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Outline

» MDE basic principles

» What is a model transformation?

» Typology of model transformations
» Examples of transformations
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Principles of Model-Driven Engineering

» A kind of (software) development approach
» Models as first class entities
» Everything is a model

» A model conforms to an other model (meta-
model)

» A model transformation takes models and
produces models

» A model transformation is a model
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Metamodels and models

Represents

—
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Meta-modeling architecture

Often misleading
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MDA = MDE a la OMG

» OMG, Object Management Group

» MDA, Model-Driven Architecture

» PIM, Platform Independent Model
» PSM, Platform Specific Model

» (PDM, Platform Description Model)

» Transformation (PIM, PDM) -> PSM
= RFP MOF Q/V/T Query, Views, Transformations
= RFP MOF to Text
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Motivation

» Model transformation is key to Model-Driven
Engineering
= Automation of the transition from Business
models to Implementation models

-=-
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But also

» Refining models

» Reverse engineering (code to models)
» Generating new Views

» Applying design patterns

» Refactoring models
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Typical scope for transformations
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Related fields

= Program transformation and compiler
techniques

= Meta-programming technigues
= Graph rewriting techniques



MOF 2.0
Queries/Views/Transformations RFP

» Define a language for querying MOF models
» Define a language for transformation definitions
» Allow for the creation of views of a model

» Ensure that the transformation language is
declarative and expresses complete
transformations

» Ensure that incremental changes to source models
can be immediately propagated to the target
models

» Express all new languages as MOF models
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Transformation Architecture

Define Transformation
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Typical Example

From UML to RDBMS

NamedEIt

name : String
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Transformations as models

» Composition of transformations
» Transformation of transformations
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Toward Model-Transformations

» CRUD on model elements
= Create, Read, Update, Delete

» Transformation rules written in
= General purpose languages + API
= Intermediate transformation language
= Dedicated Model-Transformation languages
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General purpose language approach

» Java, VB, C++, C#,... Your favorite language!
» Currently available in the tools via APIs

» No overhead to learn a new language
» Tool support to write the transformations

=> Monsieur Jourdain’s approach

» It's going to be challenging to do better!
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Action Language

» Use a general purpose action language
= Better navigation facility (associations)
= Get access to the types defined in the models
= Procedural rule description

if (this. Children-=size()==0)
A
I

WKL Utils. delet e_folder_level(this. getOI00);

I
else

for (i=0; i<this Children-=sizef; i++

I
Wkl Level level = this. Children-=asSequencel)
lewel deleteF olderlevel);

1

I

WK Utils. delete folder level(this. getQI00);
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Intermediate transformation language

» Typically XML based
= But XML (XMI) is verbose

» XSLT can be used to transform XML trees Into
other (XML) (trees)

= More batch than interactive
= Parameters are passed by values
= XSLT transformations are not really easy to maintain

» Better for simple transformations
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Example of XSLT transformation

1 nJ

saram namse="a"/=
rariable name="ct"
L chooges
<xX2]l:when test = ::node () [@1sSynchronous
<xsl:cal emplate name="condTaskTemplate"=>
<¥sl:wit AT ame="ct clect="5ct"/>
<¥Xa] 1
L ,a"rX'S 1:cCc

agynoCompoundTaskInputGroupOriActivityOutputGroup”
1-param name="a" select="3a"/>

</xs1:
ﬁfxsl:template}
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Dedicated Transformation Language

» Kind of DSL for transformation

» Simplify development and maintenance of
model-transformations

» Higher expression power

» Enhanced structuration
= Composition of rules
= Interoperability
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Dedicated transformation languages

» Terminology
» Features of model transformations
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Query

» An expression evaluated over a model

= Returns one or more instances of types defined
either in the source model or by the query
language

» OCL Is an example of a query language
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Examples of OCL queries

-

Query: Has Pierre-Alain Muller sent a message about a given subject s?

s.post->exists (author.name='Muller' and author.firstname="'Pierre-Alain’)

Query: Knowing that there is only one subject about QVT, | want to retrieve It.

Subject.allinstances()->any (title = ‘QVT’)
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View

» A view Is a model that Is completely derived
from another model

= The meta-model of the view is typically not the
same as the meta-model of the source
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Transformation

» A transformation generates target models
from source models

May be bi-directional

—e S [
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QvsVvsT

» A query Is a restricted kind of view

» A view IS a restricted kind of transformation

= The target model cannot be modified
iIndependently of the source model

» A transformation generates target models
from source models
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Declarative

» Declarative languages describe relationships
between variables in terms of functions or
Inference rules and the language executor
(interpreter or compiler) applies some fixed
algorithm to these relations to produce a
result
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Imperative

» Any programming language that specifies
explicit manipulation of the state of the
computer system, not to be confused with a
procedural language
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Declarative vs. Imperative Style

» Declarative (what to do)
= Invariant relations between source and target models

» Imperative (how to do It)
= How to derive a target from a source

» May be combined via pre- and post-conditions

Artist2 Summer School 05 Pierre-Alain Muller 30




Execution Strategy

» Invocation of the transformation rules
= Explicit, via invocation operations (Java like)

= Implicit, based on context and rules’ signature
(Prolog like)
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Trace

» Trace associates one (or more) target
element with the source elements that lead
to Its creation

= For Round-trip development
= Incremental propagation

» Rules may be able to match elements based
on the trace without knowing the rules that
created the trace
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Rule

» Rules are the units in which transformations
are defined

= A rule is responsible for transforming a
particular selection of the source model to the
corresponding target model elements.
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Declaration

