Partial Model Completion in Model Driven Engineering
using Constraint L ogic Programming

Sagar Seh?, Benoit Baudry, Doina Precup

LIRISA, Campus de Beaulieu
35042 Rennes Cedex France
2 School of Computer Science, McGill University,
Montreal, Quebec, Canada
{ssen, bbaudry}@risa.fr , dprecup@s.ncgill.ca

Abstract. In Model Driven Engineering a model is a graph of objects that con-
forms to a meta-model and a set of constraints. The meta-model arabnhe
straints declaratively restrict models to a valid set. Models are used teseayr

the state and behaviour of software systems. They are specified irh visda
elling environments or automatically synthesized for program testing. ¢h su
applications, a modeller is interested in specifying a partial model or & pat-o

tial models which has a structure and associated properties that inténefterh
Completing a partial model manually can be an extremely tedious or ar unde
cidable task since the modeller has to satisfy tightly-coupled and arbitrary co
straints. We identify this to be a problem and present a methodology to solve
(if a solution can be found within certain time bounds) it usbogstraint logic
programming. We present a transformation from a partial model, its meta-model,
and additional constraints to a constraint logic program. We solve/que@LR

to obtain value assignments for undefined properties in the partial model. W
then complete the partial model using the value assignments for the rést of
properties.

1 Introduction

Model-driven engineering (MDE) [1] [2] [3] is an emergingeird that promises de-
crease in development time of complex software systemshisrMDE makes exten-
sive use of models. A model is specified in a modelling languagich is described
declaratively using a meta-model and a set of constrairtte.Gbject Management
Group (OMG) [4] standard for specifying a meta-modelNieta-object Facility (MOF)
[5]. The constraints on the properties described in the mmetdel are specified in a
constraint language such @sject Constraint Language (OCL) [6].

Several tasks in MDE require building and manipulating ni@ddodels are built in
visual modelling environments [7] [8]. Models are autoroally synthesized for testing
[9] and verification [10]. The design space of models are@eul for meeting require-
ments in embedded systems [11]. In all these cases, a modeligd like to specify
a partial model that interests him/her. The task of compdeti model manually could
be extremely tedious since the modeller will have to satisfet of restrictions that are
imposed by the meta-model and constraints (for instaneeptating models in a visual
modelling environment). We intend to automate this process

In this paper we propose an approach where we use the idea ffzatial model,
its meta-model, and a set of constraints together resultarga set of constraints that
can be represented agenstraint logic program (CLP). The CLP is solved/queried to
obtain the missing elements in a partial model to give a cetepinodel. We use the
simple Hierarchical Finite State Machine (HFSM) modelling language to illustrate our
approach. However, our approach is extensible to any mndddnguage. In Section
2 we describe meta-models, constraints on it and the reguttiodelling language for
specifying models. Section 3 presents the algorithm forsfiaming a partial model
with its meta-model and constraints to a constraint logiegpam. In Section 4 we
present an example based on Hierarchical Finite State Machine modelling language.
We conclude in Section 5.

2 Meta-models and Constraints of a Modelling L anguage

In this section we define the concept of a meta-model and i@nts on it to specify
a modelling language. We present thierarchical Finite State Machine (HFSM) mod-
elling language with its meta-model and constraints adastiktive example. The basic
principles for specifying any modelling language follove thtame set of procedures we
use to discuss theFSM modelling language.

2.1 Meta-models

A modelling language allows us to specify models. A modelstsis of objects and
relationships between them. Theta-model of the modelling language specifies the
types of all the objects and their possible inter-relatigps. The type of an object is
referred to as alass. The meta-model for thelFSM modelling language is presented
in Figure 1 (a). The classes in the meta-modelldFSM, Transition, AbstractState,
State, andComposite.

In this paper we use th@bject Management Group (OMG) [4] standardveta-object
Facility (MOF) [5] for specifying a meta-modellOF is a modelling language capable of
specifying domain-specific modelling languages and its oweta-model. This property
of MOF is known asbootstrapping. We use the visual language notationM®F to
specify the meta-model for théFSM modelling language in Figure 1 (a).

