Model Transformations

An overview

Pierre-Alain Muller
INRIA
pierre-alain.muller@irisa.fr

Model Transformations @ Google

Web

u'mﬂtlun. ... The guestion of model

- [Traduire cette page |

Artist2 Summer School 05 Pierre-Alain Muller

Outline

» MDE basic principles

» What is a model transformation?

» Typology of model transformations
» Examples of transformations

Artist2 Summer School 05 Pierre-Alain Muller

Principles of Model-Driven Engineering

» A kind of (software) development approach
» Models as first class entities
» Everything is a model

» A model conforms to an other model (meta-
model)

» A model transformation takes models and
produces models

» A model transformation is a model

Artist2 Summer School 05 Pierre-Alain Muller 4

Metamodels and models

Represents

—

rtist2 Summer School 05 Pierre-Alain Muller

Meta-modeling architecture

Often misleading

Pierre-Alain Muller

MDA = MDE a la OMG

» OMG, Object Management Group

» MDA, Model-Driven Architecture

» PIM, Platform Independent Model
» PSM, Platform Specific Model

» (PDM, Platform Description Model)

» Transformation (PIM, PDM) -> PSM
= RFP MOF Q/V/T Query, Views, Transformations
= RFP MOF to Text

Artist2 Summer School 05 Pierre-Alain Muller

Motivation

» Model transformation is key to Model-Driven
Engineering
= Automation of the transition from Business
models to Implementation models

-=-

Artist2 Summer School 05 Pierre-Alain Muller

But also

» Refining models

» Reverse engineering (code to models)
» Generating new Views

» Applying design patterns

» Refactoring models

Artist2 Summer School 05 Pierre-Alain Muller

Typical scope for transformations

Modeling —b Endomorphic Transformations
point of views === [Lxomorphic Transformations
A » Outside UML scope

Proofs.
QoS
Analysis.
Simulation

Formal Models Formal Models
v %
» b

*
*

Technical

Aspects TEIE.tS

Business
Aspects

Doc Doc

Lygecyele

Architectural Detailed Implementation Validation
Design Design

Text

e.2. }‘ML}chuircmcnls Analysis

Artist2 Summer School 05 Pierre-Alain Muller

Related fields

= Program transformation and compiler
techniques

= Meta-programming technigues
= Graph rewriting techniques

MOF 2.0
Queries/Views/Transformations RFP

» Define a language for querying MOF models
» Define a language for transformation definitions
» Allow for the creation of views of a model

» Ensure that the transformation language is
declarative and expresses complete
transformations

» Ensure that incremental changes to source models
can be immediately propagated to the target
models

» Express all new languages as MOF models

Artist2 Summer School 05 Pierre-Alain Muller 12

Transformation Architecture

Define Transformation

. Bl

Conforms To

. —

Apply Transformation

Conforms To

Artist2 Summer School 05 Pierre-Alain Muller 13

Typical Example

From UML to RDBMS

NamedEIt

name : String

Artist2 Summer School 05 Pierre-Alain Muller 14

Transformations as models

» Composition of transformations
» Transformation of transformations

- IR
s

=
[/ T
e i e

Artist2 Summer School 05 Pierre-Alain Muller

15

Toward Model-Transformations

» CRUD on model elements
= Create, Read, Update, Delete

» Transformation rules written in
= General purpose languages + API
= Intermediate transformation language
= Dedicated Model-Transformation languages

Artist2 Summer School 05 Pierre-Alain Muller

16

General purpose language approach

» Java, VB, C++, C#,... Your favorite language!
» Currently available in the tools via APIs

» No overhead to learn a new language
» Tool support to write the transformations

=> Monsieur Jourdain’s approach

» It's going to be challenging to do better!

