into reflexive meta-modeling tools:
the same execution engine would then apply to both the execution of metamodel
transformations and the execution of models.

Before detailling the use of the AS for metamodel transformations in the
next section, let us now explore the interests of a reflexive definition for the
AS. First it would help to structure the current AS definition document (more
than 250 pages long) around a kernel of reflexively defined primitive actions and
thus minimize the amount of work needed for implementations. These primitive
actions fall in the following categories:

— reading and writing of attributes

— creation and deletion of objects

— creation, reading and deletion of links between objects

— communication among objects (call action, signal, exceptions)

These primitive actions are defined with production rules specifying the transi-
tion between two snapshots, which are themselves My level UML models, hence
the meta-circular definition. Other AS actions could then be defined operationaly
based on this kernel of primitive actions. For instance, SynchronousInvocation-

+content
Packet ObjectIdentity
+status:enum(ready,transit,executing,complete} 0.1 1
1 | +target
. 0.*
InvocationPacket

1

SynchronousInvocationPacket

+requester

Synchr InvocationExecution

0..1 1

Figure 4. SynchronousInvocationAction model of execution

Action is defined as an action that sends a message to a target object and blocks
until it receives an answer. The semantics of execution for this action is (par-
tially) described in Fig. 4 and completed with the following production extracted
from the specification:

Production 1 : synchronous invocation action generates a synchronous
invocation packet and blocks itself.

precondition: self.status = #ready

postcondition: self.status@post = #executing -- put call in executing

-- state while subordinate execution proceeds.
packet:SynchronousInvocationPacket.isNew and -- create a call packet
packet.requester@post=self and

packet.status@post= #ready and

packet.target@post=self.input_target() and
packet.content@post=self.input_argument

It is obvious to deduce a sequence of AS primitive actions which creates and
initializes a packet conforming to this postcondition.

packet := new SynchronousInvocationPacket -- a CreateObjectAction
packet.requester := self -- a CreatelLinkAction

packet.status := #ready -- a WriteAttributeAction

packet.target := self.target -- a ReadLinkAction then a CreatelLinkAction
packet.content := self.argument -- n ReadLinkActions, n CreateLinkActions

Until now, this has been left out of the OMG specification, where productions
focus on giving a precise meaning to the execution of actions, putting aside
the building of compliant and efficient execution engines. Productions do not
explicitly state how to compute the next snapshot in an object history and thus
are an inappropriate formalism for tools implementors. This idea could also be
used to let the user define new actions based on primitive ones, thus extending
the AS.

Finally, we propose to give the programmer the full power of UML reflexivity
by providing My level entities with a link to the M; level, and M; level entities
a link to M5 level in such a way that she can freely navigate between the various
levels of modelisations, both at runtime and at design time.

4 Leveraging the UML Reflexivity

In this section, we discuss why and show how to use the behavioural reflection
introduced by the Action Semantics to implement model transformations. We
present three different uses for this approach: implementing refactorings, apply-
ing design patterns and weaving design aspects.

4.1 Separating concerns: codesign

Using the UML meta-modeling architecture and the Action Semantics for speci-
fying transformations is appealing: the development of meta-tools capitalizes on
experience designers have gained when modeling UML applications. Some recur-
rent problems suddently vanish: portability of transformations is ensured for all
UML-compliant tools with access to the metamodel, there is no learning-curve
for the writing of new meta-tools, as it is pure UML and any development pro-
cess supporting the UML applies to the building and reuse of transformations
[18]. This paves the way to off-the-shelf transformation components.

We strongly believe that this use of the Action Semantics will change the
traditional software development process. More concretely, the Action Seman-
tics is an important step towards the use of UML in an effective development
environment, since it offers the possibility of enacting early design models and
to evolve or refine it until its implementation. The development approach we
propose here starts with an early design model, created by the designers from
an analysis model. This model is completely independent of the implementation

environment, it assumes an “ideal world”, where the processing power and the
memory are infinite, there is no system crash, no transmission error, no database
conflicts, etc. Since this model encloses Action Semantics statements, it can be
enacted by the Action Semantics machine and validated. Once the validation is
finished, the designer can add some environment-specific aspects to the design
model (database access, distribution), apply design patterns and restructure the
model using design refactorings.

