
Some pathological Message Sequence Charts,
and how to detect them.

Löıc Hélouët

France Télécom R&D,
2 avenue Pierre Marzin, 22307 Lannion Cedex, France,

loic.helouet@francetelecom.com

Abstract. This paper identifies some confusing Message Sequence Charts,
that can be considered as syntactically correct, but may lead to am-
biguous interpretations. The first kind of MSC identified appears when
parallel components of a parallel component synchronize implicitly to
continue an execution. The second case is called non-local choice, and
appears when more than one instance is responsible for a choice. Non-
local choice has already been studied before, but an extension of the def-
initions and algorithms is provided. The third case is confluent MSCs,
and appears when concurrency is expressed through a choice.

1 Introduction

Since the first standard appeared in 1992, Message Sequence Charts have gained
a lot of expressive power. Many elements have been added to the original lan-
guage: composition in MSC’96, additional time measurement possibilities, and
variables in MSC’2000. All these improvements are obviously aiming at a bet-
ter usability of Message Sequence Charts, and are mainly driven by expressed
needs. However, adding a new element to a language may fully satisfy some users,
and introduce at the same time confusion for all the others, or even semantics
ambiguities.

The main elements of the language (instances, messages, timers) are usu-
ally well understood. Furthermore, as far as basic Message Sequence Charts are
concerned, very few ambiguities can arise. It is not true when considering compo-
sition through parallel, choice, or loop operator, or through High-level Message
Sequence Charts. Some graphical inconsistencies in MSC’96 were already pointed
out by [7].

HMSCs, for example, allow for the definition of MSCs that are considered as
syntactically correct, but the intuitive understanding of which are different from
the behavior allowed by the semantics. In most cases, these HMSCs should be
considered as pathological, and rejected. Fortunately, the cases introduced within
this paper can be easily detected. This detection is based on global properties
of the MSC.

As a correct syntax does not ensure the correct understanding of a MSC
specification, we argue that a new document should be added to the appendices
of recommendation Z.120, as a “methodological guideline”, which should precise

2

what a valid MSC should be. The identification of at least two pathological cases
and an extension of the definition of non local choice is a first contribution in
this direction.

This paper is organized as follows: first we quickly recall the operational
semantics of High-level Message Sequence Charts, as defined by [11, 8]. Then
, section 3 shows a first ambiguous case, that arise when two parallel compo-
nents synchronize without any communication. Section 4 recalls the definition
of non-local choice, proposes an algorithm to detect it, and then discusses its
pathological character. Section 5 identifies another pathological kind of MSC,
and proposes an algorithm to detect it.

2 Operational Semantics

2.1 Basic Message Sequence Charts

Many semantics have been proposed for basic Message Sequence Charts (bMSC).
The semantics retained for recommendation Z.120 is based on process algebra.
However, we consider as natural to model bMSC as a finite, labeled partial order,
as in [6, 1].

A bMSC is a tuple M = (E,≤, A, I, α) where:

– E is a finite set of events,
– ≤ is a partial order relation (antisymmetric, reflexive and transitive) called

causal order on events,
– I is a set of names of instances that perform at least one action in M , and

is called the set of active instances of M .
– A is a set of action names.
– α : E −→ A × I is a labeling of events.

From now, we will note φ(e) the instance performing event e, ie the instance
i ∈ I such that α(e) = (a, i) for some a ∈ A. Slightly abusing the notation, we
will note φ(E) = {φ(e)|e ∈ E} the set of instances appearing in any set of events
E. For any MSC M , we will note min(M) = {e ∈ E |

�
e′ 6= e and e′ ≤ e} the

set of minimal events of M . For any labeled order M = (EM ,≤M , AM , IM , αM),
for any set E′ ⊆ EM , we will denote by M/E′ the restriction of M to events of
E′. We will also denote by M∅ =< ∅, ∅, ∅, ∅, ∅> the empty MSC.

