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ABSTRACT
Using a solid Software Configuration Management
(SCM) is mandatory to establish and maintain the in-
tegrity of the products of a software project through-
out the project’s software life cycle. Even with the
help of sophisticated tools, handling the various dimen-
sions of SCM can be a daunting (and costly) task for
many projects. The contribution of this paper is to
propose a method (based on the use Creational Design
Patterns) to simplify SCM by reifying the variants of
an object-oriented software system into language-level
objects; and to show that newly available compilation
technology makes this proposal attractive with respect
to performance (memory footprint and execution time)
by inferring which classes are needed for a specific con-
figuration and optimizing the generated code accord-
ingly. We demonstrate this idea on an artificial case
study intended to be representative of a properly de-
signed OO software. All the performance figures we get
are obtained with freely available software, and, since
the source code of our case study is also freely avail-
able, they are easily reproducible and checkable.

1 INTRODUCTION

Using a solid Software Configuration Management
(SCM) [18, 31] is a basic requirement in the Software
Engineering Institute (SEI) capability maturity model
(CMM). There are however a number of different inter-
pretations on the exact meaning of Software Configu-
ration Management. In this paper, we focus its scope
to be the management of software development projects
with respect to the three dimensions identified in [9]:

• targeting environmental differences (e.g., multiple
platforms)
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• supporting multiple versions, and controlling the
status of code

• multiple developers working on the same code at
the same time

Following a terminology widely adopted in the Software
Engineering community [20], variants of configuration
items are different implementations that remain valid
at a given instant in time, created to handle environ-
mental differences (logical versioning). Revisions are
the steps a configuration item goes through over time
(historical versioning), whether to handle new features,
fix bugs or to support permanent changes to the en-
vironment (e.g., operating system upgrades, if the old
one is no longer supported). Variants and revisions pro-
vide a two-dimensional view into the repository, with
variants incrementing along one axis as required and
revisions incrementing through time on the other. Ver-
sions of configuration items are understood by the SCM
community to be synonymous with either revisions or
variants [32]. Therefore a version of a single configura-
tion item denotes an entry in the two-dimensional view
of the repository reached from an origin through some
path of revisions and variants. A third dimension is
brought in when concurrent development activities are
enabled (cooperative versioning): at a given point in
time, concurrent activities may have a cooperative ver-
sion of the same object [9]. Since many developers may
be authorized to modify the same version at the same
moment, each of them is in fact provided with a copy
of the item, in much the same way as shared virtual
memory pages can be updated using weak-consistency
algorithms in distributed systems.

Even with the help of sophisticated tools [19, 23], han-
dling these three dimensions of SCM can be a daunting
(and costly) task for many projects [1, 26].

The contribution of this paper is to propose a method
to simplify SCM by reifying the variants of an object-
oriented software system into language-level objects;
and to show that newly available compilation technol-
ogy makes this proposal attractive with respect to per-
formance (memory footprint and execution time) by in-
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ferring which classes are needed for a specific configu-
ration and optimizing the generated code accordingly.
There have already been some attempts to mix the OO
paradigm with the SCM problematic. Most of these at-
tempts were trying to implement a classical SCM with
the help of the OO technology [4, 6, 11, 24, 27]. Our
approach is quite orthogonal, because it consists in al-
tering the (object-oriented) design in such a way that
some aspects of the SCM (the variability dimension) are
vastly simplified.

This paper is organized as follows. In Section 2 we de-
scribe the factors that lead to a growing apparition of
software variants, and how this variability has tradition-
ally been addressed by more and more complex technics
and tools. In Section 3 we introduce a case study and
show how things can rapidly get out of hand. We then
propose to reify the variability of software by eliminat-
ing the variant dimension from the three-dimensional
view of the software baseline repository. Creational De-
sign Patterns can then be used to provide the necessary
flexibility for describing and selecting relevant configu-
rations within the implementation object-oriented lan-
guage, and thus benefitting from a better security im-
plied by static typing checked by the compiler. SCM
could then be implemented with much simpler tools
(less costly), because only revisions would need to be
dealt with. Alternatively, it could make full featured
tools easier to use, thus attacking one of the perceived
drawbacks of off-the-shelf SCM tools, i.e. their difficult
learning curve [1, 8]. In Section 4 we discuss how new
compilation technology, based on type inference, makes
this proposal attractive by allowing the generation of
code specialized for each variant of the software. We
present performance results (memory footprint and ex-
ecution time) of this approach on various systems.