As already outlined, transformations rank in two categories: the ones related
to the application domain and those involved in generating efficient implementa-
tions for the target platform. The following example illustrates the difference: if
the designer knows a collection of objects has to be notified when another object
changes, then she annotates the corresponding classes as collaborating into an
Observer pattern [12]. A generic transformation supporting this pattern adds
an update method to every observer. Specific transformations for implementing
the pattern offer designers choices that fit implementation trade-offs: execution
speed vs. memory footprint, point-to-point notification vs. broadcasting, depend-
ing on requirements on the underlying hardware. This last transformation is not
at all related to the application, and must not distract the designer from its
application refinement.

The two categories are not exclusive : some transformations bridge the appli-
cation domain and the implementation domain, thus falling into both categories.
These transformations perform the “weaving” of the two aspects into a single
implementation model.

4.2 Design Refactorings

Refactorings [23] are behaviour-preserving transformations, used to improve the
design of object-oriented programs. We believe that refactorings are an impor-
tant artifact to software development, and we are interested in bringing them
to the design level by means of a UML tool. The implementation of refactor-
ings in UML is an interesting task, since design refactorings — as opposed to code
refactorings — should work with several modelling elements shared among several
views of a model. This is also a challenge, since some refactorings (namely mov-
ing features) are difficult to implement since we must take into account different
UML elements, such as OCL constraints and state charts.

The Action Semantics represents a real gain for refactoring implementation,
not merely because it directly manipulates UML elements, but also because of
the possibility of combining it with OCL rules to write pre and post-conditions.
More precisely, as refactorings must preserve the behaviour of the modified ap-
plication, they cannot be widely applied. Thus, every refactoring ought to verify
a set of conditions before the transformation is carried out.

Below we present an example of a simple refactoring, the generalization of
equivalent Attributes. In the UML metamodel, an Attribute belongs to a Class,
its Owner. It may have Sisters, the children of its owner. In addition to the
equivalence, which must be satisfied for exactly one Attribute of each sister,
two other preconditions should be satisfied. First, private Attributes can not be

moved, since they are not visible outside the scope of the owner and are not
inherited. Second, the owner must have exactly one parent. These conditions
and the transformation itself are defined in OCL and in Action Semantics as
follows?:

Attribute :: generalize
pre:
self . visibility < > private and
self .owner.parent.size = 1 and
self .owner.parent.child —forAll(aClass:Class|
aClass. feature —select(anAttr]|
anAttr.oclIsKind Of(Attribute)) —exists(a|
a.isBasicEquivalentTo(self)))
actions:
let newAttribute := self.copy()
self .owner.parent.addFeature(newAttribute)
self .owner.parent.child —forAll(aClass:Class|
aClass. feature —select(anAttr|
anAttr.oclIsKindOf(Attribute) and
anAtrr.isBasicEquivalent To(self)) —for All(each | each—delete()
post:
self @pre.owner.parent.features—exists(a:Attribute|
a.isBasicEquivalentTo(self))) and
not self @pre.owner.parent.child—forAll(aClass:Class|
aClass. feature—select(anAttr: Attribute|
anAttr.oclIsKind Of(Attribute)) —exists(a: Attribute|
a.isBasicEquivalentTo(self)))

An OCL expert might rightfully notice that the operation child is not defined
neither in the OCL documentation nor as an additional operation in the UML
metamodel. We have defined it symmetrically to the parent operation, defined
for Classes.

