
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Domain-specific Model Editors with Model

Completion

Sagar Sen1 Benoit Baudry2

IRISA/INRIA,
Campus universitaire de Beaulieu

35042 Rennes,France

Hans Vangheluwe3

School of Computer Science,
McGill University

Montreal,Quebec, Canada H3A2A7

Abstract

Today, integrated development environments such as Eclipse allow users to write programs quickly by
presenting a set of recommendations for code completion. Similarly, word processing tools such as Microsoft
Word present corrections for grammatical errors in sentences. Both of these existing systems use a set
of constraints expressed in the form of a grammar to restrict/correct the user. Taking this idea further,
in this paper we present an integrated software system capable of generating recommendations for model
completion of partial models built in arbitrary domain specific model editors. We synthesize the model
editor equipped with automatic completion from a modelling language’s declarative specification consisting
of a meta-model and constraints on it along with a visual syntax. The automatic completion feature is
powered by a Prolog engine whose input is a constraint logic program derived from some models. The input
logic program is obtained by a model transformation from models in multiple languages: the meta-model
(as a class diagram), constraints on it (as constraint logic clauses), and a partial model (in the domain
specific language). The Prolog engine solves the generated logic program and the solution(if there is one) is
returned to the model editor as a set of recommendations for properties of the partial model. We incorporate
automatic completion in the generative tool AToM3 and use SWI-Prolog for constraint representation and
satisfaction. We present examples using an illustrative visual language of Finite State Machines.

Keywords: constraint logic programming, meta-model, model editor, declarative specification, partial
model, AToM3

1 Introduction

Generative modelling tools such as AToM3 (A Tool for Multiformalism Meta-

modelling) [3],GME(Generic Modelling Environment)[5], GMF (Eclipse Graphical

Modelling Framework)[4] can synthesize a domain specific visual model editor from

1 Email: ssen@irisa.fr
2 Email: bbaudry@irisa.fr
3 Email: hv@cs.mcgill.ca

c©2007 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:ssen@irisa.fr
mailto:bbaudry@irisa.fr
mailto:hv@cs.mcgill.ca


Sen, Benoit, Vangheluwe

a declarative specification of a domain specific modelling language. A declarative

specification consists of a meta-model, a set of constraints on all possible instances

(or models) of the meta-model, and a visual syntax that describes how language

elements(objects and relationships) manifesting the model editor. The designer of a

model uses this model editor to construct a model on a canvas. This is analogous to

a using an integrated development environment(IDE) to enter a program or a word

processor to enter sentences. However, IDEs such as Eclipse present recommen-

dations for completing a program statement when possible based on its grammar

and existing libraries [2]. Similarly, Microsoft Word presents grammatical correction

recommendations if a sentence does not conform to natural language grammar. Can

we extrapolate similar technology for partial models constructed in a model editor

for a domain specific modelling language(DSML)?

The major difficulty for providing completion capabilities in model editors is to

integrate heterogeneous sources of knowledge in the computation of the possible

solutions for completion. The completion algorithm must take into account the

concepts defined in the meta-model for the DSML, the constraints expressed on

this meta-model and the partial model built by a domain expert. The difficulty is

that these three sources of knowledge are obviously related(they refer to the same

concepts) but are expressed in different languages, sometimes in different files, and

in most cases by different people and at different moments in the development

cycle as they are separable concerns. These constraints are expressed in different

languages and can come from multiple paradigms. For instance, in a electrical

system model the resistance of a resistor can be constrained both by a low-level

circuit model based on Kirchoff’s laws and a high-level business process constraint

that wants to have low-energy consumption at the resistor. The goal is to integrate

these constraints under one common language.

In this paper, we propose an automatic transformation from all these sources of

knowledge to a constraint logic program (CLP).The generated program can then be

fed in a Prolog engine that provides the possible solutions for completing the model.

Our transformation is integrated in the software tool AToM3. The meta-model for

a DSML is built directly in AToM3’s model editor using its class diagram formal-

ism. The constraints on this meta-model are defined with Prolog in a separate file.

Using this information and a description of the concrete visual syntax(specified in

an icon editor) for a modelling language, AToM3 synthesizes a visual model editor

for the DSML. The partial model can be built and edited in the generated model

editor and the designer can ask for recommendations for possible completions. The

closest implementation in the literature is that of the GEMS tool [7]. In their work

the detailed process of transforming a class-diagram based meta-model to a Prolog

knowledge base is not discussed. Also, we clearly define the model completion prob-

lem boundaries and restrict ourselves to finite-domain constraint logic programs.