A bMSC defined with a partial order model has the same semantics as the
process algebra definition of [11]. The main difference is that we use one single
operational semantics rule :

e ∈ min(M), α(e) = (a, i)

M =< EM ,≤M , AM , IM , αM >
a−→ ME−{e}

2.2 High-level Message Sequence Charts

High-level Message Sequence Charts allow for the definition of more elaborated
behaviors. Their graphical syntax is given by means of graphs, the nodes of

3

which are references to bMSCs, to HMSCs, or parallel composition of bMSCs
and HMSCs references.

One of the key points for HMSC understanding is the semantics of sequential
composition. HMSC H1 in Figure 1 is a sequential composition of bMSCs M1 and
M2. The semantics of the sequence of bMSCs defined in the standard is a weak
sequential composition1. The result is an instance-by-instance concatenation,
where, for each instance, the maximum event of the first bMSC is linked to
the minimum event of the second bMSC. This gives to MSCs an interesting
expressive power since communication messages can be accumulated between
instances by concatenating basic patterns. Therefore, the HMSC in Figure 2
should have the same operational semantics as the HMSC in Figure 1. If the
semantics of weak sequential composition gives HMSCs a huge expressive power,
it is also the source of many misunderstandings. However, we think than weak
sequence is essential for the design of asynchronous distributed systems, and
that the ambiguous cases it may produce is an acceptable price to pay for it.

M2

M1

HMSC H1

bMSC M1

m1

A B
bMSC M2

m2

BA

Fig. 1. HMSC H1: sequence of bMSCs M1 and M2.

M3

HMSC H2
bMSC M3

A B

m1

m2

Fig. 2. HMSC H2 equivalent to HMSC H1 in Figure 1.

1 Weak sequential composition is close to the Pratt’s local sequencing [10], where φ
defines locality.

4

m1

DCBA

m3
m2

m4
m2m1

A B C C DA

m3

m4

Fig. 3. Chain by chain concatenation of basic message sequence charts.

Let us define the sequencing operator ◦ on two MSCs M1 = (E1,≤1, A1, I1, α1)
and M2 = (E2,≤2, A2, I2, α2): M1 ◦M2 =< E,≤M1◦M2 , I1 ∪ I2, φ >, where:

– E = E1]E2 is the disjoint union of E1 and E2,
– ∀e, e′ ∈ E, e ≤M1◦M2 e

′ iff e ≤1 e
′ or e ≤2 e

′ or
∃(e1, e2) ∈ E1 × E2 : φ1(e1) = φ2(e2) ∧ e ≤1 e1 ∧ e2 ≤2 (e′)

– A = A1]A2, I = I1] I2,
– ∀e ∈ E, α(e) = α1(e) if e ∈ E1 or α(e) = α2(e) if e ∈ E2

More intuitively, sequential composition consists in ordering events e1 in
bMSC M1 and e2 in bMSC M2 if they are situated on the same instance, and
then calculating the transitive closure of the resulting order. An example of
sequential composition is provided in Figure 3. Due to the local sequencing, the
emission of m1 precedes the reception of m4, and the reception of m2 precedes
the reception of m3 in the resulting bMSC.

Basic Message Sequence Charts only allow for the definition of very simple
scenarios. High-level Message Sequence Charts (HMSC) allow for the definition
of more complex behavior, through parallel composition, choice, and sequence
operators, and hierarchical construction. HMSC documents can be defined as a
collection of graphs, as in [8] :

Definition 1 A Message Sequence Chart document can be defined by a family
of High-level Message Sequence Charts F = {

i∈1..N

Hi}, where each Hi is a High-

level Message Sequence Chart.

