
Partial Model Completion in Model Driven Engineering
using Constraint Logic Programming

Sagar Sen1,2, Benoit Baudry1, Doina Precup2

1 IRISA, Campus de Beaulieu
35042 Rennes Cedex France

2 School of Computer Science, McGill University,
Montreal, Quebec, Canada

{ssen,bbaudry}@irisa.fr , dprecup@cs.mcgill.ca

Abstract. In Model Driven Engineering a model is a graph of objects that con-
forms to a meta-model and a set of constraints. The meta-model and thecon-
straints declaratively restrict models to a valid set. Models are used to represent
the state and behaviour of software systems. They are specified in visual mod-
elling environments or automatically synthesized for program testing. In such
applications, a modeller is interested in specifying a partial model or a set of par-
tial models which has a structure and associated properties that interests him/her.
Completing a partial model manually can be an extremely tedious or an unde-
cidable task since the modeller has to satisfy tightly-coupled and arbitrary con-
straints. We identify this to be a problem and present a methodology to solve
(if a solution can be found within certain time bounds) it usingconstraint logic
programming. We present a transformation from a partial model, its meta-model,
and additional constraints to a constraint logic program. We solve/query the CLP
to obtain value assignments for undefined properties in the partial model. We
then complete the partial model using the value assignments for the rest ofthe
properties.

1 Introduction

Model-driven engineering (MDE) [1] [2] [3] is an emerging trend that promises de-
crease in development time of complex software systems. Forthis, MDE makes exten-
sive use of models. A model is specified in a modelling language which is described
declaratively using a meta-model and a set of constraints. The Object Management
Group (OMG) [4] standard for specifying a meta-model isMeta-object Facility (MOF)
[5]. The constraints on the properties described in the meta-model are specified in a
constraint language such asObject Constraint Language (OCL) [6].

Several tasks in MDE require building and manipulating models. Models are built in
visual modelling environments [7] [8]. Models are automatically synthesized for testing
[9] and verification [10]. The design space of models are explored for meeting require-
ments in embedded systems [11]. In all these cases, a modeller would like to specify
a partial model that interests him/her. The task of completing a model manually could
be extremely tedious since the modeller will have to satisfya set of restrictions that are
imposed by the meta-model and constraints (for instance, completing models in a visual
modelling environment). We intend to automate this process.



In this paper we propose an approach where we use the idea thata partial model,
its meta-model, and a set of constraints together result in alarge set of constraints that
can be represented as aconstraint logic program (CLP). TheCLP is solved/queried to
obtain the missing elements in a partial model to give a complete model. We use the
simpleHierarchical Finite State Machine (HFSM) modelling language to illustrate our
approach. However, our approach is extensible to any modelling language. In Section
2 we describe meta-models, constraints on it and the resulting modelling language for
specifying models. Section 3 presents the algorithm for transforming a partial model
with its meta-model and constraints to a constraint logic program. In Section 4 we
present an example based on theHierarchical Finite State Machine modelling language.
We conclude in Section 5.

2 Meta-models and Constraints of a Modelling Language

In this section we define the concept of a meta-model and constraints on it to specify
a modelling language. We present theHierarchical Finite State Machine (HFSM) mod-
elling language with its meta-model and constraints as an illustrative example. The basic
principles for specifying any modelling language follow the same set of procedures we
use to discuss theHFSM modelling language.

2.1 Meta-models

A modelling language allows us to specify models. A model consists of objects and
relationships between them. Themeta-model of the modelling language specifies the
types of all the objects and their possible inter-relationships. The type of an object is
referred to as aclass. The meta-model for theHFSM modelling language is presented
in Figure 1 (a). The classes in the meta-model areHFSM, Transition, AbstractState,
State, andComposite.

In this paper we use theObject Management Group (OMG) [4] standardMeta-object
Facility (MOF) [5] for specifying a meta-model.MOF is a modelling language capable of
specifying domain-specific modelling languages and its ownmeta-model. This property
of MOF is known asbootstrapping. We use the visual language notation inMOF to
specify the meta-model for theHFSM modelling language in Figure 1 (a).

