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Locality sensitive hashing: a comparison of hash function types and querying mechanisms

Loı̈c Paulevé, Hervé Jégou, Laurent Amsaleg

Abstract– It is well known that high-dimensional nearest-
neighbor retrieval is very expensive. Dramatic performance
gains are obtained using approximate search schemes, such
as the popular Locality-Sensitive Hashing (LSH). Several
extensions have been proposed to address the limitations
of this algorithm, in particular, by choosing more appro-
priate hash functions to better partition the vector space.
All the proposed extensions, however, rely on a structured
quantizer for hashing, poorly fitting real data sets, limit-
ing its performance in practice. In this paper, we compare
several families of space hashing functions in a real setup,
namely when searching for high-dimension SIFT descrip-
tors. The comparison of random projections, lattice quan-
tizers, k-means and hierarchical k-means reveal that un-
structured quantizer significantly improves the accuracy of
LSH, as it closely fits the data in the feature space. We then
compare two querying mechanisms introduced in the liter-
ature with the one originally proposed in LSH, and discuss
their respective merits and limitations.

1. Introduction

Nearest neighbor search is inherently expensive due to the
curse of dimensionality (Böhm et al., 2001; Beyer et al., 1999).
This operation is required by many pattern recognition appli-
cations. In image retrieval or object recognition, the numer-
ous descriptors of an image have to be matched with those of
a descriptor dataset (direct matching) or a codebook (in bag-
of-features approaches). Approximate nearest-neighbor (ANN)
algorithms are an interesting way of dramatically improving the
search speed, and are often a necessity. Several ad hoc ap-
proaches have been proposed for vector quantization (see Gray
and Neuhoff, 1998, for references), when finding the exact near-
est neighbor is not mandatory as long as the reconstruction
error is limited. More specific ANN approaches performing
content-based image retrieval using local descriptors have been
proposed (Lowe, 2004; Lejsek et al., 2006). Overall, one of
the most popular ANN algorithms is the Euclidean Locality-
Sensitive Hashing (E2LSH) (Datar et al., 2004; Shakhnarovich
et al., 2006). LSH has been successfully used in several multi-
media applications (Ke et al., 2004; Shakhnarovich et al., 2006;
Matei et al., 2006).

Space hashing functions are the core element of LSH. Sev-
eral types of hash functions have recently been proposed to
improve the performance of E2LSH, including the Leech lat-
tices (Shakhnarovich et al., 2006) and E8 lattices (Jégou et al.,
2008a), which offer strong quantization properties, and spheri-
cal hash functions (Terasawa and Tanaka, 2007) for unit-norm
vectors. These structured partitions of the vector space are reg-
ular, i.e., the size of the regions are of equal size, regardless the

density of the vectors. Their advantage over the original algo-
rithm is that they exploit the vectorial structure of the Euclidean
space, offering a partitioning of the space which is better for the
Euclidean metric than the separable partitioning implicitly used
in E2LSH.

One of the key problems when using such a regular parti-
tioning is the lack of adaptation to real data. In particular the
underlying vector distribution is not taken into account. Be-
sides, simple algorithms such as a k-means quantizer have been
shown to provide excellent vector search performance in the
context of image and video search, in particular when used in
the so-called Video-Google framework of Sivic and Zisserman
(2003), where the descriptors are represented by their quan-
tized indexes. This framework was shown to be equivalent to
an approximate nearest neighbor search combined with a voting
scheme in Jégou et al. (2008b). However, to our knowledge this
k-means based partitioning has never been evaluated in the LSH
framework, where multiple hash functions reduce the probabil-
ity that a vector is missed, similar to what is done when using
randomized trees (Muja and Lowe, 2009).

The first contribution of this paper is to analyze the indi-
vidual performance of different types of hash functions on real
data. For this purpose, we introduce the performance metrics,
as the one usually proposed for LSH, namely the “ε-sensitivity”,
does not properly reflect objective function used in practice. For
the data, we focus on the established SIFT descriptor (Lowe,
2004), which is now the standard for image local description.
Typical applications of this descriptor are image retrieval (Lowe,
2004; Nistér and Stewénius, 2006; Jégou et al., 2008b), stitch-
ing (Brown and Lowe, 2007) and object classification (Zhang
et al., 2007). Our analysis reveal that the k-means quantizer,
i.e., an unstructured quantizer learned on a vector training set,
behaves significantly better than the hash functions used in the
literature, at the cost of an increased pre-processing cost. Note
that several approximate versions of k-means have been pro-
posed to improve the efficiency of pre-processing the query.
We analyze the performance of one of the popular hierarchical
k-means (Nistér and Stewénius, 2006) in this context.

Second, inspired by state of the art methods that have proved
to increase the quality of the results returned by the original
LSH scheme, we propose two variants of the k-means approach
offering different trade-offs in terms of memory usage, effi-
ciency and accuracy. The relevance of these variants are shown
to depend on the database size. The first one, multi-probe LSH (Lv
et al., 2007), decreases the query pre-processing cost. It is
therefore of interest for datasets of limited size. The second
variant, query-adaptive LSH (Jégou et al., 2008a), improves the
expected quality of the returned vectors at the cost of increased
pre-processing. It is of particular interest when the number of
vectors is huge. In that case, the query preparation cost is neg-
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ligible compared to that of post-processing the vectors returned
by the indexing structure.