Definition 2 A HMSC is a graph H = (id,N,Ends, Start,−→,M, l), where:

– id is the name of the HMSC,
– N , Ends are disjoint finite sets of nodes (Ends is a set of end nodes).
– Start is a unique starting node,
– −→ is the transition relation (⊆ (N ∪Ends ∪ {Start})2),
– M is a set of bMSCs, on disjoint sets of events. Each bMSC M ∈ M is a

tuple M =< EM ,≤M , IM , φM >,
– l is a labeling function on nodes (l : N −→ expr), associating to each node

a reference to a basic MSC, to the empty basic Message Sequence Chart M∅,
to a HMSC, or a parallel composition of references. Nodes in Ends, choice

5

and connector nodes will be labeled with M∅, and will be called empty nodes.
To simplify notations and algorithms, we will consider the label associated
to each node as a parallel composition of bMSC and HMSC :

l(n) = ‖
p∈1..P

expp

with expp = rMp for a reference to a basic MSC Mp ∈ M expp = rHp for
a reference to a HMSC Hp. Note that labeling of a node by a reference to a
single bMSC or HMSC can be considered as the specific case P = 1.

We also require that no cyclic referencing such as in the example in Figure 4
appears in MSC documents. This kind of situation will not be discussed here,
but can also be considered as a pathological kind of MSC. It can be easily
detected by constructing a graph connecting HMSC referencing each other, and
then searching strongly connected components.

M1 H2

H1msc

M2 H1

msc H2

Fig. 4. Cyclic referencing

Definition 3 A finite path of a HMSC H is a word p = n1..nk ∈ (N ∪Ends ∪
Start)∗ such that ∀i ∈ 1..k−1, (ni, ni+1) ∈−→. An initial path is a path starting
from Start.

Definition 4 A choice in a HMSC H is a node with more than one successor.
A choice c defines an alternative between scenarios. Any loop-free path starting
from c will be called a branch of the choice c.

The semantics of HMSC [8] is given by means of regular expressions on bMSC,
built from the operators ∓ (delayed choice), ‖ (parallel composition), and ◦
(sequential composition). A HMSC defined as a graph can be easily transformed
into a set of process algebra expressions with the same meaning. To each node
n ∈ (N ∪Ends ∪ {Start}), we associate an expression:

– if n is an end node, n = ε
– if n is a choice node, n = ∓

{ni|n−→ni}
ni

6

– if n is a node with one single successor n′, and l(n) 6= rM∅, then n = l(n)◦n′
– if n is a node with one single successor n′, and l(n) = rM∅, then n = n′

This definition by means of process algebra has the same expressive power
as the hierarchical graphs. This is not really surprising, as HMSCs are just au-
tomata labeled with expressions. Hierarchical graphs are often more adapted to
algorithmic considerations, and process algebra facilitates discussions on seman-
tics points. During the rest of the paper, we will use both representations.

Let us now recall some operational semantics rules for HMSCs defined in [8].
Note that we slightly adapted the rules to fit our partial order representation.
Furthermore, we only recall rules that will be needed in the next sections.

First, a permission relation
a· · · → is defined. Using our partial ordering defi-

nition for MSCs, this permission relation becomes :

φ(a) 6∈ φ(Ex)

x
a· · · → x

x
a· · · → x′, y /

a· · · →
x∓ y a· · · → x′

x
a· · · → x′, y

a· · · → y′

x ◦ y a· · · → x′ ◦ y′

More intuitively, expr
a· · · → if all events of expr and action a are indepen-

dent, and can be executed concurrently. We can now give some rules that will
be needed in the rest of the paper. For a complete semantics, interested reader
is referred to [8].

x
a· · · → x′, y

a−→ y′

x ◦ y a−→ x′ ◦ y′
x

a−→ x′

x‖y a−→ x′‖y
y

a−→ y′

x‖y a−→ x‖y′

x
a−→ x′, y /

a−→ y′

x∓ y a−→ x′
y

a−→ y′, x /
a−→ x′

x∓ y a−→ y′

3 Implicit synchronization

MSC are supposed to be very intuitive and visual. However, the interpretation
of some constructions may be in contradiction with the semantics. In most cases,
this divergence between the effective behavior and the intended behavior is just
due to a bad knowledge of the language semantics, or to some abusive use of
its constructs. The first pathological MSC kind defined in this paper is implicit
synchronization.