4.3 Design Patterns

Another interesting use for Action Semantics is the application of Design Pat-
terns, i.e. the specification of the proposed terminology and structure of a pat-
tern in a particular context (called instance or occurrence of a pattern). In other
words, we envisage the application of a pattern as a sequence of transformations
that are applied to an initial situation in order to reach a final situation, an
explicit occurrence of a pattern.

This approach is not, and does not intend to be, universal since only a few
patterns mention an existing situation to which they could be applied (see [7]
for further discussion on this topic). In fact, our intent is to provide designers
with metaprogramming facilities, so they are able to define (and apply) their

% Since the Action Semantics does not have an official surface language, we adopt an
“OCL-based” version in our examples.

own variants of known patterns. The limits of this approach, such as pattern
and trade-offs representation in UML, are discussed in [26].

As an example of design pattern application, we present below a transforma-
tion operation that applies the Proxy pattern. The main goal of this pattern is
to provide a placeholder for another object, called Real Subject, to control access
to it. It is used, for instance, to defer the cost of creation of an expensive object
until it is actually needed:

Class :: addProxy
pre:
let classnames = self.package. allClasses —collect(each : Class | each.name) in
(classnames—excludes(self.name+’Proxy’) and
classnames—excludes(’Real’ +self.name))
actions:
let name := self.name
let self .name := name.concat(’Proxy’)
let super :=
self . package.addClass(name,self.allSuperTypes(),{} —including(self))
let real :=
self . package.addClass(’Real’.concat(name),{} —including(super),{})
let ass := self .addAssociationTo(’realSubject’ real)
self .operations—forAll(op : Operation | op.moveTo(real))

This operation uses three others (actually, refactorings), that will not be
precisely described here. They are however somewhat similar to the remove-
Class() operation presented above. The first operation, addClass(), adds a new
class to a package, and inserts it between a set of super-classes and a set of
subclasses. The second, addAssociationTo(), creates an association between two
classes. The third, moveTo(), moves a method to another class and creates a
“forwarder” method in the original class.

This transformation should be applied to a class that is to play the role of
real subject . Its application proceeds as follows:

. Add the 'Proxy’ suffix to the class name;

. Insert a super-class between the class and its super-classes;

. Create the real subject class;

Add an association between the real subject and the prozy

. Move every method owned by the prozy class to the real subject and create
a forwarder method to it (move methods).

As we have explained before, this is only one of the many implementation
variants of the Proxy pattern. This implementation is not complete, since it
does not create the load() method, which should create the real subject when
it is requested. However, it can help designers to avoid some implementation
burden, particularly when creating forwarder methods.

4 Patterns are defined in terms of roles, which are played by one or more classes in its
occurrences

4.4 Aspect Weaving

Finally, we would like to show how Action Semantics can support the task of de-
veloping applications that contain multiple aspects. Aspects (or concerns) [17,28]
refer to non-functional requirements that have a global impact on the implemen-
tation. The approach used in dealing with this is to separate these aspects from
the conceptual design, and to introduce them into the system only during the
final coding phase. Ultimately, the merging of aspects should be handled by an
automated tool. In our example, we attempt to show how aspects can be weaved
as early as the design level through model transformation [14], using the Action
Semantics to write the transformation rules.

<<persistent>> <<persistent>>
: CustorTler = 1 Adgress
first_name: String streetl: String

. +permanent_residence .
last_name: String P - stree2: String

ss_no: String 10 0.1 postcode: String

+correspondence town_city: String
country: String

10

<<persistent>>
10 Account

number: String

1
+debit

10

<<persistent>>

Check
Savings External Checking check_no: String
1 0.y |amount: Float
interest_rate: Float bank_ref: String < +outstanding

Figure 5. Information Management System for Personal Finance

The class diagram in Fig. 5 illustrates a model of a bank’s personal-finances
information-management system. In the original system, the accounting infor-
mation was stored in a relational database and each class marked with the “per-
sistent” stereotype can be related to a given table in the database. The aim of
this re-engineering project is to develop a distributed object-oriented version of
the user front-end to support new online access for its customers. One of the non-
functional requirements is to map these “persistent” objects to the instance data
stored in the relational database. The task involves writing a set of proxy classes
that hide the database dependency, as well as the database query commands.
An example of the required transformation is illustrated by the model in Fig. 6.
In this reference template, the instance variable access methods are generated
automatically and database specific instructions are embedded to perform the
necessary data access.