In Section 5 we discuss the interests, limitations and
drawbacks of our approach, as well as related works.
We conclude on the perspective open by our approach.

2 SOFTWARE CONFIGURATION
MANAGEMENT

2.1 Variants in Software Systems

The reasons why a given software design may have dif-
ferent implementations, all valid at a given instant in
time, are manifold. But the basic idea is to be able to
handle environmental differences. We can classify these
environmental differences in the following categories:

• Hardware level: most software systems must be
able to drive various variants of hardware devices,
e.g., multimedia or network interface boards.

• Heterogeneous distributed systems: more and more
applications (singularly in the real time domain)

are implemented on distributed systems made of
more than one processor type, and have thus to
handle such things as task allocation and function-
ality distribution, and eventually differences in bi-
nary formats.

• Specificities in the target operating systems: some
system calls have syntax and/or semantics peculiar
to a specific OS. Even more complicated are the
cases when seemingly close abstractions (e.g., I/O
handles in Win32 and file descriptors in Unix) must
in fact be dealt with considerable differences in pro-
gramming style (Win32 pro-active I/O vs. Unix re-
active I/O). Note that functions whose names exist
in only a subset of the supported systems cannot
be linked in with a general purpose version config-
urable at run time.

• Compiler differences, or poorly standardized lan-
guages getting different interpretations in different
compilers.

• Range of products: often, for marketing reasons,
it is useful to be able to propose a range of prod-
ucts instead of a single suit-them-all product. For
instance, one approach is to make various levels of
functionality available: Demo version, Shareware,
Retail, Premium, etc. Also in this category are
the variants developed specifically for an important
client.

• User preferences for Graphical User Interface
(GUI): look-and-feel, etc.

• Internationalization: dealing with various lan-
guages and way of handling country specificities
such as date and time formats, money represen-
tation etc.

Managing all the combinations between these variability
factors can soon become a nightmare. Consider the case
of the software for a medium sized switch in the telecom-
munication domain, like the Alcatel E-10. Its source
code size is in the order of the million lines. Due to the
many versions of the switch tailored to fit each country
specificities, its configuration software also reaches the
million lines range.

2.2 Traditional Solutions

One of the most primitive “solution” to these problems
was to patch the executable program at installation time
to take into account some variants. One of the most
striking example was the word processor Wordstar un-
der the CP/M operating system, cited in [13]. To cope
with the widely different characteristics of printers and
CRT terminals on CP/M systems, in addition to ac-
commodating individual user preferences, this program



came with a configuration tool and scripts. Running the
configuration tool modified configuration data in the ex-
ecutable image of the word processing program. Various
scripts provided consistent sets of answers, correspond-
ing to common configurations, to questions asked by the
installation tool.

Device drivers are one example of configurability com-
mon to almost all operating systems. The actual bind-
ing can take place in source code, at link time, at boot
time, or on demand at run time (with kernel loadable
modules as in the Win32, Linux or Solaris OS).

A widely used technique for making small real time
programs configurable is the static configuration table.
Data structures are provided for things that might dif-
fer in different installations of the program, and the in-
staller is responsible for providing appropriately initial-
ized instances for a specific installation. Sometimes con-
figuration records are not directly prepared as initialized
records in the programming language of the system, but
rather are produced as database entries or expressed as
sentences in a grammar, with some tool provided to gen-
erate from these the programming language records the
system will actually use. This can be particularly useful
when several programs need to be implemented for the
same configurations. Static configuration tables are not
entirely satisfactory. Rarely is there provision for error
checking; indeed, because they are purely declarative
with no language-defined semantics, constraint verifica-
tion and consistency checking can be difficult, let alone
error checking. There is an implicit assumption of an
associated library, where variant units of code are kept,
yet there is no assistance in managing or manipulating
that library.