An overview of our methodology is presented in Section 2. In Section 3 we

present how domain specific modelling languages are specified and model editors

for them are synthesized in MDE using meta-models, constraints and visual syntax.

We also present in Section 3 an example of a partial model and a complete model

in our chosen domain. Using the meta-model,constraints, and partial model we

present the transformation to a constraint logic program in Section 4. We present

2



Sen, Benoit, Vangheluwe

Fig. 1. Steps Taken by a DSML Designer to Synthesize a Model Editor in AToM3

examples of model completion recommendations generated for partial models in

Section 5. We conclude in Section 6 with limitations of our work and we layout

future directions.

2 Methodology Overview

Synthesis of model editors elicit the involvement of several different experts and

users. We identify the involvement of language designers, domain experts or users

of a DSML, visual syntax designers for automatic synthesis of model editors.

• Language Designers interact with the domain experts to specify the concepts

in a DSML in the form of a meta-model which is an AToM3 class diagram 4

(meta-model from now on). Next, the designer specifies a set of Prolog clauses

on the properties defined in the meta-model. We use SWI-Prolog for constraint

representation.

• Visual Syntax Designers construct annotated icons that represent the different

concepts in the meta-model. The icon for a class may be annotated with its

property values. In Figure 1 we summarize how the meta-model, constraints,and

visual syntax is used to synthesize a model editor for a DSML.

• Domain Experts and Users build models in the model editor that is synthesized

from the meta-model, constraints, and visual syntax specifications. They also

help the language designer define the concepts in the meta-model.

A domain expert uses the synthesized model editor to build models. He creates

a model by inserting objects and building relationships between objects. He/she

also sets values for properties. The model is simply a graph or a partial model until

4 AToM3 class diagram is a subset of UML class diagram for meta-modelling and has sufficient expressive-
ness for bootstrapping

3



Sen, Benoit, Vangheluwe

Fig. 2. Model Completion Outline

it conforms to its modelling language by satisfying all the constraints imposed on

the modelling language. Manually performing such a task can be extremely tedious

and sometimes impossible due to the size of the domains of model properties and

complexity of constraints.

To automate the completion of a partial model we introduce a model trans-

formation to construct a generative algorithm from the knowledge provided in the

meta-model and constraints. The algorithm takes a partial model as input and

generates a constraint logic program. This transformation is integrated into AToM3

so that it can be used for completion of models in any domain specific language.

Logic programming tool developers have built Prolog compilers [6] that can

perform computer algebra and constraint satisfaction on an input constraint logic

program. Such a Prolog compiler is invoked by AToM3 and the synthesized CLP

is solved and the results (if they exist) are returned to the model editor as recom-

mendations. We use SWI-Prolog [6] for compiling the constraint logic program. In

Figure 2 we outline how we complete partial models in AToM3 .

Now that we have outlined our overall methodology we go ahead and study each

aspect of the methodology in detail leading to examples that illustrate the working

of the idea. We illustrate our methodology using the guiding example of a Finite

State Machine (FSM) modelling language.

3 Specifying a Domain Specific Modelling Language

In this section we explain the steps taken to declaratively specifying a domain

specific modelling language. We use Finite State Machines (FSM) as a running

example for a modelling language. A FSM modelling language is a visual language

with circles representing states and directed arrows representing transitions between

states. To define a modelling language and to generate visual model editor from it

requires three inputs:

(i) A Meta-model as an AToM3 class diagram

(ii) A Set of Prolog Constraints on the meta-model

(iii) A Visual Syntax

We briefly describe these in the following sub-sections.

4



Sen, Benoit, Vangheluwe

Fig. 3. The Finite State Machine Meta-model

Table 1
Domains for Primitive Datatypes

Type Domain

Boolean {0, 1}

Integer {MinInt, .., MaxInt}

String {”a”, ”b”, “c”, ”event1”, .., }

3.1 Meta-model

A model consists of objects and relationships between them. The meta-model of

the modelling language specifies the types of all the objects and their possible inter-

relationships. The type of an object is referred to as a class. The meta-model for the

FSM modelling language is presented in Figure 3. The classes in the meta-model

are State and Transition.