<<persistent>> PState_Check Incarnation_Check
Check

Ton: 1 1 | get_check_no(): String 1 1| get_check_no(): String
check_no: String set_check_no(a_no: String) o set_check_no(a_no: String)
amount: Float *Pstate | gt amount(): Float get_amount(): Float

set_amount(a_amount: Float) set_amount(a_amount: Float)

Figure 6. Persistence proxies and access methods

Since the re-engineering is carried out in an incremental manner, there is a
problem with concurrent access to the database during write-back commits. The
new application must cooperate with older software to ensure data coherence. A
provisional solution is to implement a single-ended data coherence check on the
new software. This uses a timestamp to test if data has been modified by other
external programs. If data has been modified since the last access, all commit
operations will be rolled back, thus preserving data coherence without having
to modify old software not involved in this incremental rewrite. Fig. 7 shows
the template transformation required. It adds a flag to cache the timestamp and
access methods will be wrapped by timestamp-checking code.

PState_Check

<<persistent>> Incarnation_Check
Check flag_incarnation_cheque: Strin
y 1 1 9. — q 9 1 1 | get_check_no(): String
check_no: String get_check_no(): String o set_check_no(a_no: String)
amount: Float +pstate| set_check_no(a_no: String) - . 0

get_amount(): Float

get_amount(): Float set_amount(a_amount: Float)

set_amount(a_amount: Float)

Figure 7. Timestamp cache flag for concurrent data coherence

The metaprogram needed to generate the proxy classes of figures 6 and 7
is composed of several operations. The first one is defined in the context of a
Namespace (i.e. the container of UML modeling elements). It selects all classes
that are stereotyped 'persistent’ and sends them the implementPersistent() mes-
sage:

Namespace:: implementPersistentClasses
actions:
self . allClasses —select(each : Class| each.stereotype—notEmpty)—
select(each : Class | each.stereotype—first.name = ‘persistent’)—
forAll(each : Class | each.implementPersistent)

The implementPersistent() operation is defined in the context of a Class.
This operation will first create two classes, state and incarnation, and then
creates, in these classes, the access methods to its own stereotyped attributes.
This operation is defined as follows:

Class :: implementPersistent
actions:
let pstate :=
self . package.addClass(‘PState_’ . concat (pclass.name) ,{},{})
pstate.addOperation(‘Load’) ; pstate.addOperation(‘Save’)
self .addAssociationTo(pstate, 1, 1)
let incarnation :=
self . package.addClass(’ Incarnation_’.concat(pclass.name),{},{})
pstate.addCompositeAssociationTo(incarnation, 1, 1)
let attrs := self . allAttributes —
select(a : Attribute| a.stereotype—notEmpty)
attrs —select(a : Attribute | a.stereotype—first.name = ’getset’)—
forAll(a : Attribute |
pstate.createSetterTo(a); pstate.createGetterTo(a)
incarnation.createSetterTo(a); incarnation.createGetterTo(a))
attrs—select(a : Attribute | a.stereotype—first.name = ’get’)—
forAll(a : Attribute |
incarnation.createGetterTo(a); pstate.createGetterTo(a))
attrs—select(a : Attribute | a.stereotype—first.name = ’set’)—
forAll(a : Attribute |
pstate.createSetterTo(a); incarnation.createSetterTo(a))

The creation of the access methods is implemented by the createSetterTo()
and createGetterTo() operations. They are both defined in the Class context
and implement a similar operation. They take an Attribute as parameter and
create a Method for setting or getting its value. These operations use two other
operations, createMethod() and createParameter(), which are explained above:

Class :: createSetterTo(att : Attribute)

actions:
let newMethod := self.createMethod(’set_’.concat(att.name))
newMethod.createParameter(’a_’.concat(attrib_name), att.type, >in’)

Class :: createGetterTo(att : Attribute)

actions:
let newMethod := self.createMethod(’get_’.concat(att.name))
newMethod.createParameter(’a_’.concat(attrib_name), att.type, ’>out?)