Each class in the meta-model hasperties. A property is either amttribute or a
reference. An attribute is of primitive type which is eithénteger, String, or Boolean.
For instance, the attributes of the cl&ate areisinitial andisFinal both of which are
of primitive typeBoolean. An example domain of values for the primitive attributes is
given in Table 1. Th&tring variable can be a finite set of strings or a regular expression
that specifies a set of strings.

Describing the state of a class of objects with only prinaitattributes is not suf-
ficient in many cases. Modelling many real-world systemsitslithe need to model
complex relationships such as modelling that an objectainstanother set of objects
or an object is related to another finite set of objects. Téiorelated objects is con-
strained by anultiplicity. A reference property of a class allows its objects to beedla
to a set of objects. For instance, an object of cldBSM containsTransition objects.

Table 1. Domains for Primitive Datatypes

Type Domain

Boolean{true}, { false}

Integer {Minint,..,—2},{—1},{0},{1},{2,..Maxint}
String {null},{"" },{".+"}

The multiplicity constraint for the relationship is showtrtlze relationship ends in Fig-
ure 1 (a). OnéHFSM object can contain * or arbitrary number ©fansition objects.
The reference names for either class are given at oppokitereship ends. The refer-
encehfsmTransitions is a property of clas3ransition while referenceransitions is a
property of clas$iFSM.

+hfsmCurrentState

+hfsmTransitions

0..1
+currentState

+tray

+target

B
Transition JzinconingTransition ——————— 1| AbstractState

fevent: String +sourcefriabel: Integer |+ounedState
Ffire() |routgoingTransition —————— —j|+step() 0..%

' evt1
— IO ©
- o,
State [Composite]-o..1 % 9 e
+isFinal: Boolean +container

+isInitial: Boolean

(a) (b)

Fig.1. (a) The Hierarchical Finite State Machine Meta-model (b) A Hierarchidaite State
Machine model in its Concrete Visual Syntax

A special type of relationship is that obntainment. For instance, in Figure 1 (a) the
HFSM class is the container for bothbstractState and Transition objects. The dis-
tinguishing visual syntax in comparison to other types dtrenships is black rhombus
at the container class end of the relationship.

Obijects can inherit properties from other classes. Thibatas and references of a
class called auper classare inherited by derived classes. For instance, the cl&taes
and Composite inherit properties fromAbstractState. The visual language syntax to
represent an inheritance relationship is distinguished toiangle at the super class end
of the relationship.

The visual language ofiOF to specify a meta-model is expressive enough to specify
a network of objects along with the domain of each of its props. The multiplicity
constraints impose constraints on the number of possitagarships between objects.
However, most complex constraints that describe relatipssbetween properties can
easily and concisely be specified using a textual languagaddelling constraints. In
the following section we present examples of such condtraind talk about a language
to specify them.

In our implementation the input meta-model for a modellingduage is read in
from a XML file containing the graph with the representatidrttee classes and the
relationships between them. The cardinality constrairdagyanerated and stored sepa-
rately asProlog clauses.

2.2 Constraintson Meta-models

Classes and the domain of its properties in a meta-modelfgdesic domain and
multiplicity constraints on a model. However, some conststhat cannot be expressed
directly within the meta-model are better specified in auaklanguage. For example, it
is not possible to use multiplicities to express thaFsM must contain only one initial
state. This has to be defined in an external constraint tiadtisished to the meta-model.

There exist a number of choices for languages when it comeggmessing con-
straints on models. TheMG standard for specifying constraints BIOF models is the
Object Constraint Language (OCL) [6]. The constraint that there must be only one ini-
tial state in aHFSM model is expressed iBCL as:-

context Stateinv:
Satealllnstances() — select(g|s.islnitial = True) — size() =1

The OCL is a high-level and complex constraints specification laggufor con-
straints. The evolving complexity in the syntax@€L on the one hand makes it hard
for one to specify its formal semantics on the other. We aersonly a subset abCL
for manually specifyingProlog constraints on models.