For larger systems, one of the most popular approach
consist in using conditional compilation (or assembly),
implemented with e.g., a pre-processor. C programmers
are familiar with the cpp tool, actually invoked as a first
pass of the C compiler, that allows such conditional code
to be written. Despite the help of sophisticated tools
(such as the GNU autoconfig), this kind of code can
rapidly become difficult to maintain [26]. For example,
to add support for a new OS, one needs to review all the
already written code looking for relevant #ifdef parts.

2.3 Using SCM Tools

Traditionally, SCM is implemented with check-
in/checkout control of sources (and sometimes binaries)
and the ability to perform builds (or compiles) of the
end products. Other functions, such as Process Man-
agement, i.e. the control of the software development
activities, will not be considered here.

Modern SCM tools have evolved from academic proto-
types to full strength industrial products. Most of them

now keep track of all the changes to files in secure, dis-
tributed repositories. They also support parallel devel-
opment by enabling easy branching and merging. They
provide version control of not only source code, but
also binaries, executables, documentation, test suites,
libraries, etc. Examples of such tools are Adele [5] or
ClearCase [3].

For instance, ClearCase provides each developer
with multiple consistent, flexible, and reproducible
workspaces. It uses Views (similar to the views con-
cept in databases) to present the appropriate versions
of each file and directory for the specific task at hand.
Views are defined by configuration specifications con-
sisting of a few general rules. Rules may be as simple as
“the versions that were used in the last release” or can
be more complex when particular sets of bug fixes and
features need to be combined. Views are dynamic —
they are continually updated by re-evaluating the rules
that define it. Newly created versions can thus be incor-
porated into a view automatically and instantly. Views
allow team members to strike a balance between shared
work and isolation from destabilizing changes.

The main drawbacks of these sophisticated tools is that
they are very costly to use, and have a steep learning
curve. Furthermore, even when these two problems are
overcome, it is a matter of facts that their underlying
3-dimensional model of the repository does not provide
an easy framework to mentally handle the complexity of
large software developments [1, 8]. For all these reasons,
their use is still not as pervasive as it could be.

3 CASE STUDY

3.1 The Mercure Software

To present the interest of a contribution to the software
engineering field, people use to rely on a real software
case study. However this approach has several draw-
backs. The usual proprietary nature of the studied sys-
tem makes it impossible for the author to give free ac-
cess to all the source code and its compilation/execution
environment. The community thus cannot check the
validity of the study. Further, it is hard to reproduce
the results since in a typical article, one lacks space to
make all the context available to the reader. This lack
of reproducibility defeats the scientific method, and the
results are often merely empirical.

So, instead of presenting the actual application that
gave rise to the ideas described in this paper [15, 16],
we build a model (called Mercure) of this kind of soft-
ware, with all of its context (including full source code
and reference to a freely available compiler) made avail-
able for fetching and checking by the community. It
is basically an over-simplification of this kind of soft-

See http://www.irisa.fr/pampa/EPEE/SCM
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Figure 1: Class Diagram Modeling the Mercure Software in UML

ware, where only configuration management related is-
sues would have been kept. The model is meant to be
representative of the SCM issues explored in this paper,
while being built in such a way that meaningful per-
formance results can be obtained. The reader does not
have to believe us on our good faith: she can check the
relevance of the model to her own concerns to decide
whether our conclusions apply to her specific case.

Mercure is a model of a communication software send-
ing, receiving and relaying “messages” from a set of
network interfaces connected to the distributed mem-
ory parallel computer (i.e. set of loosely coupled CPU)
on which it runs. Mercure must handle the following
variability factors (as defined in 2.1):

• Hardware level: Mercure must support a wide
range of network interface boards (e.g., for ATM,
various Ethernet, FDDI, ISDN, X25, etc.) from
various manufacturers. Let’s call Vi the number of
supported boards. Since new hardware continually
pops up, it must also be easy to add support for it
in future releases of Mercure.

• Heterogeneous distributed systems: Mercure is to
be run on such a system, thus provision must be
made to deal with heterogeneous code generation

and task distribution: some processors are spe-
cialized for relaying messages (switching), others
for computing routes, others for network manage-
ment (billing, accounting, configuring, etc.), and
still others for dealing with persistent databases.
Let’s call Vp the considered number of specialized
processors.