The createMethod() operation is also defined in the Class context. Its role is
to create a new Method from a string and to add it to the Class:

Class :: createMethod (name : String)
actions:
let newMethod := Method.new
let newMethod.name := name
self .addMethod (newMethod)
let result := newMethod

Finally, the createParameter() operation creates a new parameter and adds
it to a Method, which is the context of this operation:

Method::createParameter(name : String, type : Class, direction : String)
actions:

let newParameter := Parameter.new

let newParameter.name := name

newParameter.set Type(type)

newParameter.setDirection(direction)

self .addParameter(newParameter)

let result := newParameter

The attractiveness of this approach is not immediately evident. Let us con-
sider a different implementation for the persistent proxy of Fig. 6. In the case
where there are composite persistent objects, it is possible to use a single per-
sistent state proxy for a composite object and all its components (see Fig. 8).
Through the use of metaprogramming, it is now possible to consider these differ-
ent implementation aspects independently from the implementation of concur-
rency. It enables the designer to conceptualize the modifications in a manageable
manner. Making changes to a model by hand as a result of a change in an imple-
mentation decision is not a viable alternative as it is laborious and error-prone.

<<persistent>>
Checking |1
Incarnation_Check
1 PState_Checking get_check_no():String
1 - 1 1| set_check_no(a_no:String)
. <@————————— get_amount():Float
+pstate get_number():String +incarnation_check 9 0

set_number(a_number:String set_amount(a_amount:Floaf)

get_check_no():Strring
set_check_no(a_no:String)

0.* |+outstanding

<<persistent>> L 1 get_amount():Float 1 Incarnation_Checking
Check +pstate| set_amount(a_amt:Float)

check no-String “+incarnation_checking | 9€t_number():String

amount:Float T set_number(a_number:String

Figure 8. Implementation template for shared proxy

Metaprogramming using the Action Semantics facilitates the revision of im-
plementation decisions by representing them at a higher level of abstraction. It
also leverages the execution machine for the Action Semantics by using it to
perform the model transformation.

5 Related work

Because the complete UML specification of a model relies on the use of uninter-
preted entities (strings), with no well-defined and accepted common formalism
and semantics, commercial UML tools often use metaprogramming languages to
manipulate models. This is the case, for instance, of Softeam’s Objecteering that

uses J (a “Java-like” language [25]), and of Rational Rose or Ilogix’ Rhapsody
which both use Visual Basic.

In the worst cases — that is for most of the modeling tools — these statements
are simply inserted at the right place into the code skeleton. The semantics of
execution is then given by the specification of the programming language. Unfor-
tunately, this often implies an over-specification of the problem (for example, in
Java, a sequential execution of the statements of a method is imposed). Verifica-
tion and testing are feasible only when the source code is available, far too late in
the development process. Moreover, the designer must have some knowledge of
the way the code is generated for the whole model to have a good understanding
of the implications of her inserted code (for instance, if you are using Rhapsody
and its C++ code generation tools, a knowledge of the way the tool generate
code for associations is required for using them in your own code).

At best, the modeling tool has its own action language, and then the model
may be executed and simulated in the early development phases, but with the
drawbacks of no standardization, no interoperability, and two formalisms for
the modeler to learn (the UML and the action language). The purpose of these
languages is similar to the one we look for when using the Action Semantics as
a metaprogramming language. There are, however, several advantages in favor
of a standard Action Semantics. Users of these tools have toneed not learn yet
a new language. Thanks to a tight integration into UML, the Action Semantics
leverages other UML facilities, such as OCL, and in particular its navigation
facilities.