Artist2 Summer School 05 Pierre-Alain Muller

17

Action Language

» Use a general purpose action language
= Better navigation facility (associations)
= Get access to the types defined in the models
= Procedural rule description

if (this. Children-=size()==0)
A
I

WKL Utils. delet e_folder_level(this. getOI00);

I
else

for (i=0; i<this Children-=sizef; i++

I
Wkl Level level = this. Children-=asSequencel)
lewel deleteF olderlevel);

1

I

WK Utils. delete folder level(this. getQI00);

Artist2 Summer School 05 Pierre-Alain Muller 18

Intermediate transformation language

» Typically XML based
= But XML (XMI) is verbose

» XSLT can be used to transform XML trees Into
other (XML) (trees)

= More batch than interactive
= Parameters are passed by values
= XSLT transformations are not really easy to maintain

» Better for simple transformations

Artist2 Summer School 05 Pierre-Alain Muller 19

Example of XSLT transformation

1 nJ

saram namse="a"/=
rariable name="ct"
L chooges
<xX2]l:when test = ::node () [@1sSynchronous
<xsl:cal emplate name="condTaskTemplate"=>
<¥sl:wit AT ame="ct clect="5ct"/>
<¥Xa] 1
L ,a"rX'S 1:cCc

agynoCompoundTaskInputGroupOriActivityOutputGroup”
1-param name="a" select="3a"/>

</xs1:
ﬁfxsl:template}

Artist2 Summer School 05 Pierre-Alain Muller

Dedicated Transformation Language

» Kind of DSL for transformation

» Simplify development and maintenance of
model-transformations

» Higher expression power

» Enhanced structuration
= Composition of rules
= Interoperability

Artist2 Summer School 05 Pierre-Alain Muller 21

Dedicated transformation languages

» Terminology
» Features of model transformations

Artist2 Summer School 05 Pierre-Alain Muller

22

Query

» An expression evaluated over a model

= Returns one or more instances of types defined
either in the source model or by the query
language

» OCL Is an example of a query language

Artist2 Summer School 05 Pierre-Alain Muller P

Examples of OCL queries

-

Query: Has Pierre-Alain Muller sent a message about a given subject s?

s.post->exists (author.name='Muller' and author.firstname="'Pierre-Alain’)

Query: Knowing that there is only one subject about QVT, | want to retrieve It.

Subject.allinstances()->any (title = ‘QVT’)

Artist2 Summer School 05 Pierre-Alain Muller 24

View

» A view Is a model that Is completely derived
from another model

= The meta-model of the view is typically not the
same as the meta-model of the source

Artist2 Summer School 05 Pierre-Alain Muller

25

Transformation

» A transformation generates target models
from source models

May be bi-directional

—e S [

Artist2 Summer School 05 Pierre-Alain Muller

26

QvsVvsT

» A query Is a restricted kind of view

» A view IS a restricted kind of transformation

= The target model cannot be modified
iIndependently of the source model

» A transformation generates target models
from source models

Artist2 Summer School 05 Pierre-Alain Muller

27

Declarative

» Declarative languages describe relationships
between variables in terms of functions or
Inference rules and the language executor
(interpreter or compiler) applies some fixed
algorithm to these relations to produce a
result

Artist2 Summer School 05 Pierre-Alain Muller 28

Imperative

» Any programming language that specifies
explicit manipulation of the state of the
computer system, not to be confused with a
procedural language

Artist2 Summer School 05 Pierre-Alain Muller 29

Declarative vs. Imperative Style

» Declarative (what to do)
= Invariant relations between source and target models

» Imperative (how to do It)
= How to derive a target from a source

» May be combined via pre- and post-conditions

Artist2 Summer School 05 Pierre-Alain Muller 30

Execution Strategy

» Invocation of the transformation rules
= Explicit, via invocation operations (Java like)

= Implicit, based on context and rules’ signature
(Prolog like)

Artist2 Summer School 05 Pierre-Alain Muller 31

Trace

» Trace associates one (or more) target
element with the source elements that lead
to Its creation

= For Round-trip development
= Incremental propagation

» Rules may be able to match elements based
on the trace without knowing the rules that
created the trace

Artist2 Summer School 05 Pierre-Alain Muller 32

Rule

» Rules are the units in which transformations
are defined

= A rule is responsible for transforming a
particular selection of the source model to the
corresponding target model elements.

