
The new Internet Protocol security IPsec testing
with TTCN-3

Ariel Sabiguero1,2, Maŕıa Eugenia Corti1, and César Viho2

1 Instituto de Computación, Facultad de Ingenieŕıa, Universidad de la República
J. Herrera y Reissig 565, Montevideo, Uruguay

{asabigue,mcorti}@fing.edu.uy
http://www.fing.edu.uy/inco

2 IRISA
Campus de Beaulieu

35042 Rennes CEDEX, France
{asabigue,viho}@irisa.fr,
http://www.irisa.fr/armor

Abstract. IPsec is a set of protocols designed to provide security to the
new version of the Internet Protocol (IPv6). It includes encryption and
other complex operations. TTCN-3 offers several ways to develop test
cases but no real methodological guide is provided to help in choosing
where to put complexity.
Two orthogonal approaches were studied. On the one hand, everything
can be done using coding and decoding functions. On the other hand
external functions can be used for for complex operations, leaving the
CoDec for only simple encoding operations. Both approaches were im-
plemented for a selected test case. Strengths and weaknesses of each are
unveiled, and ultimately compared.

Keywords: IPv6, IPsec, TTCN-3, ATS, ETS

1 Introduction

The Internet Protocol version 6 (IPv6) is the new version of current Internet
Protocol (IPv4). The most popular enhancement of IPv6 is the growth of the IP
address space, but several other changes are introduced. One important improve-
ment is that the security aspects are included in the specification. In the IPv6
suite, confidentiality and authentication mechanisms has been specified since
the initial drafts. Thus testing IPv6 must include the testing of the new Internet
Protocol security features. This is already the case in the world wide IPv6 Ready
Logo certification program that provides test suites for IPsec (Internet Protocol
Security) [1–3]. IPsec is a set of protocols that provides cryptographically based
security at the IP layer, protecting the network and upper layers. The services
offered by IPsec includes: confidentiality, connectionless integrity and data origin
authentication. TTCN-3 language was designed to specify and implement any

kind of testing activity in an abstract and efficient way. It has been successfully
applied for the new Internet Protocol testing. Moreover, in the recent years, dif-
ferent research groups have released public TTCN-3 libraries that ease IPv6 test
case development.

The objective of this work is to present the use of TTCN-3 language and
tools to test IPv6-IPsec, specifically conformance. The test cases themselves
exchange only few messages between the tester and the Implementation Under
Test (IUT), and could be considered quite simple to implement but they hold the
inherent complexity of the encryption, decryption and authentication/integrity
algorithms, among others. IPsec specification (by means of an RFC - Request for
Comments) indicates which authentication/integrity and encryption algorithms
are used. The RFC [1] does not specify the algorithms themselves, but describes
how to use existing ones. Thus, in the test specification, these algorithms are not
implemented in TTCN-3. Already existing libraries that implement the required
algorithms are used.

This work compares different methodological approaches to reuse existing
functions and distribute complexity of the task across TTCN-3 standard inter-
faces. One possibility is to model the encryption stage as an operation performed
and specified in the TTCN-3 Abstract Test Specification (ATS) of the test case.
Other possibility is to consider the encryption as a transmission problem. Conse-
quently, making the TTCN-3 ATS unaware of the encryption/decryption task.
Different decisions lead to different tester configuration and Executable Test
Suites (ETS) for the same test requirement. We explore how these ATS design
decisions impact the ETS, simplifying or hardening the test development process.
Pros and cons are discussed.

This work shall help the reader to understand deeply the different interfaces
present in TTCN-3 and how to use them effectively to address particular prob-
lems. Different decisions lead to different capabilities and expressiveness of the
TTCN-3 ATS. Practical results are presented.

The work is organized as follows. Section 2 highlights the principal aspects
of the IPsec protocol and presents a general description of IPsec tests. Section
3 introduce the test selected to be implemented, the requirements and available
tools used. In Section 4 the two methodological approaches implemented are
introduced and they are compared in Section 5. Conclusions are presented in
Section 6.