We use the constraint logic programming language caieédiPSe [12] (based
on Prolog) to specify constraints on model properties. PredicateB0OniPSe equips
a search algorithm with results from automatic symbolidysis.and domain reduction
in a model to prune its search space. Consider the modeH&iSv in Figure 1 (b).
TheECLiPSe predicate that constrains the number of initial states is:

Modelisinitial = [HF SMSateObjectlisinitial,
HF SMSateObject2is nitial,

HF SMSateObject3isl nitial],

Modelislnitial :: [0..1],

ic_global : occurrences(1, Modelisl nitial, 1),

The Modeliglnitial list contains unique identifiers foslnitial attributes of three
state object&ateObjectl, SateObject2, andSateObject3. The domain of all these
identifiers in the lisModelisl nitial is binary. The predicateccurencesin theic_gl obal
library of ECLiPSe states that the number of occurrences of the value 1 in theslis
limited to 1. This means that only one of the variables in thiei$ assigned a value of
1. The choice of 1 for a variable automatically guides the mitento perform domain
reduction and reduce the domain of the rest of the variabltseilist. The dynamically
assigned domain for the other variables will be 0 and nat Dhis feature drastically
reduces the search space for the constraint satisfactionitaim.

It is interesting to note that predicatesdcL are specified at the meta-model level
of the modelling language while the constraintsE@LiPSe are generated for each
model. In the next section we present how we genetatePSe predicates for each
model automatically.

In our implementatioiProlog constraints are generated for a meta-model and stored
in a prologpl file. The constraints operate of lists of variables in theiphmodel.

3 Transformation: Partial Model, M eta-model, and Constraintsto
CLP

In this section we describe an algorithm to transform a ahntiodel in a modelling
language (meta-model and constraints) to a CLP. Keepingttioeture static in the
partial model we query the CLP to obtain value assignmemntthio properties in the
model. The query process invokes a back-tracking algortirassign values to the
variables such that all related predicates are satisfigtlidrcase the algorithm returns
a Yes. If the back-tracking method fails to find a set of value assignts that can
complete the model the algorithm returns@ We start with describing a partial model
in 3.1. In Section 3.3 we present the variables and functibaswill be used in the
algorithm. The algorithm itself is presented in Section 3.4

3.1 Partial Mod€

A partial model is a set of objects described in a modelling language. Thegpties of

the objects are either partially specified or they are natifipd at all. What is specified
is the domain of possible assignments for each and evernggsof his is derived from
the meta-model that specifies the modelling language fopaintal model objects.

Partial Model (HFSM) ~Pertia Hodel Feaures Complete Model (HFSM)
, b) 3 Transition objects

050

(a) b)

Fig. 2. (a) A Partial Model inrHFSM (b) A Complete Model

In Figure 2 (a) we present a partial model that has 3 statectsbgad 3 transition
objects in theHFSM language. Note that the labels, events, and other propertigne
objects are not specified at all.

The domain of each property in the model is shown in Figure 8.néed to find
a way to assign appropriate values for every property in thdahso that it satisfies
the structural requirements imposed by the meta-model Bodadditional constraints
specified textually as CLP predicates.

Property

HFSM .StateObjectl.isInitial
HFSM.StateObject].isFinal
HFSM.StateObject].label

HFSM .StateObject2.isInitial
HFSM.StateObject2.isFinal
HFSM.StateObject2.label
HFSM.StateObject3.isInitial
HFSM.StateObject3.isFinal
HFSM.StateObject3.label
HFSM.TransitionObjectl.event
HFSM.TransitionObject2.event
HFSM.TransitionObject3.event
HFSM.StateObject1.incomingTransition
HFSM.StateObject1.outgoingTransition
HFSM.StateObject].hfsmStates
HFSM.StateObject2.incomingTransition
HFSM.StateObject2.outgoingTransition
HFSM.StateObject2.hfsmStates

HFSM .StateObject3.incomingTransition
HFSM.StateObject3.outgoing Transition
HFSM.StateObject3.hfsmStates

HFSM states

HFSM.currentState

HFSM.transitions
HFSM.TransitionObject].target
HFSM.TransitionObject1.source
HFSM.TransitionObject].hfsmTransitions
HFSM.TransitionObject2.target
HFSM.TransitionObject2.source
HFSM.TransitionObject2.hfsmTransitions
HFSM.TransitionObject3.target
HFSM.TransitionObject3.source
HFSM.TransitionObject3.hfsmTransitions