» A declaration Is a specification of a relation
between elements in the LHS and RHS
models
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Implementation

» An Implementation Is an imperative
specification of how to create target model
elements from source model elements

= An implementation explicitly constructs
elements in the target model

= Implementations are typically directed
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Match

» A match occurs during the application of a
transformation when elements from the LHS
and/or RHS model are identified as meeting
the constraints defined by the declaration of
a rule

= A match triggers the creation (or update) of
model elements in the target model
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Incremental

» A transformation is incremental if individual
changes in a source model can lead to
execution of only those rules which match
the modified elements
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Classification of model transformations
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Model-to-Text Approaches

» Visitor-Based Approaches
» Template-Based Approaches
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Model-to-Model Approaches

» Direct-Manipulation Approaches

» Relational Approaches

» Graph-transformation-based Approaches
» Structure-Driven Approaches

» Hybrid Approaches

» Other
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M2T: Visitor-based

» Some visitor mechanisms to traverse the
Internal representation of a model and write
code to a text stream

= |[terators
= Write ()
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M2T: Template-Based

» A template consists of the target text
containing slices of meta-code to access
iInformation from the source and to perform
text selection and iterative expansion

= The structure of a template resembles closely
the text to be generated

= Textual templates are independent of the target
language and simplify the generation of any
textual artefacts
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M2T : Template
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M2M: Direct Manipulation

» Internal representation plus some API to
manipulate it

» Object-oriented framework

» Rules and scheduling implemented from
scratch using a programming language

» JMI (MOF-compliant Java Interface)
= JSR-000040 Java™ Metadata Interface
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JMI examples

package javax.jmi.model;

import javax.jmi.reflect.™;

public interface Attribute extends StructuralFeature {
public boolean isDerived();
public void setDerived(boolean newValue);

}

package javax.jmi.model;
import javax.jmi.reflect.™;

tublic interface Operation extends BehavioralFeature {
public boolean isQuery();

public void setQuery(boolean newValue);
public java.util.List getExceptions();

}
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M2M: Relational Approaches

» Declarative, based on mathematical relations

= Good balance between flexibility and declarative
expression

» Implementable with logic programming
= Mercury, F-Logic programming languages
= Predicate to describe the relations
= Unification based-matching, search and backtracking
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Example of logic programming

» Excerpt of Mercury code

conditionaltask (Id) :-

conditionaltask for outputgroup of activity(Id,

conditionaltask for outputgroup of activity(Id, 0OG) :-
outputgroup of activity(0OG, Activity),
mapld(OG og id, conditicnaltask for outputgroup,

outputgroup of activity(OutputGroup, Activity) :-
ocutputgroup (OQutputGroup) ,
contains (Activity”a id, OutputGroup”og id),
activity (Activity) .
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M2M : Graph-Transformation-Based

» Declarative, based on the theoretical work
on graph transformations

= Operates on typed, attributed, labeled graphs
= Rule (LHS, RHS : Graph Pattern)

» Automated source element selection
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About Graphs

» G. Rozenberg (ed.); “Handbook of graph
grammars and computing by graph
transformation: Volume | Foundations”.
World Scientific Publishing, 1997.

» \Web site of Reiko Heckel ©
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M2M : Graph-Transformation-Based

» Powerfull, but complex because of the non-
determinism in scheduling and application
strategy

= Require careful consideration of termination of
the transformation process and the rule
application ordering

» It Is unclear how practitioners will receive
these complex approaches
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M2M : Structure-Driven Approaches

» 1st Phase

= Creation of hierarchical structure of target
model

» 2nd Phase
= Set the attributes and references in the target

» Users provide the transformation rules
» Framework determines the scheduling
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M2M : Structure-Driven Approaches

» Pragmatic approaches developed in the
context of EJB and Databases schema
generation from UML models

» Strong support for 1-to-1 and 1-to-n
correspondence between source and target

» Unclear how well these approaches can
support other kinds of applications
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M2M : Hybrid Approaches - others

» Any combination of different techniques

» Practical approaches are very likely to have

the hybrid character
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Practically speaking

» How many developers are familiar with the
prolog-like style of rules writing?

» Where Is the advantage of a dedicated
explicit language vs. a general purpose
language?

» Hybrid Languages or transformation libraries
for general purpose languages...
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Tools

» Generic transformation tools

» CASE tools scripting languages

» Dedicated model transformation tools
» Meta-modeling tools
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Generic transformation tools

» XSLT

» Graph Transformation tools
= Ask Reiko ©



CASE tools scripting languages

» Arcstyler from Interactive Objects
= MDA-Cartridge, JPython (Python & Java)

» Objecteering from Objecteering Software
= J language

» OptimalJd from Compuware
= TPL language

» Fujaba (From UML to Java and Back Again)
= Open Source
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Dedicated model transformation tools

» Mia-Transformation from Mia-Software
= Inference rules + Java

» PathMATE from Pathfinder Solutions
= Esay to integrate with modeling tools

» Open-Source

= ATL, MTL, AndroMDA, BOTL, Coral Mod-
Transf, QVTEclipse or UMT-QVT
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Meta-modeling tools

» MetaEdit+ from MetaCase
» XMF-Mosaic from Xactium

» Open-Source
= KerMeta from INRIA
= www.kermeta.org
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Coming soon

» Model Transformations in Practice
Workshop

= October 3rd 2005
= Part of the MoDELS 2005 Conference

» Comparing and contrasting various

approaches

» On Executable Meta-Languages applied to
Model Transformations
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