• Range of products: various levels (Vn) of function-
ality must be provided in the domain of network
management.

• User preferences for GUIs: various (Vg) look-and-
feel must be available.

• Internationalization: support for Vl languages must
be available.

Considering that a given variant of the Mercure software
might be configured with support for any number of
the Vi network interfaces and Vl languages, and one of
Vp kinds of processors, one of the Vn levels of network
management and one of the Vg GUIs, the total number
of Mercure variants is:

V = Vp × Vn × Vg × 2Vi+Vl−2



which, for Vi=16, Vp=4, Vn=8, Vg=5, Vl=24
gives more than several trillions possible variants
(43,980,465,111,040 to be precise).

3.2 Object Oriented Modeling of Variants

Using an object-oriented analysis and design approach,
it is natural to model the commonalities between the
variants of Mercure in an abstract way, and expressing
the differences in concrete subclasses. Consider for ex-
ample the case of the network interface boards. What-
ever the actual interface, we must be able to poll it for
incoming messages, to read them into memory buffers,
to send outgoing messages, and to set various configura-
tion parameters. So this abstract interface, valid for all
kinds of network interface boards, could be expressed as
an abstract class called NetDriver.

The idea underlying this kind of object-oriented design
is that a method (such as read msg in the class Net-
Driver above) has an abstractly defined behavior (e.g.,
read an incoming message from the lower level network
interface and store it in a buffer) and several differing
concrete implementations, defined in proper subclasses
(e.g., NetDriver1, NetDriver2 ... NetDriverN).
This way, the method can be used in a piece of code
independently of the actual type of its receiver, that is
independently of the configuration (e.g., on which kind
of interface board do we actually read a message).

Dealing with multiple variants is thus moved from
the implementation realm (where it is usually han-
dled by means of conditional compilation and complex
CM tools) to the problem domain (analysis and design
realm), meaning that it can fully be handled within the
semantics of the (OO) implementation language. This
way, it can be subject to both compiler verifications and
semantics-based safe optimizations.

In the past indeed, handling this kind of issues in an
object-oriented way had a major drawback for many
applications: performances. Since the choice of the
proper method to call would have to be delayed until
run time, we had to pay the price overhead of this dy-
namic binding. And this overhead could be prohibitive
for some real time or performance driven applications,
e.g., with Smalltalk where the inheritance hierarchy had
to be search or even with C++ where the handling of
dynamic binding through a vtable used to provoke cache
misses. Fortunately, object-oriented compiler technol-
ogy has made tremendous progresses in the last few
years, as explained in the next section.

Figure 1 presents a class diagram of the Mercure soft-

On this diagram, only a rather flat inheritance hierarchy is
suggested, but it is evident that the designer should factorize the
commonalities between subclasses in an inheritance graph as deep
as required.

ware using the UML (Unified Modeling Language)
object-model notation [28]. A Mercure system is an
instance of the class of Mercure, aggregating:

• a Gui that encapsulates the user preference vari-
ability factor. A Gui has itself a collection of sup-
ported languages, and among them, the currently
selected language.

• a collection of Managers that represent the range
of functionalities available,

• a collection of NetDrivers that encapsulate the
network interfaces of this instance of Mercure,

• an Engine that encapsulates the actual work that
Mercure has to do with its NetDrivers on a par-
ticular processor of the target distributed system.

3.3 Applying Creational Design Patterns

With this design framework, the actual configuration
management can be programmed within the target lan-
guage: it boils down to only create the class instances
relevant to a given configuration. However some care
has to be taken for programming the creation of these
objects to ensure that the design is flexible enough. A
good approach is to use the Creational Patterns pro-
posed in [12]. In our simple case, we use an Abstract
Factory (called Mercure Factory) to define an in-
terface for creating Mercure variants. The class Mer-
cure Factory features one Factory Method (encapsu-
lating the procedure for creating an object) for each
of our 5 variability factors. The Factory Methods are
parameterized to let them create various kinds of prod-
ucts (i.e. variants of a type), depending on the dynamic
Mercure configuration selected at runtime. These Fac-
tory Methods are abstractly defined in the class Mer-
cure Factory, and given concrete implementations in
its subclasses, called concrete factories.