2 IPsec highlights

IPsec is a suite of security protocols that offers access control, connectionless
integrity, data origin authentication and confidentiality, among other services,
for IPv4 and IPv6. These services offered protect the IP layer and upper layer
protocols.

2.1 Protocol description

Two protocols are used by IPsec to provide security: Authentication Header
(AH) and Encapsulating Security Payload (ESP). AH provides connectionless
integrity, data origin authentication and optionally anti-replay service. Beside
this, ESP may provide confidentiality too. Both of them also provide access
controls by the use of cryptographic keys, that can be distributed manually or
automatically. AH an ESP are used in conjunction with a set of cryptographic
algorithms specified in RFC 4305 [4].

Both protocols, AH and ESP, can be used alone or can be combined. ESP
can be used to provide both functionalities, integrity and confidentiality, or it
can be used to provide only integrity, the same functionality provided by AH.
This makes AH to be not only a specification requirement, but an option.

The IPsec protocols can be used in two modes: transport and tunnel. In
transport mode security is provided for the upper layer protocols and not for the
IP header. In the case of AH some portions of extension headers are also covered.
In tunnel mode the security protocols are applied to the entire IP datagram,
including the IP header.

The security protocol (ESP or AH), the mode, the cryptographic algorithms,
how to combine the specified protocols and services and the traffic that will
be protected, are specified by the Security Associations (SA) and the Security
Policy Database (SPD).

As defined in [3] an SA is a simplex ”connection” that affords security services
to the traffic carried by it. For a typical communication two SA are required, one
for each traffic direction. Also, if AH and ESP protocols are combined, two SA
must be created, one for each protocol. Each SA is an entry in the SA Database
(SAD). In the SA the security protocol and the mode are specified among other
parameters that defines the connection.

The SPD control whether and how IPsec is applied to traffic transited or
received. The SPD must be consulted while processing the traffic, incoming or
outgoing, even in traffic that IPsec protection is not required.

2.2 General Test description

The IPv6 forum implements the IPv6 logo with the objective of give confidence
to users that IPv6 is available and ready to use. They provide a suite of test that
should be passed to get the logo. Specification conformance and Interoperability
are tested. For this work we concentrate in the conformance test suites specified
by the IPv6 Ready Logo Technical Committee (v6LC).

IPsec testing is about IPsec, and not about IPv6 testing. IPsec implementa-
tion is strongly encouraged in IPv6, but different parts of the protocol suite are
tested separately. By the moment IPsec is addressed, IPv6 must have been tested
before, and must have got a hundred percent of pass verdicts. The same principle
of separation of concerns is applied to the encryption and privacy providers, with
the difference that there is no test on the suite that addresses their correctness.

IPsec tests address, as said in Section 2.1, the two different modes present
in IPsec: tunnel and transport. The mode requirement depends on the targeted
usage. For each of them, it tests the different combinations of encryption algo-
rithms and the authentication ones. For both algorithms’ types two categories
are defined: base and advanced. The algorithms included in the base category are
mandatory for all equipment and the ones included in the advanced are required
only for equipment that supports these algorithms.

Manual key configuration is used, but dynamic negotiation of keys is an
accepted alternative, using Internet Key Exchange (IKE) protocol. Although,
IKE is addressed in a different test suite, devoted to it.

From the two security protocols used by IPsec, AH and ESP, only ESP is
required and tested.

During the execution of the selected test case, an IPsec-ICMPv6 Echo Re-
quest message is sent to the Node Under Test (NUT). The NUT must receive
the message, process it and return an IPsec-ICMPv6 Echo Reply message.

3 Requirements on the testing platform

This work takes from granted the IPsec test suite definition engineered by the
v6LC. It is not addressed what to test in order to ascertain the correctness of
an IPsec implementation, but how to do it with TTCN-3.

IPsec test specification is published by the IPv6 Ready Logo as an English
written document [5], complemented with some graphics. English ATS is trans-
lated into TTCN-3 specification, with additional, test specific, functions imple-
mented through the standard TTCN-3 interfaces. Main requirements include
IPv6 data type handling and cryptographic routines.