Consider the HMSC of Figure 5. From the previous translation rules, we can
define the same HMSC with the following expressions:

Pathology1 = StartP1 H1 = StartH1 H2 = StartH2

StartP1 = np1 StartH1 = n1h1 StartH2 = n1h2
n1p1 = n2p1 n1h1 = n2h1 n1h2 = n2h2
n2p1 = (rH1‖rH2) ◦ n1p1 n2h1 = n3h1∓ n4h1 n2h2 = n3h2∓ n4h2

n3h1 = rM1 ◦ n1h1 n3h2 = rM3 ◦ n1h2
n4h1 = rM2 ◦ n5h1 n4h2 = rM4 ◦ n5h2
n5h1 = ε n5h2 = ε

7

A

a3

msc M3

A

a4

msc M4

msc M1
A

a1

A

a2

msc M2

M1 M2

msc H1
Start_h1

n1h1

n2h1

n3h1 n4h1

n5h1

M3 M4

msc H2

n4h2n3h2

n1h2

n2h2

Start_h2

n5h2

H2H1

pathology1msc
StartP1

n1p1

n1p2

Fig. 5. Implicit synchronization

According to the operational semantics rules, as H1 and H2 are composed in
parallel, a1 and a2 can be executed concurrently with a3 or a4, and conversely.
This may mean that instance A is composed of more than one entity, that
may evolve concurrently. So, events a3 and a4 can not prevent a1 and a2 from
being executed. However, np1 rewrites to rH2 ◦np1 after executing action a2. As

H2 /
a1· · · → and H2 /

a2· · · →, actions a1 and a2 can not be executed from rH2 ◦np1,
unless a4 is executed, allowing to rewrite rH2 ◦ np1 into np1. The automata
corresponding to this semantics is provided in Figure 6. The language defined this
way is

(
(a1 + a3)∗.((a2.a3∗.a4) + (a4.a1∗.a2))

)∗
. A synchronization between the

two parallel components is defined. One may wonder if this behavior was really
intended, and if HMSC of Figure 7, in which the two parallel components behave
in parallel without synchronizing does not fit better the expected behavior.

a4

a1
a3

a4a2

a1
a3

a2

Fig. 6. Operational semantics for HMSC in Figure5

8

msc M1
A

a1

A

a3

msc M3

A

a2

msc M2
A

a4

msc M4

msc alternative1

M1 M2 M3 M4

Fig. 7. Alternative intended behavior

Of course, in the general case, it is false that (x‖y)∗ and (x∗‖y∗) have the
same operational semantics. Hence, the end of the parallel frame acts as a syn-
chronizing point, which may not be obvious for the designer. According to the se-
mantics, one may suppose that there is a fork and join between the two operands
of the parallel composition, that is abstracted in the MSC representation.

This implicit synchronization is not dramatic, as HMSCs of Figures 5 and
7 are both correct. However, the fact that a HMSC may express more than
what was really intended points out the need for simulation tools exhibiting
possible behaviors of a specification. Furthermore, it should be clear that events
composed in a parallel frame can be interleaved, but are not always independent,
which explains the synchronization when exiting the frame.

One may note that there is not explicit synchronization construct in Message
Sequence Charts. Adding this new feature to the language should not be too
difficult, as synchronization reduces concurrency, and consequently the set of
behaviors described by a MSC. However, the discussion of a synchronization
construct is beyond the scope of this paper.