Each class in the meta-model hasproperties. A property is either anattribute or a
reference. An attribute is of primitive type which is eitherInteger, String, or Boolean.
For instance, the attributes of the classState are isInitial and isFinal both of which are
of primitive typeBoolean. An example domain of values for the primitive attributes is
given in Table 1. TheString variable can be a finite set of strings or a regular expression
that specifies a set of strings.

Describing the state of a class of objects with only primitive attributes is not suf-
ficient in many cases. Modelling many real-world systems elicits the need to model
complex relationships such as modelling that an object contains another set of objects
or an object is related to another finite set of objects. This set of related objects is con-
strained by amultiplicity. A reference property of a class allows its objects to be related
to a set of objects. For instance, an object of classHFSM containsTransition objects.



Table 1. Domains for Primitive Datatypes

Type Domain

Boolean{true}, { f alse}

Integer {MinInt, ..,−2},{−1},{0},{1},{2, ..MaxInt}

String {null},{”” },{” .+ ”}

The multiplicity constraint for the relationship is shown at the relationship ends in Fig-
ure 1 (a). OneHFSM object can contain * or arbitrary number ofTransition objects.
The reference names for either class are given at opposite relationship ends. The refer-
encehfsmTransitions is a property of classTransition while referencetransitions is a
property of classHFSM.

Fig. 1. (a) The Hierarchical Finite State Machine Meta-model (b) A HierarchicalFinite State
Machine model in its Concrete Visual Syntax

A special type of relationship is that ofcontainment. For instance, in Figure 1 (a) the
HFSM class is the container for bothAbstractState andTransition objects. The dis-
tinguishing visual syntax in comparison to other types of relationships is black rhombus
at the container class end of the relationship.

Objects can inherit properties from other classes. The attributes and references of a
class called asuper class are inherited by derived classes. For instance, the classesState
andComposite inherit properties fromAbstractState. The visual language syntax to
represent an inheritance relationship is distinguished bya triangle at the super class end
of the relationship.

The visual language ofMOF to specify a meta-model is expressive enough to specify
a network of objects along with the domain of each of its properties. The multiplicity
constraints impose constraints on the number of possible relationships between objects.
However, most complex constraints that describe relationships between properties can
easily and concisely be specified using a textual language for modelling constraints. In
the following section we present examples of such constraints and talk about a language
to specify them.



In our implementation the input meta-model for a modelling language is read in
from a XML file containing the graph with the representation of the classes and the
relationships between them. The cardinality constraints are generated and stored sepa-
rately asProlog clauses.

2.2 Constraints on Meta-models

Classes and the domain of its properties in a meta-model specify basic domain and
multiplicity constraints on a model. However, some constraints that cannot be expressed
directly within the meta-model are better specified in a textual language. For example, it
is not possible to use multiplicities to express that aHFSM must contain only one initial
state. This has to be defined in an external constraint that isattached to the meta-model.

There exist a number of choices for languages when it comes toexpressing con-
straints on models. TheOMG standard for specifying constraints onMOF models is the
Object Constraint Language (OCL) [6]. The constraint that there must be only one ini-
tial state in aHFSM model is expressed inOCL as:-

context State inv :
State.allInstances()→ select(s|s.isInitial = True)→ size() = 1

The OCL is a high-level and complex constraints specification language for con-
straints. The evolving complexity in the syntax ofOCL on the one hand makes it hard
for one to specify its formal semantics on the other. We consider only a subset ofOCL
for manually specifyingProlog constraints on models.

We use the constraint logic programming language calledECLiPSe [12] (based
on Prolog) to specify constraints on model properties. Predicates inECLiPSe equips
a search algorithm with results from automatic symbolic analysis and domain reduction
in a model to prune its search space. Consider the model of aHFSM in Figure 1 (b).
TheECLiPSe predicate that constrains the number of initial states is:

ModelisInitial = [HFSMStateOb ject1isInitial,
HFSMStateOb ject2isInitial,
HFSMStateOb ject3isInitial],
ModelisInitial :: [0..1],
ic global : occurrences(1,ModelisInitial,1),

The ModelisInitial list contains unique identifiers forisInitial attributes of three
state objectsStateOb ject1, StateOb ject2, andStateOb ject3. The domain of all these
identifiers in the listModelisInitial is binary. The predicateoccurences in theic global
library of ECLiPSe states that the number of occurrences of the value 1 in the list is
limited to 1. This means that only one of the variables in the list is assigned a value of
1. The choice of 1 for a variable automatically guides the compiler to perform domain
reduction and reduce the domain of the rest of the variables in the list. The dynamically
assigned domain for the other variables will be 0 and not 0,1. This feature drastically
reduces the search space for the constraint satisfaction algorithm.