Domain

{True, False}

{True, False}

{1,2,3,...N}, where N is positive integer

{True, False}

{True, False}

{1,2,3,..,N}, where N is positive integer

{True, False}

{True, False}

{1,2,3,...N}, where N is positive integer

1,2,34,5}

{1.2,34,5}

{1.2,3.4,5}

{HFSM.TransitionObjectl.target, HFSM. TransitionObject2.target, HFSM. TransitionObject3.target}
{HFSM.TransitionObject1.source, HFSM. TransitionObject2.source, HFSM. TransitionObject3.source }

{HFSM.states}

{HFSM.TransitionObject1.target, HFSM. TransitionObject2.target, HFSM. TransitionObject3.target}
{HFSM.TransitionObject1.source, HFSM. TransitionObject2.source, HFSM. TransitionObject3.source }

{HFSM.states}

{HFSM.TransitionObject].target, HFSM. TransitionObject2.target, HFSM. TransitionObject3.target }
{HFSM.TransitionObject1.source, HFSM. TransitionObject2.source, HFSM. TransitionObject3.source }

{HFSM.states}

{HFSM.StateObject1 HFSM.StateObject2. HFSM.StateObject3.hfsmStates}
{HFSM.StateObject1.hfsmCurrentState, HFSM.StateObject2.hfsmCurrentState, HFSM.StateObject3.hfsmCurrentState }
{HFSM.TransitionObject].hfsmTransitions, HFSM. TransitionObject2.hfsmTransitions, HFSM. TransitionObject3.hfsmTransitions}
{HFSM.StateObject].incomingTransition, HFSM.StateObject2.incoming Transition, HFSM.StateObject3.incoming Transition}
{HFSM.StateObject1.outgoingTransition, HFSM.StateObject2.outgoing Transition, HFSM. StateObject3.outgoing Transition}
{HFSM.transitions}
{HFSM.StateObjectl.incomingTransition, HFSM.StateObject2.incoming Transition, HFSM.StateObject3.incoming Transition}
{HFSM.StateObject1.outgoingTransition, HFSM.StateObject2.outgoingTransition, HFSM.StateObject3.outgoing Transition}
{HFSM.transitions}

{HFSM.StateObject.incomingTransition, HFSM.StateObject2.incoming Transition, HFSM.StateObject3.incoming Transition}
{HFSM.StateObject1.outgoingTransition, HFSM.StateObject2.outgoing Transition, HFSM.StateObject3.outgoing Transition}
{HFSM .transitions}

Fig. 3. Domain of Properties in the Partial Model

Which value is taken by a property will be decided when we fians the partial
model to a CLP and solve it. This transformation process ahdtisn is discussed in

the next sections.

3.2 CLPasaCommon Language

Requirements in MDE come from many sources. In this papepagsfon three sources

of requirements.

1. The meta-model is a diagram specified in a meta-modebingudage such a80F

2. The constraints are textually specifiedd@L or directly inCLP
3. The partial model is specified either diagrammaticallte@tually as an instance of
the meta-model.

There also could be many other sources of requirements sugneaconditions
and post-conditions from programs that manipulate modwdisaen objective function
that is soft constraint on the properties of a model. Thegairements are specified
in different languages that are either graphical or texaral are usually expressed
in the most convenient specification language sucl@s or MOF. Combining the
declarative specifications from different sources intoamemon language is necessary
for analysis on a common platform. The following sectionseirgs an algorithm that
syntactically transforms constraints from various sosirtee three that we consider)
into aCLP.

3.3 Preiminaries

The input to the transformation consists of a partial motted, meta-model and the
constraints specification of a modelling language. In Tablee list out symbols and
their descriptions we use for describing the algorithm elext section.

Variable Description

M Partial model

M. properties Set of all properties(attributes and referencesylin
Model List of CLP variables for all properties i

Model _property
property.l ower Bound
property.upper Bound
property_to_reference
reference_to_property|
C

Model _constraint
congtraint. predicate
congraint. parameters

List of CLP variables for a relationship from a reference cajjeaberty
Lower bound on multiplicity of a relationship from a reference calpedperty
Upper bound on multiplicity of a relationship from a reference capieaperty
A 0/1 variable for a relationship from property to one of itsref erences

A 0/1 variable for a relationship fromraf erence to its property

Set of non-meta-model constraint predicates

List of variables that are constrained by the constreanstraint

Name of the CLP predicate for a constraint identifier

String of additional comma separated parameters for a predicate

Table 2. Symbols we use in the model to CLP transformation algorithm

The transformation algorithm uses some handy functionshuvie list and describe

in Table 3.