4 Non-local choices

Implicit synchronization is not the only kind of MSC where control is hidden.
Another situation potentially leading to erroneous interpretation is called non-
local choice. The generally admitted meaning of non-local choice [2] is when more
than one instance can decide to perform a scenario or another at a choice node.
The intended behavior is that the first instance able to perform the choice chooses
a behavior. The next instances reaching the same occurrence of this choice have
to conform to the chosen scenario. This results in a behavior in which an instance
“knows” what to do at a choice node without any communication. An example
of non local HMSC is given in Figure 8. In this example, if instance A chooses
to send message m1 then instance B must conform to scenario M1 and receive
m1. Conversely, if instance B chooses to send message m2 then instance A must
conform to scenario M2 and receive m2. To implement only these two scenarios,

9

a designer would have to use a consensus or synchronization mechanism, which
is not explicitly represented.

A formal definition of non-local choice was previously given in [2]. This def-
inition does not take parallel composition into account, and assumes that any
instance should perform a communication in each bMSC referenced by a succes-
sor of the choice node. This assumption limits the search for non-local choice to
the set of immediate successors of a choice node of a HMSC. However, [4] shows
that when weak sequential composition of bMSCs with disjoint set of instances
is considered, non-local choice is not a local property . Therefore, a global defini-
tion of non-local choice must be provided. Consider HMSC in Figure 9: choices
seem to be local, but the decision to perform a scenario can be taken by A or C.
This shows that non-locality is a global property, which has to be computed on
the HMSC structure. The definition has thus to be extended, and should take
into account parallel composition and hierarchy.

M1 M2

HMSC H6 bMSC M1 bMSC M2

m1

A B

m2

BA

Fig. 8. non local HMSC

M1 M2

M3 M4

bMSC M1 bMSC M2

bMSC M3 bMSC M4

HMSC H7

m1

A B

m3

BC

m4

C B

m2

BA

Fig. 9. An example HMSC that may seem local

10

Definition 5 Let expr = ∓
i∈1..N

ni be an expression defining a choice. We will

say that expr is a non local choice if there are two events e1 and e2 such that
expr

e1−→, expr
e2−→, and φ(e1) 6= φ(e2).

We have shown that the locality of a choice is a global property. So, it may
be very difficult to detect it, even with good knowledge of the semantics. As the
graphical and process algebra representations of HMSCs are dual, there must be
a definition of non local choice holding for graphs. We now show that non locality
can be expressed as a global property on the paths of a HMSC document. This
immediately provides us with an algorithm for non local choices detection.

Definition 6 Let Hi be a HMSC, and x be a node of Hi A maximal path
starting from x of Hi is either :

– a finite path of the form w = x.n1...nk where nk ∈ Endsi,
– a finite path of the form w = x.v such that it is impossible to leave the

sequence (v)ω (any path of the HMSC H starting with x.v is a prefix of
x.v.vω).

Algorithm: Calculus of the maximal paths of HMSC Hi starting from node x

Maximal path(Hi, x)=
P = {x} /* set of path of H */

AP = ∅ /* set of acyclic path */

while P 6= ∅ do
AP = AP ∪ {w.n|w = n1...nk ∈ P , nk −→i n , n ∈ Endi}

∪{w = n1...nk.n...nk ∈ P |nk −→i n}
/* paths for which adding node n creates a cycle */

P ′ = {w.n|w ∈ P,w = n1...nk, nk −→i n, andw 6= n1...nk.n...nk, n 6∈ Endi}
P = P ′

end while
MAP = ∅
/* remove paths that stop on a cycle but are not prefixes of infinite

paths of the form v.(v′)ω */

for all w ∈ AP do
if

�
w′ 6= w ∈ AP such that w′ = w.v then

MAP = MAP ∪ {w}
end if

end for
return(MAP)

Consider, for example the HMSC of Figure 10. The set of maximal acyclic
path of this HMSC is :

MAP (H) =
{
start.n1.n2.n4.n5; start.n1.n2.n3.n2.n4.n5;
start.n1.n2.n6.n7.n8.n7; start.n1.n2.n3.n2.n6.n7.n8.n7

}

n1.n2.n3 is not a maximal path, as it is always possible to leave cycle
(n2.n3)∗, for example by choosing n4. Note that the maximal paths are com-
puted without considering what a node references. Maximal path will be used

11

to detect minimal events on each branch of a choice. Once maximal paths have
been found, scenarios attached to each path are computed.