A TTCN-3 test system can be thought conceptually as a set of interacting
entities, each implementing a specific test functionality. Figure 1 shows the gen-
eral structure of a TTCN-3 test system. We will focus only on the main concepts
addressed by this work.

The TTCN-3 Executable (TE) interprets and executes compiled ATS. SA,
which stands for SUT Adaptor (System Under Test Adaptor), ”adapts” com-
munications between the TTCN-3 system and the SUT. The Platform Adaptor
(PA) implements (amongst others) external functions. External functions are
convenient ways of executing platform language code, in our case, ANSI C. The
Test Management (TM) entity is responsible for overall management of a test
system. Finally, the Coding and Decoding (CD) entity is responsible for the en-
coding and decoding of TTCN-3 values into bitstrings suitable to be sent to the
SUT. All these definitions can be found in [6–8].

The comprehensive detail of the way this runtime components interact is
beyond the scope of this work. Nevertheless, the following simplified examples
give a grasp of the semantic behavior. It is important to understand the inter-
action of these elements during a send operation. The runtime behavior of a
send operation is to take the template, hand it to the associated CoDec through

TE

Test System User

TM Management

TRITRITRITRITRITRITRITRITRITRITRITRITRITRITRITRITRITRITRI

TCI

C
H

:
C

om
po

ne
nt

H
an

dl
in

g

TL Logging

C
D

: C
oD

ec

PA: Platform AdaptorSA: System Adaptor

System Under Test (SUT)

Fig. 1. Conceptual architecture of TTCN-3

the TCI/CD interface and obtain its representation as a BinaryString. The bit-
oriented representation is passed then to the TRI/SA function that implements
the port implementation, ultimate responsible of the transmission.

Another important operation is the invocation of an external function. Exter-
nal functions provide ways to extend TTCN-3 language with platform language
functionality. When an external function is invoked from the TTCN-3 ATS,
the runtime behavior requires that the TTCN-3 variable is converted into its
BinaryString representation using the associated CoDec through the TCI/CD
interface. The bit-oriented representation is passed trough the TRI/PA interface
to the registered external function, that will perform the expected operation
over the bitstring. Upon the function return, the BinaryString is again used to
invoke the corresponding CoDec, this time to obtain a TTCN-3 variable out of
the bitstring, through the TCI/CD interface again.

These are the basis for extending TTCN-3 functionalities with platform lan-
guage. Section 4 explains different ways of using this API to generate IPsec
messages.

3.1 The selected test case

This work bases its results on experiments made basically on a specific test case,
number 5.2.3 of [5]. The test case has an extense preamble detailing Security As-
sociation Databases (SAD) configuration and Security Policy Databases (SPD)
for each node. Exchanged packets are also detailed.

This work is focused in the implementation of transport mode test, with
encryption algorithm 3DES-CBC and authentication algorithm NULL. Figure 2
shows the test topology: the way involved nodes are corrected.

HOST1_Link1=PF1::1

HOST1

NUT_Link0=PF0::some_address

NUT

ROUTER1

ROUTER1_Link1=PF1::f

ROUTER1_Link0=PF0::f

Fig. 2. Test Topology.

Procedure:

HOST1_Link1(TN) Target(NUT)

| |

|-------------------------->| ICMP Echo Request with ESP

| |

|<--------------------------| ICMP Echo Reply with ESP

| | (Judgment #1)

1. HOST1 sends "ICMP Echo Request with ESP"

2. Observe the packet transmitted by NUT

Judgment:

Judgment #1

Step-2: NUT transmits "ICMP Echo Reply with ESP"

Fig. 3. TestCase 5.2.3: TransportMode ESP=3DES-CBC NULL

Figure 3 extracted from [5], describes the test procedure (scenario) and ver-
dict criteria. It is noticeable that the procedure consists of a stimulus and a
response, with a statement regarding of the correctness (judgment).