A concrete factory starts by creating a Mercure in-
stance, which calls back the concrete factory to config-
ure its components (see Figure 2).

Building an actual variant of the Mercure software then
consists in implementing the relevant concrete factory.
By restricting at compile time (that is in the source code
of a concrete factory) the range of products that a Fac-
tory Method can dynamically create, we can choose to
build specialized versions of the general purpose Mer-
cure software.

The selection of a given concrete Mercure factory as the
application entry point allows the designer to specify
the Mercure variant she wants. Since this is done at
compile time, it should be possible to generate an ex-
ecutable code specialized towards the selected Mercure
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Figure 2: Dynamic Configuration of the Mercure Soft-
ware (UML Sequence Diagram)

variant. In the next section, we show how this can be
done automatically with current compiler technology.

4 COMPILATION TECHNOLOGY AND
PERFORMANCE RESULTS

4.1 Principle of Type Inference and Code Spe-
cialization

Good object-oriented programming relies on dynamic
binding for structuring a program flow of control —OO
programming has even been nicknamed “case-less pro-
gramming”. Most of the time, a routine (a method call)
applies to a given object, called target or receiver . Dy-
namic binding allows the choice of the actual version of
the routine to be delayed until run time: the exact type
(called the dynamic type) of the receiver need not be
known at compile time. Whenever more than one ver-
sion of a routine might be applicable, it ensures that the
most directly adapted to the target object is selected.
In statically typed languages (e.g., C++, Eiffel, Java,
Ada95), a receiver’s type must be declared beforehand
(this is called the receiver’s static type). Then the re-
ceiver’s dynamic type must be a subtype of its static
type.

In this context, the main goal of the compilation tech-
niques based on type inference consists in statically com-
puting the set of types a receiver may assume at a given
point in a program. In the most favorable case, this
set is a singleton and thus the routine can be statically
bound, and even in-lined in the caller context. In less

favorable cases, the set may contain several types. How-
ever the compiler is still able to compute the reduced set
of routines that are potentially concerned, and generate
specialized code accordingly. This can be implemented
as an if-then-else block or a switch on the possible dy-
namic types of the receiver (corresponding to the C++
RTTI) to select the relevant procedure to call. In either
case, the cost of the (conceptual) dynamic dispatch can
be mostly optimized out (and the cache miss implied by
dynamic binding is no longer a fatality).

This idea is implemented for example in SmallEiffel [7],
a free Eiffel compiler distributed under the terms of the
GNU General Public License as published by the Free
Software Foundation So we have implemented the Mer-
cure software with Eiffel, and used the SmallEiffel com-
piler to make a number of measures. Eiffel [21] is a pure
OO language featuring multiple inheritance, static typ-
ing and dynamic binding, genericity, garbage collection,
a disciplined exception mechanism, and an integrated
use of assertions to help specify software correctness
properties in the context of design by contract. How-
ever, our approach is not really dependent on Eiffel and
could be applied to any class-based languages without
dynamic class creation, e.g., C++, Ada95 or Java.

4.2 Experimental Conditions

We consider three versions of Mercure to compare the
effect of the specialization of the code generation.

FullMercure The general purpose version of the pro-
gram, including all the configurable parts. That
means that anyone of the trillions of combinations
can be dynamically chosen at runtime: all calls to
the variant methods must be dynamically bound.

CustomMercure This restricted version of the pro-
gram only includes support for 8 different network
drivers, 5 different languages and 5 different pro-
cessor types. Only one network manager, and one
GUI are available, thus allowing some method calls
to be statically bound.

MiniMercure A minimal version of the software, with
only one of each configurable part available: sup-
port for Engine1, Gui2, Language3, Man-
ager4 and NetDriver5 only. This limited sup-
port would theoretically allow every method to be
statically bound, and thus the resulting code could
have the same structure as with e.g., the #ifdef
based pre-processor method.

These three variants use exactly the same software base-
line. The only difference is that a different Mercure

SmallEiffel can be downloaded from
ftp://ftp.loria.fr/pub/loria/genielog/SmallEiffel.