Start

n6

n8

n3 n4

n5

n7

n2

n1

Fig. 10. Example of HMSC

Definition 7 The path order family POF (w) associated to a path w = n1..nk
is a set of partial orders built from the sequences of bMSCs along this path. It is
defined recursively:

– let n1 be a node and v be a path of a HMSC. POF (n1.v) = {o1 ◦ o2|o1 ∈
POF (n1), o2 ∈ POF (v)}

– For any node n, POF (n) =
• M∅ if l(n) = ε
• {M} if l(n) = rM

•
⋃

π permutation on 1..N

{oπ(1) ◦ · · · ◦ oπ(N)|∃wi ∈MAP (Hi, Starti), oi ∈ POF (wi)}

if l(n) = ‖rHi
Theorem 1 Let c be a choice node in a HMSC H, and exprc the process
algebra expression associated to this choice. exprc

e−→ if and only if ∃w ∈
MAP (H, c), ∃o ∈ POF (w), and e1 ∈ min(o).

proof: To complete the proof, we need some lemmas:
Lemma 1: let exprn be the expression associated to a node n.

If exprn = x ◦ y and y = ∓expi then exprn can be rewritten into expr′n =
∓y ◦ expi,

12

If expr = x and x = y, then exprn can be rewritten into expr′n = y
We will say that expr′n is obtained by rewriting x.

For any event e, we have exprn
e−→⇐⇒ expr′n

e−→.
proof: From the definitions. �
Lemma 2: Let c be a choice node. If there is a sequence of rewritings w =
n1.n2. . . .nk ofexprc, such that any pair (ni, ni+1) is unique in w then w is a
maximal path starting from c.
proof: From the definitions. �
Lemma 3: Let exprn be the expression associated to a node n. exprn

e· · · → if
and only if
∃o =< Eo,≤o, Ao, Io, αo >∈ POF (n), such that φ(Eo) 6= φ(e).
proof: By induction on the depth of HMSC references. �

From Lemma 1, and lemma 2, we know that exprc
e−→ if and only if:

– for all w, sequence of rewritings of exprc rewriting exprc into expr′c
– w ∈MAP (H, c) , and

– expr′c
e−→

As expr′c
e−→, then there exists one sequence w = n1. . . .nk and i ∈ 1..k such

that ni
e−→, and for all x < i:

– there is an expression nx = expr ◦ nx+1 with expr
e1· · · → , or

– nx = ∓
j∈1..N

nj with nx+1 = nj for some j, or nx = nx + 1

So, w is of the form w = v.ni.v
′, and using lemma 3, we can say that ∃ov ∈

POF (v), φ(e) 6∈ φ(Eo), and ∃oi ∈ POF (ni) such that e ∈ min(oi).

Consequently, exprc
e−→ if and only if ∃w ∈MAP (H, c), ∃o ∈ POF (w), and

e ∈ min(o). �
From this definition, the search for non local choice from graphs is straight-

forward.

Algorithm: Calculus of the orders associated to a path w

Compute orders(w)=
Ow = ∅; i = 1
while i <= |w| do

if l(w[i]) 6= M∅ then
if l(w[i]) = rM then
O′w = {o ◦M |o ∈ Ow}

else if l(w[i]) = ‖
j∈1..P

exprj then

/* compute the POF associated to each expression */

for all j ∈ 1..P do
if exprj = rM then
TABO[j] = {M}

else if exprj = Hj then

13

TABO[j] =
⋃

p∈MAP (Hj)

Compute Orders(p)

end if
end for
OH = ∅
for all π permutation on 1..P do
OH = OH ∪ {o1 ◦ . . . oP |oi ∈ TABO[π(i)]}

end for
O′w = {o ◦ o′|o ∈ Ow, o′ ∈ OH}

end if
Ow = O′w

end if
i = i + 1

end while
return(Ow)