3.2 Available tools

At the time this work began, there were no TTCN-3 IPv6 IPsec libraries or tools
available on line that could be reused. IRISA’s T3DevKit [9] with IPv6 examples
and ETSI’s TC MTS-IPT [10] TTCN-3 IPv6 test tools and suites were publicly
available. Both of them seemed a suitable starting point for our development.
IRISA’s T3DevKit was selected due to existing knowledge of the tool and no
particular aid to IPsec testing on ETSI’s public Abstract Test Suites (ATS).

As encryption routines are not part of the test purpose, it was decided to
reuse existing ones. GNU Libgcrypt was selected because it is freely available,
there are good examples of its usage and there is experience of its IPsec usage.

The rest of this Section analyzes these building blocks and the test develop-
ment challenges to be addressed.

T3DevKit The T3DevKit is a helper for implementing TRI-PA, TRI-SA and
TCI-CD interfaces in order to build the executable test out of a TTCN-3 ab-
stract specification. It provides the T3CDGen, an automatic generator that ex-
tract type definitions present in the TTCN-3 source files and generate most of
the C++ code needed to implement the logic of the TCI-CD interface. The
T3DevLib provides a framework of C++ classes that eases TTCN-3 data type
handling, together with port and timer definitions suitable for working over Eth-
ernet networks.

Examples provided with the T3DevKit provides types and functions for han-
dling IPv6, ICMPv6, TCP and UDP. The T3DevKit not only eases our work
because it provides several elements that were reusable, but because it automa-
tizes the CoDec generation.

The T3DevKit is licensed under CeCILL-C license.

Libgcrypt Libgcrypt is a general purpose cryptographic library which works
on POSIX systems. It is built based on the code from GNUPG and provides
functions and support for several cryptographic ciphers, hash algorithms, mes-
sage authentication codes (MAC), etc. It has a broad user base and provides all
the functionality required for implementing IPsec.

3.3 What can be reused and what has to be developed

With the tools selected, we have enough building blocks to simplify our abstract
test engineering. We already have implementations for IPv6 packets, ICMP mes-
sages, UDP datagrams and TCP segments. Most of this code can be reused to
perform the IPsec test cases, and some just need to be adapted with minor mod-
ifications. Implementations for 3DES, SHA and other cipher related functions

are also available. What is required now is to glue all these things together and
to build the ETS.

It is clear that IPsec TTCN-3 data types have to be developed, together
with their corresponding encoding and decoding functions. Also the TTCN-3
templates that will be used for the tests have to be defined. Beside this, we have
to integrate the new code implemented and the reused one. Figure 4 shows the
TTCN-3 data types defined for representing the ESP message.

type record ESPMessage {
octetstring SPI length(4),

UInt32 SeqNum,

EncPayload Payload,

octetstring ICV optional

}

type record EncPayload {
IPDatagram Data,

integer TFCPadding optional,

octetstring Padding length(0..255) optional,

UInt8 PadLength,

UInt8 NextHdr

}

Fig. 4. TTCN-3 data types for ESP message

Further explanation of the test cases implemented and details of the imple-
mentations are presented in the following Section.

4 Alternatives on test case engineering

CoDec task is to convert TTCN-3 objects into transmittable bitstrings. Particu-
lar details of the communication are removed from the TTCN-3 ATS and relayed
to CoDecs. The direct usage of the T3DevKit suggests also to relay other func-
tionalities to the CoDecs, like message size calculation or checksum computing.
The natural way to extend this methodology would be to perform cipher oper-
ations on the CoDec, moving there all IPsec handling. This way of assembling
IPsec messages does not seem natural, as all the IPsec assembly is done in C++
CoDecs.

Another approach is to embed cryptographic operations inside the TTCN-3
code using external functions. This approach provides more control to the ATS
during the encryption process, lightening the weight of the CoDec. T3DevKit
also offers a wrapper to give access to external functions, which we used.

Following Subsections describe these two test development implementation
strategies.