In this paper we use the class diagram formalism in AToM3 for specifying a

meta-model. The class diagram formalism can specify itself and hence exhibits the

property of bootstrapping. We use the visual language notation of class diagrams to

specify the meta-model for the FSM modelling language in Figure 3.

Each class in the meta-model has properties. A property is either an attribute

or a reference. An attribute is of primitive type which is either Integer, String,

or Boolean. For instance, the attributes of the class State are isInitial and isFinal

both of which are of primitive type Boolean. An example domain of values for the

primitive attributes is given in Table 1. The String variable can be a finite set

consisting of a null string, and finite length strings that specify a set of strings. In

this paper, we consider a finite domain for each attribute. The domain is specified

in the meta-model and all the models that are instances of the meta-model know of

the domain for each attribute.

Describing the state of a class of objects with only primitive attributes is not

sufficient in many cases. Modelling many real-world systems elicits the need to

model complex relationships such as modelling that an object contains another set

of objects or an object is related to another finite set of objects. This set of related

objects is constrained by a cardinality. When a class is related to another class,

the related classes refer to each other via references. For instance, in Figure 3 the

classes State and Transition refer to each other via references annotated with

uni-directional relationships. The cardinality constraints are also annotated with

the relationship.

Apart from attributes and references, objects can inherit properties from other

classes. The attributes and references of a class called a super class are inherited by

5



Sen, Benoit, Vangheluwe

derived classes. Similarly a derived class inherits the references in the super class.

There is no inheritance in our FSM meta-model, nevertheless we consider trans-

formation of inheritance relationships in the transformation presented in Section

4.

3.2 Constraints on Meta-model

Constraints on a meta-model are not always conveniently specified using diagrams.

They are better expressed in a textual constraint language who’s semantics has

no side-effect (does not change the state of an object or structure of the model)

on the meta-model or its instances (models). The OMG standard for constraint

specification is Object Constraint Language (OCL) however in our current work we

use constraint logic programming clauses in the form of Prolog statements. These

constraints are initially specified on meta-model properties. The transformation

generates a set of constraints on a lists of properties (those influencing the con-

straint) in the partial model.

We use the CLP bounds library to specify constraints on properties with finite

domain. There are several predicates in the standard Prolog library. For instance,

one of the constraints for the FSM modelling language is:

• atLeastOneFinalState

Variables: listOfisFinal is the list of all isFinal attributes for all states in the

model.

Prolog Constraint: sum(listOfisFinal,>=,1)

Explanation: The attribute isFinal is a boolean and the list of isFinals contains

the values of all attributes in the partial model. The constraint ensures that the

sum of the isFinals is greater than or equal to 1. This enforces the constraint that

there is at least one final state.

Other constraints include exactly one initial state, and a unique label for a

state object. To define constraints for arbitrary DSMLs we point the reader to

the SWI-Prolog reference manual [6]. The language and the libraries have been

developed for two decades and we have a large repository of constraints to work

with including facility to use a foreign language to define an arbitrary boolean

function. Prolog has powerful mechanisms such as domain reduction. For instance,

constraint alldifferent(listOfVariables) ensures the automatic reduction in the domain

of variables in listOfVariables such that the each variable in the list has a domain

with values not in the domain of the others. The textual specification of constraints

is typically specified in an different file from the class diagram meta-model itself.

3.3 Visual Syntax

The final step(in specifying a DSML for synthesizing a model editor) we take is to

specify the concrete visual syntax of the class of objects in the meta-model. The

visual syntax specifies what an object looks like on a 2D canvas. An icon editor in

AToM3 is used to specify the visual syntax of the classes in the meta-model.

An icon editor is used to specify the visual syntax of meta-model concepts such

as classes and relationships. The icon for State is a circle annotated with three of

6



Sen, Benoit, Vangheluwe

its attributes(isFinal, isInitial, and label). The connectors in the diagram are points

of connection between State objects and Transition objects.

The visual syntax can also be dynamically changed based on the properties of

the model for example. In an iconic visual modelling language such FSM the first

step taken in specifying a visual syntax is drawing an icon that represents a class

of objects. If needed it is annotated with text and its properties. Connectors are

added to the visual object so that it can be connected to other objects if they are

related.