Algorithm: Non local choice detection

Non Local(c)=
MAP = Compute MAP(c)
INST = ∅
for all p ∈MAP do
Oc = Compute Orders(p)
for all o ∈ Oc do
INST = INST∪φ(min(o)) /* set of instances participating to*/

/* the decision at a choice node */

end for
end for
if |INST | > 1 then

return(true) /* c is a non local choice */

else
return(false)

end if

Non local choices are not very ambiguous HMSC, they just define multiple
scenarios. However, they may require additional synchronization mechanisms
when an implementation allowing only the defined behaviors is planned. They
can therefore be considered as too abstract for some purposes. Hence, we think
that non -local choice is a property that may cause misunderstanding between
the requirement capture and the specification phase of a system development
when it is not detected.

5 Confluence

We now define another pathological kind of Message Sequence Charts, called
confluent MSC. A MSC is said confluent if a parallel composition is expressed
by means of a choice node. Consider, for example, HMSC of Figure 11.

14

B
msc M2

b

M1 M2

msc pathology2

Start_P2

n1

n2

n3 n4

n5

msc M1
A

a

Fig. 11. Confuence

Pathology2 = StartP2 n3 = rM1 ◦ n1
StartP2 = n1 n4 = rM2 ◦ n5
n1 = n2 n5 = ε
n2 = n3∓ n4

According to the operational semantics rules, n2
a−→ and n2

b−→. Further-

more, as n3
b· · · → the execution of b may result from unbounded unfoldings of

n3 = rM1 ◦n1. Therefore, executing b does not indicate how many a’s should be
executed, and the language defined by this MSC is a∗.b.a∗. This behavior can
also be exhibited by the HMSC of Figure 12, through a parallel composition.
However, we can suppose that the intended behavior was to define b as an exit
event for the loop. So, the desired behavior would have defined the language a∗.b.
Obviously, a system where the exit condition of a loop is set by a process that
never communicates with processes activated in the loop is highly pathological.

H1 M2

B
msc M2

b

msc M1
A

a

equiv2msc

msc H1

M1

Fig. 12. HMSC with the same behavior as in Figure 11

15

This kind of specification is called confluent, and was already identified in
[9], and proved undecidable. However, this undecidability is a consequence of
a weaker ordering relation than what is usually used for MSC ([9] considers
that receptions of messages coming from different senders are not ordered even
if they are sequential on an instance axis). We now give a formal definition for
confluence, an show that it can be detected using a simple algorithm. Up to now,
the definition and algorithm only concerns HMSC referencing bMSC, but can
probably be extended to include parallel frames and hierarchy.

Definition 8 Let H be a HMSC referencing bMSCs, and n be a choice node of
H. n is said confluent if and only if there is a cycle c = n.n1....nk, and a path
p = n.x1...xk starting from n, and there is a minimal event e of Op such that
φ(e) is not an active instance of Oc

Note that a confluent Message Sequence Chart is necessarily non-local. We
do not define the cycle computation, that can be performed using the well known
Tarjan algorithm [13].
Algorithm: Confluence detection for a choice node s of a HMSC H

Confluent(H,n)=
CY = compute cycles(n) /* set of cyclic paths containing n */

MAP = compute map(H,n)/*maximal acyclic paths starting from n*/

for all c ∈ CY do
for all p ∈MAP do

if ∃i ∈ φ(min(Op)) such that i 6∈ φ(Oc) then
choice node n is confluent.

end if
end for

end for

Confluent Message Sequence Charts can be considered as a bad use of choice
in a specification. Obviously, they may lead to misunderstanding, and therefore
should be avoided. Yet, confluence is again a global property, that a correct
syntax can not prevent. One may remark that the correction of confluence is
easy for the example of this section (transform HMSC of Figure 11 into HMSC
in Figure 12). However, it may be more difficult or even impossible to find
another HMSC exhibiting the same behavior.