4.1 First approach: encryption and codification relayed to the
CoDec

The natural way of extending CoDec based, existing public ATS, to address IPsec
was to implement cryptographic and authentication functions in the CoDecs too.
We shall analyze independently transmission and reception operations.

Transmission Performing all the encoding in the CoDec, removes most of the
cryptographic details from the TTCN-3 code. In this way the ESP packet is
modeled in TTCN-3 without applying any cipher algorithm and passed to the
CoDec. The C++ CoDecs perform the corresponding cryptographic operations
and assemble the packet that will be finally sent to the NUT.

Link1.send(ICMPv6WithESP EchoRequest AuthNULL(SPI SA1, DATA));

Fig. 5. Complete transmission processing in the ATS

The unencrypted message template is sent to the CoDec. The CoDec receives
the TTCN-3 values and encode them into bitstring, but there are several things
to be done. Before building the BinaryString with the transmittable representa-
tion, part of the message must be encrypted, and before encrypting some values
must be calculated. T3DevKit provides Encode and Decode methods for each
field of a packet. These methods simplify finding the fields that must be en-
crypted but it is an intricate task to calculate fields like checksum, padding and
padlength.

The length of all the fields have to be calculated to be able to determine the
padlength. Handling of the bitstring representation is not natural in C++. Even
though the T3DevKit provides tools for handling the bitstring (a cursor and
operations over the bitstring representation), the task is error prone. Indeed, as
the T3DevKit works on the bitstring, but C++ native libraries work on memory
addresses, byte oriented, several translations have to be performed from the
bitstring into byte representation and vice versa. These operations are highly
error prone.

Although the T3DevKit soothes the work, there is not a common represen-
tation of types and data between TTCN-3 world and C++ one.

Reception For the reception of messages, the same design decision of moving
all the cryptographic operations to the CoDec can be applied, leading to a very
clear abstract specification. Figure 6 shows the piece of code corresponding to
the test case implementation.

alt

//Receive the correct answer

[] Link1.receive(ICMPv6WithESP EchoReply AuthNULL(SPI SA2, ’’O))

setverdict(pass);

replyTimer.stop;

//Receive incorrect answer

[] Link1.receive

setverdict(fail);

replyTimer.stop;

//Receive no answer

[] replyTimer.timeout

setverdict(fail);

Fig. 6. Complete reception processing in the ATS

It is straightforward to follow the logic of the message reception. The pass
verdict is only issued if the received message can be matched to the ICMPv6With
ESP EchoReply AuthNULL template. In any other cases, a fail verdict is issued.
All the logic regarding proper encryption is placed on C++ CoDecs.

The power given by the T3DevKit tool to the CoDec generation translated
parts of the protocol complexity to the coding operation. Length calculation
can be considered a simple operation, that can be handled during encoding.
Checksum calculation is not a simple operation (at least not as simple as length
calculation), but the CoDec is an elegant place to perform it. We shall analyze
the result of removing cryptographic tasks from the CoDec in the following
Subsection.

4.2 Second approach: encryption/decryption done in external
functions

By ”encryption/decrytion done in external functions” we describe the decoupling
of purely coding operations from semantically rich ones. Even though it is pos-
sible to discuss what is purely coding, we think that performing cryptographic
operations cannot be considered a simple operation.

Transmission The objective of this design decision is to be able to have a
complete encoded value, accessible and represented in TTCN-3 variables before
the final BinaryString encoding is performed. The CoDec do not need to perform
operations to the objects received from TTCN-3, but just to convert the TTCN-3
value into its bit oriented representation.

template ESPMessage ICMPv6ESPMessage (IPv6AddressType src,

IPv6AddressType dst, octetstring m spi,

octetstring m data, UInt16 checksum) := {

SPI:= m spi,

SeqNum := 1,

Payload := EncryptPayload(src, dst, EchoRequestType,

m data, checksum),

ICV :=omit

}

Fig. 7. TTCN-3 template for ESP with external functions

The Figure 7 shows how we use external functions to compute cryptographic
generated values of the ESPMessage. It is possible to see how external function
invocation is embedded in the template definition with the EncryptPayload()
function. The ESP message template definition includes the parameters it re-
ceives, and the ones that has to be passed to the external function responsible
for performing the encryption.