Version Eiffel LOC Eiffel LOC Eiffel LOC Type infer- C LOC
(config.) (user) (total) ence Score (generated)

FullMercure 96 2903 10056 93.29% 7135
CustomMercure 60 1421 8574 96.79% 3839
MiniMercure 36 713 7866 99.29% 2639
HelloWorld – 6 4478 100.00% 189

Table 1: Compile time statistics

concrete factory is selected as the root class, that is the
class containing the entry point of the application (See
Figure 1).

4.3 Compile Time Statistics

In this section, we compare compile time statistics for
the various variants of the Mercure software with re-
spect to the minimal “Hello, world!” program (see Ta-
ble 1). We display the number of Eiffel lines of code
(LOC) for describing the configuration (i.e. the number
of LOC of the relevant Mercure concrete factory), the
number of LOC written by the programmer, as well as
the total number of lines in all the classes needed by the
application (including the libraries).

Then comes the type inference score, that is the ratio
of dynamic calls that could be replaced by direct call at
compile time. It ranges from 93% to more than 99%.
This means that the SmallEiffel compiler (version -0.87)
has been able to early bind most of the (conceptually)
dynamic binding in the MiniMercure version.

Finally, the size of the generated C code is shown. Note
that it includes the SmallEiffel runtime system (whose
size may be approximated by the “Hello, world!” one).
The small size of the code generated for the MiniMer-
cure version illustrates the ability of the SmallEiffel
compiler to take advantage of its knowledge of the liv-
ing types to efficiently specialize generated C code: only
code relevant to the specific variant of the Mercure soft-
ware is actually generated.

4.4 Memory Footprint and Runtime Perfor-
mances

All versions have exactly the same dynamic behav-
ior, because the dynamic configuration we choose
for the Mercure and CustomMercure variants is the
one selected at compile time in MiniMercure (i.e.,
we give the configuration as a set of command line
parameters: -run 10000 -engine 1 -gui 2 -lang 3
-manager 4 -netdriver ’5 5 5 5 5 5 5 5’). Their
output is thus exactly the same.

The results presented in Tables 2 and 3 have been made
on a PC486 system running Linux 1.2.13 (and GCC
2.7.0, optimization level -O3) and on a Sparc running

Version Footprint Run Time Speed-up
FullMercure 82544 1.319 0%
CustomMercure 40512 1.159 12.1304%
MiniMercure 26880 1.086 17.6649%

Table 2: Run time statistics on Linux

Version Footprint Run Time Speed-up
FullMercure 116152 0.486 0%
CustomMercure 57696 0.433 10.9053%
MiniMercure 38824 0.413 15.0206%

Table 3: Run time statistics on Sparc/Solaris

Solaris 5.0 (and GCC 2.7.2.1, optimization level -O3).

Note that because all three variants have the same dy-
namic behavior (they do exactly the same thing), their
use of dynamic memory is also identical. Despite the
system being designed for a fully dynamic configura-
tion, the compiler is able to use type inference to de-
tect what is in fact configured statically in specialized
versions of Mercure factories to generate code nearly
as compact and efficient as if it had been written stat-
ically from the beginning. In the MiniMercure case,
the generated code has the same structure as the one
that would have been obtained with e.g., the #ifdef
based pre-processor method. The performance differ-
ences between MiniMercure and FullMercure represent
the maximum price that the designer would have to pay
for trading time and space performances for dynamic
configuration capabilities. But what is much more in-
teresting is that with exactly the same software baseline,
the designer can easily choose his own trade-off between
these two properties: he has just to select the relevant
concrete factory.



5 DISCUSSION AND RELATED WORK

5.1 Discussion

Our approach is not the ultimate solution to all SCM
problems. It has a number of drawbacks and advan-
tages:

• It forces some SCM issues (variant management)
to be dealt with during the design phase of the
software. But according to us, it belongs there,
because it makes the notion of a product family
much more concrete. There is one concrete factory
for each variant of the product, and no more need
to understand the variations between variants in
terms of “diff” listings.

• A compiler is able to do type inference only if it
has access to the full code. It is clear that in our
approach, we cannot deal efficiently with libraries
of classes compiled in .o or .a forms. However, .o
and .a Unix formats are anyway not very usable in
an OO context because they lack type information.
They were used in the past to solve a number of
problems, that are now dealt with at another level:

– enforcing modularity for procedural programs:
this is now superseded by OO concepts.