6 Conclusion

This article has show three kind of High-level Message Sequence Charts that
may cause misunderstanding. The first case concerns implicit synchronization
in loops, and can be considered as a bad specification or not, depending on the
designer’s awareness of the HMSC semantics. The second case is the well known
non-local choice. Again, non-local specifications should be considered as incom-
plete rather than erroneous. However, when HMSCs are designed as a premise
for the production of a specification, non-locality points out parts of the spec-
ification where additional information is needed. Therefore, a special attention
should be paid to these parts of the specification where erroneous behaviors may

16

be introduced after the requirement phase. The last situation described is con-
fluence, an clearly appears as a bad specification : choices are used as parallel
composition. Note that all these cases are expressed with MSC’96. We can also
expect new constructs of MSC’2000 to introduce more interpretation problems,
due to inheritance, or variables, that will be revealed when the language is put
to practice.

Up to now, there is no documentation providing guidelines for correct mes-
sage sequence Charts construction. We think that such a document could ref-
erence cases of bad usage of MSCs, that the grammar can not reject. The re-
sponsibility for avoiding such MSCs would then be left to the designer, or to
automated detection algorithms implemented in MSC tools when possible.

References

1. Alur R., Holzmann G. , Peled D., An analyzer for Message Sequence Charts, Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’96), LNCS
no 1055 , pp 35-48, Passau, Germany, 1996.

2. Ben-Abdallah H., Leue S., Syntactic Detection of Process Divergence and non-
Local Choice in Message Sequence Charts, Proceedings of TACAS’97, Lecture Notes
in Computer Science, Vol. 1217, Brinksma.E editor, Springer-Verlag publisher, pp.
259-274, 1997.

3. Graubmann P. , Rudolph E. , Grabowski J., Towards a Petri Net Based Semantics
Definition for Message Sequence Charts, In: SDL’93 - Using Objects (Editors: O.
Faergemand, A. Sarma), North-Holland, October 1993.

4. Hélouët L., Jard C., Conditions for synthesis from Message Sequence Charts, 5th
international workshop on Formal Methods for Industrial Critical Systems (FMICS),
Berlin, april 2000.

5. ITU-T, Message Sequence Chart (MSC 2000), ITU-T Recommendation Z120, 2000.
6. Katoen J.P., Lambert L., Pomsets for message sequence charts, proceedings of

SAM98:1st conference on SDL and MSC, pp. 291-300, 1998.
7. Loidl S., Rudolph E., Hinkel U., MSC’96 and Beyond - a Critical Look, Proceedings

of the Eight SDL Forum, SDL’97: Time for Testing - SDL MSC and Trends, A. Cavalli
and A. Sarma, editors, Evry, France, 23-26 September, 1997.

8. Mauw S., Reniers M. , High-level Message Sequence Charts, Proceedings of the
Eight SDL Forum, SDL’97: Time for Testing - SDL MSC and Trends, pp 291-306,
A. Cavalli and A. Sarma, editors, Evry, France, 23-26 September, 1997.

9. Muscholl A., Peled D., Message sequence graphs and decision problems on
Mazurkiewicz traces, Proc. of MFCS’99, Lecture Notes in Computer Science 1672,
pp. 81-91, 1999.

10. Pratt.V , Modeling Concurrency with Partial Orders, International journal of
Parallel Programming, Vol. 15, No. 1, pp. 33-71, 1986.

11. Reniers M., Mauw S., An algebraic semantics for basic message sequence charts,
The Computer Journal”, Vol. 37, No. 4, pp. 269-277, 1994.

12. Reniers M., Message Sequence Charts: Syntax and Semantics, PhD Thesis, Heind-
hoven University of Technology, 1998.

13. Tarjan.R, Depth-first search and linear graph algorithms, SIAM Journal of Com-
puting, 1(2), 1992.