Before encrypting the payload, it’s content (the ICMPv6 packet) must be
built. Consequently, it’s length and checksum need to be calculated and accessed
from TTCN-3. Thus, we need to use external functions in this case too. We illus-
trate checksum calculation in Figure 8. The checksum is calculated calling the
external function GetCheckSum() before assembling the packet. The calculated
checksum is passed as a parameter to the template defined for the ESP message.

var UInt16 checksum := GetCheckSum(PF1 1, PF0 1, EchoRequestType,

DATA, NextHeaderIcmpV6);

Link1.send(ICMPv6WithESP EchoRequest(PF1 1, PF0 1, SPI SA1,

DATA, checksum));

Fig. 8. TTCN-3 checksum calculation

Reception This approach also introduces changes, challenges and differences in
reception operations, and the way received information is treated. External func-
tions can also help validating the message and are used to decrypt the message.
It is pretty straightforward to see that TTCN-3 matching mechanisms based on
wildcards does not apply inside encrypted structured data fields. They have to
be decrypted first.

alt{
//Receive correct answer, unverified encrypted payload
[] Link1.receive(ICMPv6ESPMessage Answer AuthNULL

(PF0 1, PF1 1, SPI SA2, DATA, checksum)) -> value Myvar {
var bitstring encpayload := Myvar.Payload;
var UInt8 payloadLength := lengthof(encpayload)/8;
var EncPayload payload := DecriptPayload(encpayload, payloadLength);
if (match(payload, ICMPv6EncPayload Answer(PF0 1, PF1 1, DATA))) {

setverdict(pass);
} else {

setverdict(fail);
}
replyTimer.stop;

}
//Receive incorrect answer
[] Link1.receive {

setverdict(fail);
replyTimer.stop;

}
//Receive no answer
[] replyTimer.timeout {

setverdict(fail);
}

}

Fig. 9. TTCN-3 code to validate received encrypted message using external functions

Figure 9 shows actual alt[] used for encrypted message reception and verdict
issuing. Message is received and compared to the corresponding template, shown
in Figure 10. The resulting value is assigned to the variable MyVar. From this
variable the encrypted payload is extracted and passed to an external function to
be decrypted. The decrypted value is then decoded into the type EncPayload
and then passed to the function match() (provided by TTCN-3), to be compared
with the corresponding template. Whether the result is true the issued verdict
is pass. fail is issued in other cases.

template ESPMessageAnswer ICMPv6ESPMessage Answer AuthNULL

(Ipv6AddressType src, Ipv6AddressType dst,

octetstring m spi, octetstring m data,

UInt16 checksum) := {

SPI:= m spi,

SeqNum := ?,

Payload := ?,

ICV := omit

}

}

Fig. 10. ESPMessageAnswer template

The checksum is also verified with an external function invocation, defined
in the template to check the incoming ICMP echo request. Figure 11 shows the
template and the checksum calculation function.

template ICMPv6MessageType icmpv6 EchoReply (Ipv6AddressType src,

Ipv6AddressType dst, octetstring m data) := {

Type:=Icmpv6EchoReplyType,

Code:=uint8 0,

Checksum:=GetCheckSum(src, dst, Icmpv6EchoReplyType,

m data , NextHeaderIcmpV6),

ChecksumShouldBe:=omit,

body := {
echo :={

Identifier := uint16 0,

SequenceNumber := uint16 0,

Data := m data

}
},
Options := omit

}

Fig. 11. icmp echo reply validation template

For handling external functions T3DevKit provides an implementation of
triExternalFunction() for multiplexing calls and presenting the data and a class
for manipulating the parameters. External functions permits building the com-
plete message in TTCN-3 types and data structures simplifying and reducing
the codification in the CoDec. Comparison between the two methods is done in
the following section.