Artist2 Summer School 05 Pierre-Alain Muller 33

Declaration

» A declaration Is a specification of a relation
between elements in the LHS and RHS
models

Artist2 Summer School 05 Pierre-Alain Muller

KZ

Implementation

» An Implementation Is an imperative
specification of how to create target model
elements from source model elements

= An implementation explicitly constructs
elements in the target model

= Implementations are typically directed

Artist2 Summer School 05 Pierre-Alain Muller

35

Match

» A match occurs during the application of a
transformation when elements from the LHS
and/or RHS model are identified as meeting
the constraints defined by the declaration of
a rule

= A match triggers the creation (or update) of
model elements in the target model

Artist2 Summer School 05 Pierre-Alain Muller 36

Incremental

» A transformation is incremental if individual
changes in a source model can lead to
execution of only those rules which match
the modified elements

Artist2 Summer School 05 Pierre-Alain Muller

37

Classification of model transformations

Artist2 Summer School 05 Pierre-Alain Muller 38

Model-to-Text Approaches

» Visitor-Based Approaches
» Template-Based Approaches

Kle)

Model-to-Model Approaches

» Direct-Manipulation Approaches

» Relational Approaches

» Graph-transformation-based Approaches
» Structure-Driven Approaches

» Hybrid Approaches

» Other

Artist2 Summer School 05 Pierre-Alain Muller

M2T: Visitor-based

» Some visitor mechanisms to traverse the
Internal representation of a model and write
code to a text stream

= |[terators
= Write ()

Artist2 Summer School 05 Pierre-Alain Muller 41

M2T: Template-Based

» A template consists of the target text
containing slices of meta-code to access
iInformation from the source and to perform
text selection and iterative expansion

= The structure of a template resembles closely
the text to be generated

= Textual templates are independent of the target
language and simplify the generation of any
textual artefacts

Artist2 Summer School 05 Pierre-Alain Muller 42

public wvoid Set
(
{=hx>=

<hlockimote>

<fhlockiquotes-
t<hr=

<hr

public

{<hx=
<hlockimotes-

return

<fblockquote>

V<

<hx>=

Artist2 Summer School 05

M2T : Template

DEFAULT

Ada_code.html Exllal e e | Collection
AllClasses All Attributes

Root

template Fragment

Template

Datd-And-Time

Pierre-Alain Muller

Ada_record_part.htr

Decision
Centers

Value
Attribute Name

43

M2M: Direct Manipulation

» Internal representation plus some API to
manipulate it

» Object-oriented framework

» Rules and scheduling implemented from
scratch using a programming language

» JMI (MOF-compliant Java Interface)
= JSR-000040 Java™ Metadata Interface

Artist2 Summer School 05 Pierre-Alain Muller

44

JMI examples

package javax.jmi.model;

import javax.jmi.reflect.™;

public interface Attribute extends StructuralFeature {
public boolean isDerived();
public void setDerived(boolean newValue);

}

package javax.jmi.model;
import javax.jmi.reflect.™;

tublic interface Operation extends BehavioralFeature {
public boolean isQuery();

public void setQuery(boolean newValue);
public java.util.List getExceptions();

}

Artist2 Summer School 05 Pierre-Alain Muller 45

M2M: Relational Approaches

» Declarative, based on mathematical relations

= Good balance between flexibility and declarative
expression

» Implementable with logic programming
= Mercury, F-Logic programming languages
= Predicate to describe the relations
= Unification based-matching, search and backtracking

Artist2 Summer School 05 Pierre-Alain Muller

46

Example of logic programming

» Excerpt of Mercury code

conditionaltask (Id) :-

conditionaltask for outputgroup of activity(Id,

conditionaltask for outputgroup of activity(Id, 0OG) :-
outputgroup of activity(0OG, Activity),
mapld(OG og id, conditicnaltask for outputgroup,

outputgroup of activity(OutputGroup, Activity) :-
ocutputgroup (OQutputGroup) ,
contains (Activity”a id, OutputGroup”og id),
activity (Activity) .