It is interesting to note that predicates inOCL are specified at the meta-model level
of the modelling language while the constraints inECLiPSe are generated for each
model. In the next section we present how we generateECLiPSe predicates for each
model automatically.

In our implementationProlog constraints are generated for a meta-model and stored
in a prologpl file. The constraints operate of lists of variables in the partial model.

3 Transformation: Partial Model, Meta-model, and Constraints to
CLP

In this section we describe an algorithm to transform a partial model in a modelling
language (meta-model and constraints) to a CLP. Keeping thestructure static in the
partial model we query the CLP to obtain value assignments for the properties in the
model. The query process invokes a back-tracking algorithmto assign values to the
variables such that all related predicates are satisfied. Inthis case the algorithm returns
a Yes. If the back-tracking method fails to find a set of value assignments that can
complete the model the algorithm returns aNo. We start with describing a partial model
in 3.1. In Section 3.3 we present the variables and functionsthat will be used in the
algorithm. The algorithm itself is presented in Section 3.4.

3.1 Partial Model

A partial model is a set of objects described in a modelling language. The properties of
the objects are either partially specified or they are not specified at all. What is specified
is the domain of possible assignments for each and every property. This is derived from
the meta-model that specifies the modelling language for thepartial model objects.

Fig. 2. (a) A Partial Model inHFSM (b) A Complete Model

In Figure 2 (a) we present a partial model that has 3 state objects and 3 transition
objects in theHFSM language. Note that the labels, events, and other properties of the
objects are not specified at all.

The domain of each property in the model is shown in Figure 3. We need to find
a way to assign appropriate values for every property in the model so that it satisfies
the structural requirements imposed by the meta-model and also additional constraints
specified textually as CLP predicates.



Fig. 3. Domain of Properties in the Partial Model

Which value is taken by a property will be decided when we transform the partial
model to a CLP and solve it. This transformation process and solution is discussed in
the next sections.

3.2 CLP as a Common Language

Requirements in MDE come from many sources. In this paper we focus on three sources
of requirements.

1. The meta-model is a diagram specified in a meta-modelling language such asMOF
2. The constraints are textually specified inOCL or directly inCLP
3. The partial model is specified either diagrammatically ortextually as an instance of

the meta-model.

There also could be many other sources of requirements such as pre-conditions
and post-conditions from programs that manipulate models and an objective function
that is soft constraint on the properties of a model. These requirements are specified
in different languages that are either graphical or textualand are usually expressed
in the most convenient specification language such asOCL or MOF. Combining the
declarative specifications from different sources into onecommon language is necessary
for analysis on a common platform. The following section presents an algorithm that
syntactically transforms constraints from various sources (the three that we consider)
into aCLP.



3.3 Preliminaries

The input to the transformation consists of a partial model,the meta-model and the
constraints specification of a modelling language. In Table2 we list out symbols and
their descriptions we use for describing the algorithm in the next section.

Variable Description
M Partial model
M.properties Set of all properties(attributes and references) inM
Model List of CLP variables for all properties inM
Model property List of CLP variables for a relationship from a reference calledproperty
property.lowerBound Lower bound on multiplicity of a relationship from a reference calledproperty
property.upperBound Upper bound on multiplicity of a relationship from a reference calledproperty
property to re f erence A 0/1 variable for a relationship from aproperty to one of itsre f erences
re f erence to property A 0/1 variable for a relationship from are f erence to its property
C Set of non-meta-model constraint predicates
Model constraint List of variables that are constrained by the constraintconstraint
constraint.predicate Name of the CLP predicate for a constraint identifier
constraint.parameters String of additional comma separated parameters for a predicate

Table 2. Symbols we use in the model to CLP transformation algorithm

The transformation algorithm uses some handy functions which we list and describe
in Table 3.