5 Comparison

We have implemented and shown two different approaches to TTCN-3 test case
engineering of IPsec protocol test cases. We first shown a direct extension of
the IPv6 examples provided with the T3DevKit, that performs all the required
tasks at the CoDec level. The other approach presented was using external func-
tions to control the complete message assembly from TTCN-3, using only CoDec
for data representation conversion between TTCN-3 variables and transmittable
bitstrings. In the following, we compare these two approaches, according to dif-
ferent criteria.

5.1 Code engineering

We analyze all the aspects required to produce an executable test case, not
only the TTCN-3 ATS. We compare both TTCN-3 specification and platform
language readability together, despite of the fact that maybe different groups
of developers, with different backgrounds, address each part. First, we address
message transmission and afterward, reception.

Without external functions, message assembly and encryption are performed
in a single function. Moreover, as the CoDec (accessed from the send() opera-
tion) is not intended to be used as a regular function, it does not receive other
extra parameters than the template to be transmitted. No control on the en-
cryption keys or other arguments specified in the test specification is accessible
from the TTCN-3 code. With the usage of external functions, message is passed
to the CoDec with all the data fields calculated, thus only BinaryString encod-
ing is required. The logical sequence of the code is simpler to understand, as
separated abstract concepts are mapped to individual functions. The test case
becomes simpler to implement, as divide&conquer principles apply now. Just
specific functions are implemented in C++ to calculate some field values that
could not be implemented with TTCN-3, yet the message assembly logic and
sequence is handled from the TTCN-3 ATS.

While receiving the message for validation, an external function is used to
decrypt part of the message and then compare it with the corresponding tem-
plate. The complete validation process is done in TTCN-3. Without the usage of
external functions, only part of the message construction is controlled from the
TTCN-3 ATS. Some fields like checksum, padding and padlength are not cal-
culated in TTCN-3 and have to be added in the CoDec. This becomes relevant
for the payload generation. We need to have an ICMPv6 Echo Request message,
whose creation has been delegated to the CoDec. To keep our implementation
aligned and coherent with existing one, ESP assembly should be relayed to the
CoDec too. This fact forces that a part of the ATS is moved to the CoDec and
is not specified in TTCN-3 language. The test case is then split into TTCN-
3 and C++ CoDecs. To understand the test you have also to know the code
implemented by the CoDec. This approach seems not to follow the TTCN-3
philosophy and tends to put too much semantic in the CoDec.

5.2 Test specification size

As we are comparing two implementations of the same specification developed
with the same language it is possible to compare the methodologies based on
some code metrics. The first thing that is important to consider is that existing
IPv6 types and definitions were reused, and they are the biggest part of the
TTCN-3 code.

Table 12 shows the different parts of the code we measured. The metric used
is the effective lines of code (loc). Comments, blank lines, lines with only block
delimiters and other kinds of “empty” lines were removed, and only a single
command per line was accepted.

CoDec CoDec +
only Ext. Functions

TTCN-3 Test case 81 81
(loc) Accessory 812 797

C++ ext 0 234
(loc) CoDec 681 255

TTCN-3 893 878

C++ 681 489

Fig. 12. Some loc based software metrics

Size of TTCN-3 code is equivalent in both methodologies, with only slight
adjustments. It is noticeable that test case specific code accounts for a 10% of all
the required code. Modeling of IPv6, ICMPv6, options accounts for most of the
TTCN-3 code, which we managed to reuse from publicly available IPv6 ATS.

Differences arise when we consider platform language coding, both for CoDec
and External functions. It was part of the methodological approach to avoid
external functions in the first implementation, accounting only for CoDec imple-
mentation. The second implementation methodology splits the complexity, but
it is more than splitting it. It diminishes the number of lines of code required.
The total number of lines of C++ code shrunk almost 30%, spread over a bigger
number of shorter functions. These properties suggests that the code is also more
maintainable.

5.3 Performance

The main drawback found in the usage of external functions is the performance
overhead. Every time an external function is invoked, the TTCN-3 values are
encoded and passed to the external function. Upon exit, values are decoded and
passed back to TTCN-3. None of this happens in the approach that does not
require external functions.