As reflection is concerned, we have already pointed out in Section 2 the
similarities and differences between the structural reflection aspects of UML and
those of reflective object-oriented languages. On the behavioural reflection side,
most of the existing models are based on an interpretive or compilative pattern.
In the first case, reflection is introduced in the language by reifying a metacircular
interpreter (consider 3-Lisp and other reflective functional languages), while in
the second it is introduced by reifying compilation strategies in the compiler
either statically (consider OpenC++) or dynamically (consider Smalltalk and
OpenJIT). Elements of the run-time systems are also reified into the language.

Our approach to behavioural reflection in UML is rather based on an ex-
ecution model close to operational semantics where computations are seen as
sequences of states and computation steps transform an initial state into a fol-
lowing state in an history. Thanks to the integration with UML, reflection is
achieved by having states represented as models and the Action Semantics en-
abled to manipulate these models. Hence, reflection in the UML with the AS
appears closer to the work on rewriting systems [19,8] and rewriting logics [20]
than the more traditional interpretive or compilative approaches.

6 Conclusion

With the standardization of the Action Semantics by the OMG, the metalevel
architecture of the UML is now supported by a language allowing the speci-

fication of actions in a portable way. In this paper, we have shown how the
Action Semantics brings a behavioural reflection dimension to the UML. We
have shown that it is not only possible but quite effective to use the AS for ma-
nipulating UML models, including the AS metamodel. Behavioural reflection has
been brought to the fore by a metacircular definition of the Action Semantics. To
enable reflective metamodeling in the AS, we have reified in UML a meta-of link
that allows actions defined in a model to act upon model elements through their
description at the metamodel level, much in the same way code in a reflective
object-oriented language can access class properties through metaclasses.

Applications of reflective modeling with the AS leverages on the UML met-
alevel architecture to provide the benefits of a reflective approach, in terms
of separation of concerns, within a mainstream industrial context. A complete
model can now be built as an ideal model representing the core concepts in the
application, to which non-functional requirements are integrated as fully trace-
able transformations over this ideal model. For example, we have illustrated how
this approach paves the way for powerful UML-defined semantics-based model
transformations such as refactoring, aspect weaving, and application of design
patterns.

An implementation conforming to the current version of the Action Semantics
specification is in development in UMLAUT ?, a freely available UML modeling
tool. The complete integration between the Action Semantics and the UML in
Umlaut provides an excellent research platform for the implementation of design
patterns, refactorings and aspects.

References

1. J. Bézivin and R. Lemesle. Reflective modelling scheme. In Flec-
tronic Proceedings of the OOPSLA’99 Workshop on Object-Oriented Reflec-
tion and Software Engineering, OORaSE’99, pages 107-122, 1999. web site:
http://www.disi.unige.it/person/CazzolaW /OORaSE99.html.

2. G. Blair, G. Coulson, F. Costa, and H. Duran. On the design of reflective middle-
ware platforms. In Proceedings of the Reflective Middleware Workshop, RM 2000,
2000.

3. D. Bobrow and M. Stefik. The Loops Manual. Xerox PARC, Palo Alto CA, USA,
December 1983.

4. J.-P. Briot and P. Cointe. The OBJVLISP Model: Definition of a Uniform, Reflex-
ive and Extensible Object Oriented Language. In Proceedings of ECAI’86, pages
225-232, 1986.

5. J.-P. Briot and P. Cointe. A Uniform Model for Object-Oriented Languages Using
the Class Abstraction. In Proceedings of IJCAI’87, pages 40-43, 1987.

6. CCITT. Red Book, SDL, Recommendation Z.100 to Z.104, 1984.

7. M. Cinnide and P. Nixon. A methodology for the automated introduction of design
patterns. In International Conference on Software Maintenance, Oxford, 1999.