4 Transformation from Declarative Specification and a

Partial Model to CLP

We present the transformation of the different parts of a partial model to a CLP

using the meta-model and constraints as input. The essential idea to generate CLPs

constitutes the following steps:

(i) Create variables to represent properties of a partial model

(ii) Define a domain on these variables.

(iii) Define constraints on these variables.

(iv) Finally, insert the label(SetOfVariables) clause to perform back-tracking

search.

We associate a finite domain for each variable in the constraint logic program

(CLP) hence, making it a constraint logic program in finite domain (CLP(FD)).We

use the clp bounds library in SWI-Prolog to express domains and constraints in

CLP(FD). We generate a conjunction of constraints in Prolog. The conjunction is

given by a , operator. Finally, we insert the label predicate at the end of the program

to perform back-tracking to find the value assignment/labeling of variables so as to

generate completions for the partial model.

4.1 Transforming an Object

We now discuss how objects in a partial model are transformed to CLP. We illus-

trate this with a concrete example to enhance the reader’s understanding. Con-

sider the object shown in Figure 4. It is a State object. The attributes of

a State object are isFinal, isInitial, currentState, and label. Each attribute also

has a domain. The attributes isFinal, isInitial and currentState in the State ob-

ject has a boolean domain of [0, 1]. The label attribute has an integer domain of

[0, 1, 2, .., MaxNumberOfStates].

In the transformation first each attribute has a unique identity which is given

by OwningObjectName attributeName. This unique ID is used to create a variable

and is added to a list of variables in the CLP. If Model is the set of variables in the

partial model. Then the variable State0 isFinal is included in this list:

Model=[..., State0 isFinal,...],

Next, we associate a domain with a variable already included in the list of model

variables. This is done using the member Prolog predicate. For instance, the domain

7



Sen, Benoit, Vangheluwe

Fig. 4. (a) Object (example of a State object (b) Generated CLP code (c) Five Prolog solutions for each
variable

Fig. 5. (a) Association between State objects and a Transition (b) Generated CLP code (c) Cardinality
constraint determines the value of an existence variable.

for the variable State0 isFinal is manifested in Prolog as follows:

member(State0 isFinal,[0,1])

We obtain the domain information for an attribute from the meta-model of the

modelling language.

The CLP code generated for a State object is shown in Figure 4 (b). Solving

the Prolog program gives a set of arrays with the result for the value assignment of

each variable. This is shown in Figure 4 (c).

4.2 Transforming an Association

Next, we consider the transformation of an association in partial model to Prolog

clauses. Consider the associations in Figure 5 (a). Two State objects are connected

by two Transition objects. The existence of these relationships is determined by

boolean existence variables such as Transition0 exists and Transition1 exists. In gen-

eral, these variables are synthesized for all association in the partial model. We

8



Sen, Benoit, Vangheluwe

obtain the cardinality constraint for each association from the meta-model. In the

partial model we look for all associations with the same source and destination ob-

ject. We impose a cardinality constraint on all associations with the same source

and destination. We synthesize two Prolog clauses to impose the cardinality con-

straint on a list of existence variables for the associations with the same source and

destination. The example in Figure 5 (a) has its code generated in Figure 4 (b).

The cardinality constraints are imposed as sum of existence variables as follows:

sum([Transition0 exists,Transition1 exists],>=,0),

sum([Transition0 exists,Transition1 exists],=<,100),

The solution obtained for completing the partial model is shown in Figure 5 (c).

4.3 Generating Constraints

Finally, we insert constraints defined on the meta-model. A constraint C is expressed

on properties p1,p2,...pN of a meta-model MM. In a partial model we identify all

properties that are constrained by C and generate a list of variables (those already

generated as described in Sections 4.1 and 4.2). The constraint on the meta-model

itself cannot be executed. The constraint of the partial model is handled by the

Prolog compiler.

For instance, to ensure that every State object in the partial model has a unique

label we generate the following constraint which is added as a conjunction to the

constraints already generated:

all different([State0 label,State1 label,..])

The all different clause ensures that he value of each element in the list it receives

as input is unique.

5 A Running Example

In this section, we present an example of a partial model that we use to generate

model completion recommendations. In Figure 6 we present a partial model with

two generated recommendations. For the same partial model we performed more

tests. We generate 5 model completion recommendations. We randomly shuffle the

domain constraints in the generated CLP. The shuffling changes the priority order

in which values for properties are chosen by Prolog and has an effect on the result of

model completion. We do not study this variability in detail. However, we present

the time taken for generating 5 recommendations in Table 2.