Artist2 Summer School 05 Pierre-Alain Muller

OutputGroup) .

Id).

47

M2M : Graph-Transformation-Based

» Declarative, based on the theoretical work
on graph transformations

= Operates on typed, attributed, labeled graphs
= Rule (LHS, RHS : Graph Pattern)

» Automated source element selection

Artist2 Summer School 05 Pierre-Alain Muller 48

About Graphs

» G. Rozenberg (ed.); “Handbook of graph
grammars and computing by graph
transformation: Volume | Foundations”.
World Scientific Publishing, 1997.

» \Web site of Reiko Heckel ©

Artist2 Summer School 05 Pierre-Alain Muller

49

M2M : Graph-Transformation-Based

» Powerfull, but complex because of the non-
determinism in scheduling and application
strategy

= Require careful consideration of termination of
the transformation process and the rule
application ordering

» It Is unclear how practitioners will receive
these complex approaches

Artist2 Summer School 05 Pierre-Alain Muller

50

M2M : Structure-Driven Approaches

» 1st Phase

= Creation of hierarchical structure of target
model

» 2nd Phase
= Set the attributes and references in the target

» Users provide the transformation rules
» Framework determines the scheduling

Artist2 Summer School 05 Pierre-Alain Muller

51

M2M : Structure-Driven Approaches

» Pragmatic approaches developed in the
context of EJB and Databases schema
generation from UML models

» Strong support for 1-to-1 and 1-to-n
correspondence between source and target

» Unclear how well these approaches can
support other kinds of applications

Artist2 Summer School 05 Pierre-Alain Muller

52

M2M : Hybrid Approaches - others

» Any combination of different techniques

» Practical approaches are very likely to have

the hybrid character

Artist2 Summer School 05 Pierre-Alain Muller

53

Practically speaking

» How many developers are familiar with the
prolog-like style of rules writing?

» Where Is the advantage of a dedicated
explicit language vs. a general purpose
language?

» Hybrid Languages or transformation libraries
for general purpose languages...

Artist2 Summer School 05 Pierre-Alain Muller 54

Tools

» Generic transformation tools

» CASE tools scripting languages

» Dedicated model transformation tools
» Meta-modeling tools

Artist2 Summer School 05 Pierre-Alain Muller

55

Generic transformation tools

» XSLT

» Graph Transformation tools
= Ask Reiko ©

CASE tools scripting languages

» Arcstyler from Interactive Objects
= MDA-Cartridge, JPython (Python & Java)

» Objecteering from Objecteering Software
= J language

» OptimalJd from Compuware
= TPL language

» Fujaba (From UML to Java and Back Again)
= Open Source

Artist2 Summer School 05 Pierre-Alain Muller 57

Dedicated model transformation tools

» Mia-Transformation from Mia-Software
= Inference rules + Java

» PathMATE from Pathfinder Solutions
= Esay to integrate with modeling tools

» Open-Source

= ATL, MTL, AndroMDA, BOTL, Coral Mod-
Transf, QVTEclipse or UMT-QVT

Artist2 Summer School 05 Pierre-Alain Muller 58

Meta-modeling tools

» MetaEdit+ from MetaCase
» XMF-Mosaic from Xactium

» Open-Source
= KerMeta from INRIA
= www.kermeta.org

Artist2 Summer School 05 Pierre-Alain Muller

59

Coming soon

» Model Transformations in Practice
Workshop

= October 3rd 2005
= Part of the MoDELS 2005 Conference

» Comparing and contrasting various

approaches

» On Executable Meta-Languages applied to
Model Transformations

Artist2 Summer School 05 Pierre-Alain Muller

60

References

» M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske, D.
Kuske, D. Plump, A. Schirr, and G. Taentzer. Graph Transformation for
Specification and Programming. Technical Report 7/96, Universitat Bremen,
1996, see http://citeseer.nj.nec.com/article/andries96graph.htmil

» D. H. Akehurst, S.Kent. A Relational Approach to Defining Transformations in a
Metamodel. In J.-M. Jezéquel, H. Hussmann, S. Cook (Eds.): UML 2002 - The
Unified Modeling Language 5th International Conference, Dresden, Germany,
September 30 - October 4, 2002. Proceedings, LNCS 2460, 243-258, 2002.