8. M. Clavel and J. Meseguer. Axiomatizing Reflective Logics and Languages. In Pro-
ceedings of the First International Conference on Reflection, Reflection’96, pages
263-288, 1996.

® http://www.irisa.fr/UMLAUT/

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

P. Cointe. Metaclasses are first class: the objvlisp model. In Proceedings of OOP-
SLA’87, pages 156-167. ACM, 1987.

T. A. S. Consortium. Updated joint initial submission against the action semantics
for uml rfp, 2000.

J. Floch. Supporting Evolution and Maintenance by using a Flexible Automatic
Code Generator. In Proceedings of the 17th International Conference on Software
Engineering, pages 211-219, Apr. 1995.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1995.

O. M. Group. Action semantics for the uml rfp, ad/98-11-01, 1998.

W. Ho, F. Pennaneac’h, and N. Plouzeau. Umlaut: A framework for weaving
uml-based aspect-oriented designs. In Technology of object-oriented languages and
systems (TOOLS Europe), volume 33, pages 324-334. IEEE Computer Society,
June 2000.

R. Keller and R. Schauer. Design components: Towards software composition at
the design level. In Proceedings of the 20th International Conference on Software
Engineering, pages 302-311. IEEE Computer Society Press, Apr. 1998.
Kennedy-Carter. Executable UML (xuml), http://www.kc.com/html/xuml.html.
G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka, ed-
itors, ECOOP ’97 — Object-Oriented Programming 11th Furopean Conference,
Jyvaskyld, Finland, volume 1241 of Lecture Notes in Computer Science, pages 220—
242. Springer-Verlag, New York, N.Y., June 1997.

P. Kruchten. Rational Unified Process: an Introduction. Addison-Wesley, Read-
ing/MA, 1998.

M. Kurihara and A. Ohuchi. An Algebraic Specification and an Object-Oriented
Implementation of a Reflective Language. In Proceedings of the International
Workshop on New Models for Software Architecture 92, Reflection and Meta-Level
Architectures, pages 137-142, November 1992.

J. Malenfant, C. Dony, and P. Cointe. A Semantics of Introspection in a Reflective
Prototype-Based Language. Lisp and Symbolic Computation, Kluwer, 9(2/3):153—
179, May/June 1996.

J. McAffer. Meta-level programming with coda. In Proceedings of ECOOP’95,
number 952 in Lecture Notes in Computer Science, pages 190-214. AITO, Springer-
Verlag, 1995.

H. Okamura, Y. Ishikawa, and M. Tokoro. Al-1/d: A distributed programming
system with multi-model reflection framework. In A. Yonezawa and B. Smith,
editors, Proceedings of the International Workshop on New Models for Software
Architectures, Reflection and Metalevel Architectures, pages 36-47. RISE (Japan),
ACM Sigplan, JSSST, IPSJ, November 1992.

W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University
of Mlinois, Urbana-Champaign, 1992. Tech. Report UIUCDCS-R-~92-1759.
Projtech-Technology. Executable UML, http://www.projtech.com/pubs/xuml.html.
Softeam. UML Profiles and the J language: Totally control your application de-
velopment using UML. In hitp://www.softeam.fr/us/pdf/uml_profiles.pdf, 1999.
G. Sunyé, A. Le Guennec, and J.-M. Jézéquel. Design pattern application in UML.
In E. Bertino, editor, ECOOP’2000 proceedings, number 1850, pages 44—62. Lecture
Notes in Computer Science, Springer Verlag, June 2000.

S. Tan, D. Raila, and R. Campbell. An Object-Oriented Nano-Kernel for Oper-
ating System Hardware Support. In Proceedings of the International Workshop

on Object-Orientation in Operating Systems, IWOO0S’95. IEEE, Coputer Society

Press, 1995.
28. P. Tarr, H. Ossher, and W. Harrison. N degrees of separation: Multi-dimensional

separation of concerns. In ICSE’99 Los Angeles CA, 1999.