Function Description

isAttribute(property) Returns 1 if the property is an attribute, otherwise 0
isRef erence(property) Returns 1 if the property is an reference, otherwise 0
domainSet (property) Returns domain set of a property

relatedVariabl es(congtraint)|Returns a set of variables that are constraineddogtraint

Table 3. Functions we use in the model to CLP transformation algorithm

The CLP we generate uses predicate librariesGhiPSe. Theic library contains
predicates for hybrid integer/real interval arithmetiostaints. It also includes a solver
for these predicates. The_global library contains predicates for specifying various
global constraints over intervals. The standard CLP pegdgcsynthesized in the code
by the algorithm are described in the book [12]El0LiIPSe each predicate is separated
by a’, indicating that it is a logical and of the predicates.

3.4 Algorithm

We describe the algorithm to transform a partial model to 8 @Lsix phases. |IRhase
1 we synthesize CLP code to import library predicatesndic_gl obal . We then synthe-

size code to start the CLP procedsobveModél . In Phase 2 the algorithm synthesizes
the list,Model, of all the model properties in the partial model.

In Phase 3 the algorithm generates code to assign a domain of valudsetatt
tributes and relationships. The functidomainSet returns a set of possible values
for each attribute. For each reference varialpl®perty, in the model thedomainSet
returns a set of possible related references in the modeinanbrelationship vari-
able property_to_reference is created and has the integer dom@nl]. If a relation-
ship variableproperty_to_reference is set to 1 by the back-tracking algorithm then
its corresponding relationshief erence_to_property is also set to 1 by the constraint
property_to_reference = reference_to_property. A list Model _property stores all re-
lationship variables from the property. The multiplicityrestraints on a relationship are
inserted in the CLP using theem predicate on the lis¥lodel _property. The number of
possible relationships should be betwegseaperty.lowerBound and
property.upper Bound

Now that constraints on domains of attributes and basicipligity are already
included we go on ta®hase 4 of the algorithm. In this phase we create a dependent
variables lisModel _congtraint for eachcongtraint. In Phase 5 we insert the CLP pred-
icate congtraint.predicate for the congtraint with parameterdModel _congtraint and
additional parameteinstraint. parameters, if necessary.

In the finalPhase 6 we insert the predicati@beling(Model) which performs back-
tracking search on the CLP variables. To execute the syiagte€LP we make a query :
—solveModel (Model) in ECLiPSe after compiling the program. The result of the query
is the set of value assignments that satisfies the constraint

The pseudo code for the transformation algorithm is preseas follows :-

Phase 1: Import predicate libraries and start the CLP procedure
1: print “ —lib(ic)”
: print “: —lib(ic_global)"
: print “solveModel (Model) : —"

Phase 2: Synthesize CLP variables for all model properties

w N

4: printSring «—“Model = ["

5: for propertyin M.properties do

6: if isAttribute(property) then

7: printSring « printSring+ property+“,”

8: eseif isReference(property) then

9: for reference in domainSet (property) do
10: printSring < printSring+ property+"_to_"+referencet",”
11 end for
12: endif
13: end for

14: print printSring.retrip(’,’) + ;" {rstrip stripsprintSring of the last,}
Phase 3: Assign property domains and multiplicity constraints

15: for property in M.propertiesdo

16: if isAttribute(property) then

17: print property+“:"+* ["+domainSet (property)+“],”

18: endif
19: if isReference(property) then

20: printSring < “Model _property = ["

21: for reference in domainSet (property) do

22: printSring < printSring+ property+"_to_"+referencet",”
23: end for

24: endif

25: print printring.rstrip(’,’)+];”
26: print “Model "+ property+“: [0..1]"
27: print “sum(Model "+ property+*) >="+ property.lower Bound+",”
28: print “sum(Model "+ property+") =<"+ property.upper Bound+*,’
29: end for
30: for reference in domainSet(property) do
31: print property+“_to_"+reference = referencet+”_to_"+ property+*,”
32: end for
Phase 4: Create dependent variable lists
33: for congraint in C do
34: printSring < “Model _consgtraint=["
35: for variablein relatedVariables(congtraint) do

36: printSring < printSring+ variablet+",”
37: end for

38: print printSring.rarip(’,))

39: end for

Phase 5: Impose constraints on lists
40: for congraint in C do
41: print congraint.predicate+"("+ constraint. parameters+“,"+ Model _congtraint+*),”
42: end for
Phase 6: Solve Model
43: print “labeling(Model).”