» Alcatel, Softeam, Thales, TNI-Valiosys, Codagen Corporation, et al. MOF
Query/Views/Transformations, Revised Submission. OMG Document: ad/03-08-
05

» CBOP, DSTC, and IBM. MOF Query/Views/Transformations, Revised
Submission. OMG Document: ad/03-08-03

» C. Cleaveland. Program Generators with XML and Java. Prentice-Hall, 2001,
see http://www.craigc.com/pg/

» K. Czarnecki, S. Helsen, Classification of Model Transformation Approaches,
OOPSLA’03 Workshop on Generative Techniques in the Context of Model-
Driven Architecture.

Artist2 Summer School 05 Pierre-Alain Muller 61

References

» T.Gardner, C. Griffin, J. Koehler, R. Hauser, A review of OMF MOF 2.0 QVT Submissions
and Recommandations towards the finalm standard, Metamodeliing for MDA, Firstr
International Workshop, York, UK, November 2003.

» A. Gerber, M. Lawley, K. Raymond, J. Steel, A. Wood. Transformation: The Missing Link
of MDA, In A. Corradini, H. Ehrig, H.-J. Kreowski, G. Rozenberg (Eds.): Graph
Transformation. First International Conference (ICGT 2002), Barcelona, Spain, October
7-12, 2002. Proceedings. LNCS vol. 2505, Springer-Verlag, 2002, pp. 90 — 105

» Object Management Group, The Object Constraint Language Specification 2.0, OMG
Document: omg/2003-01-07

» Object Management Group, the Model-Driven Architecture Guide, OMG Document:
omg/2003-06-01

» Object Management Group, MOF 2.0 Query / Views / Transformations RFP, OMG
Document: ad/2002-04-10, revised on April 24, 2002

» QVT-Partners. MOF Query/Views/Transformations, Revised Submission. OMG Document:
ad/2003-08-08

» Model Transformation — the Heart and Soul of Model-Driven Software Development, tech
report 200352

Artist2 Summer School 05 Pierre-Alain Muller 62

Artist2 Summer School 05

Questions?

Pierre-Alain Muller

63

	Model Transformations��An overview
	Model Transformations @ Google
	Outline
	Principles of Model-Driven Engineering
	Metamodels and models
	Meta-modeling architecture
	MDA = MDE à la OMG
	Motivation
	But also
	Typical scope for transformations
	Related fields
	MOF 2.0 Queries/Views/Transformations RFP
	Transformation Architecture
	Typical Example
	Transformations as models
	Toward Model-Transformations
	General purpose language approach
	Action Language
	Intermediate transformation language
	Example of XSLT transformation
	Dedicated Transformation Language
	Dedicated transformation languages
	Query
	Examples of OCL queries
	View
	Transformation
	Q vs V vs T
	Declarative
	Imperative
	Declarative vs. Imperative Style
	Execution Strategy
	Trace
	Rule
	Declaration
	Implementation
	Match
	Incremental
	Classification of model transformations
	Model-to-Text Approaches
	Model-to-Model Approaches
	M2T: Visitor-based
	M2T: Template-Based
	M2T : Template
	M2M: Direct Manipulation
	JMI examples
	M2M: Relational Approaches
	Example of logic programming
	M2M : Graph-Transformation-Based
	About Graphs
	M2M : Graph-Transformation-Based
	M2M : Structure-Driven Approaches
	M2M : Structure-Driven Approaches
	M2M : Hybrid Approaches - others
	Practically speaking
	Tools
	Generic transformation tools
	CASE tools scripting languages
	Dedicated model transformation tools
	Meta-modeling tools
	Coming soon
	References
	References