Function Description
isAttribute(property) Returns 1 if the property is an attribute, otherwise 0
isRe f erence(property) Returns 1 if the property is an reference, otherwise 0
domainSet(property) Returns domain set of a property
relatedVariables(constraint) Returns a set of variables that are constrained byconstraint

Table 3. Functions we use in the model to CLP transformation algorithm

The CLP we generate uses predicate libraries inECLiPSe. The ic library contains
predicates for hybrid integer/real interval arithmetic constraints. It also includes a solver
for these predicates. Theic global library contains predicates for specifying various
global constraints over intervals. The standard CLP predicates synthesized in the code
by the algorithm are described in the book [12]. InECLiPSe each predicate is separated
by a’,’ indicating that it is a logical and of the predicates.

3.4 Algorithm

We describe the algorithm to transform a partial model to a CLP in six phases. InPhase
1 we synthesize CLP code to import library predicatesic andic global. We then synthe-



size code to start the CLP proceduresolveModel. In Phase 2 the algorithm synthesizes
the list,Model, of all the model properties in the partial model.

In Phase 3 the algorithm generates code to assign a domain of values to the at-
tributes and relationships. The functiondomainSet returns a set of possible values
for each attribute. For each reference variable,property, in the model thedomainSet
returns a set of possible related references in the model. A binary relationship vari-
able property to re f erence is created and has the integer domain[0..1]. If a relation-
ship variableproperty to re f erence is set to 1 by the back-tracking algorithm then
its corresponding relationshipre f erence to property is also set to 1 by the constraint
property to re f erence = re f erence to property. A list Model property stores all re-
lationship variables from the property. The multiplicity constraints on a relationship are
inserted in the CLP using thesum predicate on the listModel property. The number of
possible relationships should be betweenproperty.lowerBound and
property.upperBound

Now that constraints on domains of attributes and basic multiplicity are already
included we go on toPhase 4 of the algorithm. In this phase we create a dependent
variables listModel constraint for eachconstraint. In Phase 5 we insert the CLP pred-
icate constraint.predicate for the constraint with parametersModel constraint and
additional parametersconstraint.parameters, if necessary.

In the finalPhase 6 we insert the predicatelabeling(Model) which performs back-
tracking search on the CLP variables. To execute the synthesized CLP we make a query :
−solveModel(Model) in ECLiPSe after compiling the program. The result of the query
is the set of value assignments that satisfies the constraints.

The pseudo code for the transformation algorithm is presented as follows :-

Phase 1: Import predicate libraries and start the CLP procedure

1: print “: −lib(ic)”
2: print “: −lib(ic global)”
3: print “solveModel(Model) :−”

Phase 2: Synthesize CLP variables for all model properties
4: printString←“Model = [”
5: for property in M.properties do
6: if isAttribute(property) then
7: printString← printString+ property+“,”
8: else if isRe f erence(property) then
9: for re f erence in domainSet(property) do

10: printString← printString+ property+“ to ”+re f erence+“,”
11: end for
12: end if
13: end for
14: print printString.rstrip(′,′ ) + “];” {rstrip stripsprintString of the last,}

Phase 3: Assign property domains and multiplicity constraints
15: for property in M.properties do
16: if isAttribute(property) then
17: print property+“::”+“ [”+domainSet(property)+“ ],”



18: end if
19: if isRe f erence(property) then
20: printString← “Model property = [”
21: for re f erence in domainSet(property) do
22: printString← printString+ property+“ to ”+re f erence+“,”
23: end for
24: end if
25: print printString.rstrip(′,′ )+“];”
26: print “Model ”+ property+“:: [0..1]”
27: print “sum(Model ”+ property+“) >=”+ property.lowerBound+“,”
28: print “sum(Model ”+ property+“) =<”+ property.upperBound+“,”
29: end for
30: for re f erence in domainSet(property) do
31: print property+“ to ”+re f erence = re f erence+“ to ”+ property+“,”
32: end for

Phase 4: Create dependent variable lists
33: for constraint in C do
34: printString← “Model constraint=[”
35: for variable in relatedVariables(constraint) do
36: printString← printString+ variable+“,”
37: end for
38: print printString.rstrip(′,′ )
39: end for

Phase 5: Impose constraints on lists
40: for constraint in C do
41: print constraint.predicate+“(”+ constraint.parameters+“,”+ Model constraint+“),”
42: end for

Phase 6: Solve Model
43: print “ labeling(Model).”