For our example the time taken to generate a solution for the modelis reasonably

acceptable with an average of 2.5 seconds. A large portion of the time taken involves

pre-processing of the problem by the Prolog compiler. The rest of the time is taken

to find value assignments for constraint satisfaction.

6 Conclusion

In this paper we present a framework for generating model completion recommen-

dations in model editors. We illustrate our approach with the simple example of the

9



Sen, Benoit, Vangheluwe

Fig. 6. A Partial Model and Two Proposed Recommendations

Table 2
Generated Recommendations

Recommendation CPU Time

1 1.3

2 0.55

3 3.34

4 3.50

5 3.72

FSM modelling language. At present we specify the meta-model as an AToM3 class

diagram (which is subset of UML class diagrams with sufficient facility for boot-

strapping). Constraints on the meta-model are directly specified in Prolog. We also

demonstrate, using a reasonably complex example, the working of our approach.

However, there is room for several improvements.

Currently we only support constraint satisfaction of constraints from the meta-

model and constraints of the modelling language. We wish to extend this by intro-

ducing user-specific objective functions and other constraints such as model trans-

formation pre-conditions. This could lead to synthesis of interesting models for

tasks such as model transformation testing and design space exploration. It would

also be interesting to see how constraints from multiple paradigms can co-exist in

the same environment and how they can be solved to get meaningful results.

Also, we start from a partial model with a fixed number of objects. In other

10



Sen, Benoit, Vangheluwe

words the dimensionality given by the object space is fixed. We plan to separate the

notion of object space and property space to allow the synthesis of objects that add

to a partial model before we go ahead and find values for proper ties as explained

in this article. He have not rigoursly tested our approach for scalability. With the

increase in the number of objects the Prolog engine takes longer to find a solution.

A way to speed up would be to reduce the number of elements in the domain of

properties in the partial model. Another approach would be divide the model into

components and complete each component before integration.

Finally, we plan to use high-level constraints to formally communicate knowledge

between modelling domains(multi-paradigm modelling) or scientific knowledge in

general.

References

[1] Krysztof R. Apt, and Mark G. Wallace, Constraint Logic Programming with ECLiPSe, Cambridge
University Press(2007).

[2] Andrew J. Ko, Htet Htet Aung and Brad A. Myers, Design
requirements for more flexible structured editors from a study of programmers text editing, CHI 05,
URL: http://portal.acm.org/citation.cfm?id=1056808.1056965.

[3] Hans Vangheluwe and Juan de Lara, Domain-Specific Modelling with AToM
3.In Juha-Pekka Tolvanen,

Jonathan Sprinkle, and Matti Rossi, editors,The 4th OOPSLA Workshop on Domain-Specific Modeling,
page 8 pp., October 2004. Vancouver, Canada.

[4] Karsten Ehrig, Claudia Ermel, and Stegan Hansgen, Generation of visual editors as eclipse plug-ins in
Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering, pp.
134 -143 , 2005

[5] R Ledeczi, A., Bakay, A.; Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J. and Karsai, G. Composing
Domain-Specific Design Environments in Computer, 44-51, 2001

[6] Jan Wielemaker, SWI-Prolog 5.6.35 Reference Manual,2007 URL:
http://gollem.science.uva.nl/SWI-Prolog/Manual/

[7] Jules White, Andrey Nechypurenko, Egon Wuchner, and Douglas C. Schmidt, Intelligence Frameworks
for Assisting Modelers in Combinatorically Challenging Domains, Proceedings of the Workshop on
Generative Programming and Component Engineering for QoS Provisioning in Distributed Systems,
October 23, 2006, Portland, Oregon.

11

http://portal.acm.org/citation.cfm?id=1056808.1056965.
http://gollem.science.uva.nl/SWI-Prolog/Manual/

	Introduction
	 Methodology Overview 
	Specifying a Domain Specific Modelling Language
	Meta-model
	Constraints on Meta-model
	Visual Syntax

	Transformation from Declarative Specification and a Partial Model to CLP
	Transforming an Object
	Transforming an Association
	Generating Constraints

	A Running Example
	Conclusion
	References