– speed of compilation: while this still holds
for small programs, it is well known that
large C++ compilations actually spend most
of their time in link editing. So having
.o or .a files no longer reduces the overall
edit/compile/link/test time. With respect to
medium size programs, for example it only
takes 10 seconds on a Pentium Pro 200 to have
SmallEiffel compile itself (50kLOC).

– source protection: having access to the full
code does not mean full source code, because
the source can be pre-compiled in a “dis-
tributable” format, e.g., Java .class formats or
Eiffel “pre-compiled” formats from some ven-
dors. Alternatively, sophisticated encryption
technology could be used to protect the source
code.

• Our approach does not remove the need for classi-
cal configuration management tools. We still have
to deal with revisions (new features, bug correc-
tions, etc.) and possibly concurrent development
activities. However concurrent development activi-
ties are minimized by the fact that a variant part is
typically small and located in its own file: someone
responsible for a product variant would not have to
interfere with other people modifications, and con-
versely. Thus in our experience, a simple tool such
as RCS or CVS (equipped with automatic symbolic

naming of versions, see below) should be enough for
many sites.

• Programming the concrete factories to specify the
configuration is straightforward, but quite tedious.
This could easily be generated by e.g., a simple
Tcl/Tk shell. This shell would also encapsulate
the call to the compiler and thus could be able to
retrieve the name of all the files used in the compi-
lation. Using this information, a snapshot of the
full configuration (including the compiler, linker
etc.) could be assigned a symbolic version name
and stored in a repository (e.g., using RCS).

• Doing all the configuration in the target language
eliminates the need to learn and use yet another
complex language used just for the configuration
management (e.g., the various existing Module In-
terconnection Languages, as in Adele [5], Pro-
teus [10], etc.)

5.2 Related work

This work can be seen as an application of ideas circu-
lating in the “Partial Evaluation” community for years.
Actually, it can be seen as taking benefit of the fact
that the type of configurable parts have bounded static
variations (i.e. the sets of possible types are known at
compile time). Thus the Partial Evaluation community
trick known as The Trick (see [17]) can be applied to
specialize the general program at compile time.

Because this partial evaluation only deals with the com-
putation of dynamic type sets, it is also clearly related
with the domain of type inference. Ole Agesen’s recent
PhD thesis [2] contains a complete survey of related
work. Reviewed systems range from purely theoretical
ones [33] to systems in regular use by a large commu-
nity [22], via partially implemented systems [29, 30] and
systems implemented on small languages [14, 25].

Related work from the SCM point of view have already
been extensively discussed all along this paper. Here
we restrict ourselves to approaches trying to leverage
the object-oriented or object-based technologies. Our
idea of designing the application in such a way that the
SCM is simplified is not new [6, 11]. But previous works
needed a dedicated tool to handle the actual SCM. Since
in our approach the SCM is done within the OO pro-
gramming language, there is no need for such an ad hoc
tool: the compiler itself handles all the work.

6 CONCLUSION

Our contribution in this paper was to propose a method
to simplify software configuration management by reify-
ing the variants of an object-oriented software system
into language-level objects; and to show that newly



available compilation technology makes this proposal
attractive with respect to performance (memory foot-
print and execution time) by inferring which classes are
needed for a specific configuration and optimizing the
generated code accordingly. This approach opens the
possibility of leveraging the good modeling capabilities
of OOL to deal with fully dynamic software configura-
tion, while being able to produce space and time ef-
ficient executable when the program contains enough
static configuration information. We have illustrated
this idea with a small case study representative of a
properly designed OO software. All the performance
figures we get are obtained with freely available soft-
ware, and, since the source code of our case study is
also freely available, they are easily reproducible and
checkable.

In the most favorable cases, the SmallEiffel compiler is
able to infer the type of the receiver in up to 100% of
the cases, and thus to optimize out the dynamic binding.
We believe that this approach can become mainstream
when commercial compilers incorporate these kinds of
technologies. From advertisement flyers we have seen,
this seems to be work in progress for several compilers
for C++ and Java.
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