4 An Example

We consider the partial model shown in Figure 2 (a) as our example. The simpleHFSM
has three states and three transition objects. The algorithm presented in Section 3.4
takes the partial model and the meta-model and constraints of the HFSM modelling
language as input. The output is aCLP program. We do not present the structure of the
CLP program due to space limitations.

When theCLP is queried or solved thelabeling predicate invokes a backtracking
solver that selects values from the domain of each property such that the conjunction
of all the constraints is satisfied. Executing this predicate returns aYes if the model is
satisfied else it returns aNo. If a Yes is returned then the compiler also prints a set of
valid assignments for the variables. Assigning these values to the partial model results
in a complete model. In the simplest case, when no property ofthe partial model is given
the result is the complete model shown in Figure 2 (b). However, when certain values
for properties are already specified the synthesizedCLP program has new domains for



these properties. These domains have only one value restricting the solver to choose
just one assignment.

5 Conclusion

The idea of completing a partially specified model can be extended in many ways. For
example, when we want to test a program it is important that wetest it with input mod-
els that lead to covering most of its execution paths. Specific execution paths can be
reached when some partial information about reaching it is already available. Such par-
tial information can be specified in the form of a partial model with value assignments
to some properties. The task of obtaining values of other properties is not directly con-
sequential to identifying an error in a program but is necessary to produce a valid input
model. Our method to complete such a partial model can be extended to large scale gen-
eration of test models to performcoverage-based testing of programs that manipulate
models.

We solve a CLP using back-tracking as a means to achieve constraint satisfaction. At
the moment we donot select different results based on back-tracking. The difference in
the result is due to the knowledge already given in the partial model. Nevertheless, sim-
ply replacing a constraint satisfaction algorithm such as back-tracking with a constraint
optimization algorithm opens many possibilities. One suchpossibility is to synthesize
a model that optimizes an objective by meeting soft constraints or requirements includ-
ing hard constraints specified in the modelling language. Inthe domain of software
engineering such a framework can be used to synthesize customized software.

References

1. Schmidt, D.C.: Model-driven engineering. IEEE Computer39(2) (2006) 25–31
2. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-driven development using uml

2.0: Promises and pitfalls,. In: IEEE Computer Society Press. (2006)
3. France, R., Rumpe, B.: Model-driven development of complex software: A research

roadmap,. In: FOSE ’07: 2007 Future of Software Engineering. (2007)
4. OMG: OMG Home page. http://www.omg.org (2007)
5. OMG: MOF 2.0 Core Final Adopted Specification. http://www.omg.org/cgi-bin/doc?ptc/03-

10-04 (2005)
6. OMG: The Object Constraint Language Specification 2.0, OMG Document: ad/03- 01-07

(2007)
7. de Lara Jaramillo, J., Vangheluwe, H., Moreno., M.A.: Using meta-modelling and graph

grammars to create modelling environments. Electronic Notes in Theoretical Computer Sci-
ence with editors Paolo Bottoni and Mark Minas72 (2003) 15

8. Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G.,Sprinkle, J., Karsai, G.:
Composing domain-specific design environments. Computer (2001) 44–51

9. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon., Y.L.: Metamodel-based test generation
for model transformations: an algorithm and a tool. In: Proceedings ofISSRE’06, Raleigh,
NC, USA (2006)

10. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press (2006)



11. Neema, S., Szitpanovits, J., Karsai, G.: Constraint-based designspace exploration and model
synthesis. In: Proceedings of EMSOFT 2003, Lecture Notes in Computer Science. Number
2855 (2003) 290–305

12. Apt, K.R., Wallace, M.G.: Constraint Logic Programming with ECLiPSe. Cambridge Uni-
versity Press (2007)