4 An Example

We consider the partial model shown in Figure 2 (a) as our el@rihe simpleHFSM

has three states and three transition objects. The algompitesented in Section 3.4
takes the partial model and the meta-model and constrairttsedHFSM modelling
language as input. The output i<aP program. We do not present the structure of the
CLP program due to space limitations.

When theCLP is queried or solved thkabeling predicate invokes a backtracking
solver that selects values from the domain of each propentl that the conjunction
of all the constraints is satisfied. Executing this predicaturns aves if the model is
satisfied else it returnsido. If a Yes is returned then the compiler also prints a set of
valid assignments for the variables. Assigning these galoghe partial model results
in a complete model. In the simplest case, when no propethegsartial model is given
the result is the complete model shown in Figure 2 (b). Howevben certain values
for properties are already specified the synthes@e® program has new domains for

these properties. These domains have only one value tegjribe solver to choose
just one assignment.

5 Conclusion

The idea of completing a partially specified model can beraled in many ways. For
example, when we want to test a program it is important thateseit with input mod-
els that lead to covering most of its execution paths. SpgeeKecution paths can be
reached when some partial information about reaching ltésely available. Such par-
tial information can be specified in the form of a partial mlagigh value assignments
to some properties. The task of obtaining values of othgogmtées is not directly con-
sequential to identifying an error in a program but is neags® produce a valid input
model. Our method to complete such a partial model can be@eteto large scale gen-
eration of test models to perforooverage-based testing of programs that manipulate
models.

We solve a CLP using back-tracking as a means to achieveraorisatisfaction. At
the moment we donot select different results based on lrackinhg. The difference in
the result is due to the knowledge already given in the pamtiael. Nevertheless, sim-
ply replacing a constraint satisfaction algorithm suchaskktracking with a constraint
optimization algorithm opens many possibilities. One spaksibility is to synthesize
a model that optimizes an objective by meeting soft con#isair requirements includ-
ing hard constraints specified in the modelling languagehéndomain of software
engineering such a framework can be used to synthesizengizstt software.

References

[EnY

. Schmidt, D.C.: Model-driven engineering. IEEE Comp®@{®) (2006) 25-31

2. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Mattélen development using uml
2.0: Promises and pitfalls,. In: IEEE Computer Society Press. (2006)

3. France, R., Rumpe, B.: Model-driven development of complekware: A research
roadmap,. In: FOSE '07: 2007 Future of Software Engineerindd {20

4. OMG: OMG Home page. http://www.omg.org (2007)

5. OMG: MOF 2.0 Core Final Adopted Specification. http://www.omg.ornglig/doc?ptc/03-
10-04 (2005)

6. OMG: The Object Constraint Language Specification 2.0, OMG Decinad/03- 01-07
(2007)

7. de Lara Jaramillo, J., Vangheluwe, H., Moreno., M.A.: Using rmetalelling and graph
grammars to create modelling environments. Electronic Notes in Thedi@btogputer Sci-
ence with editors Paolo Bottoni and Mark Min&z(2003) 15

8. Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, Sprinkle, J., Karsai, G.:
Composing domain-specific design environments. Computer (2065144

9. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon., Y.LetdMnodel-based test generation
for model transformations: an algorithm and a tool. In: ProceedindSSRE’06, Raleigh,
NC, USA (2006)

10. Jackson, D.: Software Abstractions: Logic, Language, andy8isa MIT Press (2006)

11. Neema, S., Szitpanovits, J., Karsai, G.: Constraint-based dgsiga exploration and model
synthesis. In: Proceedings of EMSOFT 2003, Lecture Notes in ComBatence. Number

2855 (2003) 290-305
12. Apt, K.R., Wallace, M.G.: Constraint Logic Programming with ECléP&ambridge Uni-

versity Press (2007)