The code requires 4 external function invocations during transmission and
reception, thus 4 additional code and decode cycles. The performance impact of
this is relevant for time sensitive Test case, but not in general case of conformance
testing.

6 Conclusions

We acknowledge that the comparison was applied only to subset of the whole
Conformance test suite, but we believe interesting conclusions can be taken. The
TTCN-3 ATS developed when putting all the operations in the CoDec is very
clean and readable, but we feel that important parts of the test specifications
have to be moved to the CoDec. Too much IPsec behavior is not expressed in

TTCN-3 language and is relied to CoDec. CoDec abstraction level -even aug-
mented with the T3DevKit- is too low and operations are hard to maintain and
implement. We think that this approach diverges from TTCN-3 design strategy.

Moving all the operations to the external functions provide a much more
comfortable framework. No changes in the size of TTCN-3 were found, and it
is still abstract enough, while keeping all required semantic for more detailed
test case operations. The weight of the CoDec is lightened, but the number
of invocations grew significantly. The total number of loc in platform language
shrunk, making the test case smaller and easier to develop. It seems that with this
approach we obtain better engineered test cases, at the expense of performance
degradation.

Further studies are in progress, but current findings seems to indicate that the
best option is to design test cases making use of the external functions, whenever
performance restrictions allows it. Despite of that, we think it is a good approach
to leave simple operations in the CoDec. Without trying to define what simple
mean for all possible ATS, our experience seems to indicate that all operations
that are related to the experiment definition shall not be relayed to the CoDec.
If there is a doubt, then is better to implement that operation as an external
function.

Acknowledgment

We would like to mention the importance of the T3DevKit for this study. It
proved solid and a powerful tool that eases test case engineering and it proved
enough flexible to accommodate both design choices presented in this article.
The authors would like to thank Anthony Baire for his thorough comments,
ideas and support during this work.

References

1. K. Seo S. Kent. RFC 4301: Security Architecture for the Internet Protocol.
http://www.rfc-editor.org/rfc/rfc4301.txt, 2005.

2. S. Kent. RFC 4303: IP Encapsulating Security Payload (ESP). http://www.rfc-
editor.org/rfc/rfc4303.txt, 2005.

3. C. Kaufman. RFC 4306: Internet Key Exchange. http://www.rfc-
editor.org/rfc/rfc4306.txt, 2005.

4. D. Eastlake. RFC 4305: Cryptographic Algorithm Implementation Requirements
for Encapsulating Security Payload (ESP) and Authentication Header (AH).
http://www.rfc-editor.org/rfc/rfc4305.txt, 2005.

5. IPv6 Ready Logo. Phase II Test Specification IPsec.
http://www.ipv6ready.org/pdf/IPsec 1 8 0b3.pdf (last ckecked 22/04/2006),
2007.

6. ETSI. ES 201 873-1 Part 1: TTCN-3 Core Language, Version: 3.1.1.
http://webapp.etsi.org/exchangefolder/esi 20187301v030101p.pdf, 2005. [Online;
accesed 19-April-2006].

7. ETSI. ES 201 873-5 Part 5: TTCN-3 Runtime Interface (TRI), Version: 3.1.1.
http://webapp.etsi.org/exchangefolder/esi 20187305v030101p.pdf, 2005. [Online;
accesed 19-April-2006].

8. ETSI. ES 201 873-6 Part 6: TTCN-3 Control Interface (TCI), Version: 3.1.1.
http://webapp.etsi.org/exchangefolder/esi 20187306v030101p.pdf, 2005. [Online;
accesed 19-April-2006].

9. T3DevKit. http://t3devkit.gforge.inria.fr/, 2007. [Online; accesed 22-April-2007].
10. TC MTS-IPT: IPv6 Testing an eEurope Project.

http://www.ipt.etsi.org/deliverable.htm, 2007. [Online; accesed 22-April-2007].