This paper is organized as follows. Section 2 briefly de-
scribes the LSH algorithm, the evaluation criteria used to mea-
sure the performance of ANN algorithms in terms of efficiency,
accuracy and memory usage, and presents the dataset used in
all performance experiments. An evaluation of individual hash
functions is proposed in Section 3. We finally present the full
k-means LSH algorithm in Section 4, and the two variants for
the querying mechanism.

2. Background

This section first briefly presents the background material
for LSH that is required to understand the remainder of this
paper. We then detail the metrics we are using to discuss the
performance of all approaches. We finally present the dataset
derived from real data that is used to perform the experiments.

2.1. Locality sensitive hashing

Indexing d-dimensional descriptors with the Euclidean ver-
sion E2LSH of LSH (Shakhnarovich et al., 2006) proceeds as
follows. The n vectors of the dataset to index are first projected
onto a set of m directions characterized by the d-dimensional
vectors (ai)1≤i≤m of norm 1. Each direction ai is randomly drawn
from an isotropic random generator.

The n descriptors are projected using m hash functions, one
per ai. The projections of the descriptor x are defined as

hi(x) =

⌊
〈x|ai〉 − bi

w

⌋
, (1)

where w is the quantization step chosen according to the data
(see (Shakhnarovich et al., 2006)). The offset bi is uniformly
generated in the interval [0,w) and the inner product 〈x|ai〉 is
the projected value of the vector onto the direction ai.

The m hash functions define a set H = {hi}1≤i≤m of scalar
hashing functions. To improve the hashing discriminative power,
a second level of hash functions, based on H , is defined. This
level is formed by a family of l functions constructed by con-
catenating several functions from H . Hence, each function gi

of this family is defined as

g j = (h j,1, . . . , h j,d∗ ), (2)

where the functions h j,i are randomly chosen from H . Note
that this hash function can be seen as a quantizer performed on a
subspace of dimension d∗. At this point, a vector x is indexed by
a set of l vector of integers g j(x) = (h j,1(x), · · · , h j,d∗ (x)) ∈ Zk.

The next step stores the vector identifier within the cell as-
sociated with this vector value g j(x). Note additional steps aim-
ing at avoiding the collision in hash-buckets of distant vectors
are performed, but can be ignored for the remainder of this pa-
per, see (Shakhnarovich et al., 2006) for details.

At run time, the query vector q is also projected onto each
random line, producing a set of l integer vectors {g1(q), · · · , gl(q)}.

From that set, l buckets are determined. The identifiers of all the
vectors from the database lying in these buckets make the result
short-list. The nearest neighbor of q is found by performing an
exact search (L2) within this short-list, though one might pre-
fer using another criterion to adapt a specific problem, as done
in (Casey and Slaney, 2007). For large datasets, this last step is
the bottleneck in the algorithm. However, in practice, even the
first steps of E2LSH can be costly, depending on the parameter
settings, in particular on l.

2.2. Performance Metrics

LSH and its derivatives (Gionis et al., 1999; Terasawa and
Tanaka, 2007; Andoni and Indyk, 2006) are usually evaluated
using the so-called “ε-sensitivity”, which gives a intrinsic the-
oretical performance of the hash functions. However, for real
data and applications, this measure does not reflect the objective
which is of interest in practice: how costly will be the query,
and how likely will the true nearest neighbor of the query point
be in the result? Hereafter, we address these practical concerns
through the use of the following metrics:

Accuracy: recall
Measuring the quality of the results returned by ANN ap-

proaches is central. In this paper, we will be measuring the
impact of various hashing policies and querying mechanisms
on the accuracy of the result.

To have a simple, reproducible and objective baseline, we
solely measure the accuracy of the result by checking whether
the nearest neighbor of each query point is in the short-list or
not. This measure then corresponds to the probability that the
nearest neighbor is found if an exhaustive distance calculation
is performed on the elements of the short-list. From an applica-
tion point of view, it corresponds for instance to the case where
we want to assign a SIFT descriptor to a visual word, as done
in (Sivic and Zisserman, 2003).

The recall of the nearest neighbor retrieval process is mea-
sured, on average, by aggregating this observation (0 or 1) over
a large number of queries. Note that instead, we could have per-
formed a k-nn retrieval for each query. Sticking to the nearest
neighbor avoids choosing an arbitrary value for k.

Search complexity
Finding out how costly an ANN approach is has major prac-

tical consequences for real world applications. Therefore, it is
key to measure the overall complexity of the retrieval process
in terms of resource consumption. The LSH algorithm, regard-
less of the hashing options, has two major phases, each having
a different cost:

• Phase 1: Query preparation cost. With LSH, some pro-
cessing of the query vector q must take place before the
search can probe the index. The query descriptor must
be hashed into a series of l values. These values identify
the hash-buckets that the algorithm will subsequently an-
alyze in detail. Depending on the hash function type, the
cost of hashing operations may vary significantly. It is a
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function of the number of inner products and/or compar-
isons with database vectors to perform in order to even-
tually get the l values. That query preparation cost is
denoted by qpc and is given in Section 3 for several hash
function types.

• Phase 2: Short-list processing cost: selectivity. Depend-
ing on the density of the space nearby q, the number
of vectors found in the l hash-buckets may vary signif-
icantly. For a given q, we can observe the selectivity of
the query, denoted by sel.

Definition: The selectivity sel is the fraction of the data
collection that is returned in the short-list, on average, by
the algorithm.

In other words, multiplying the selectivity by the num-
ber of indexed vectors gives the expected number of el-
ements returned as potential nearest neighbors by the al-
gorithm. The number of memory cells to read and the
cost of processing the short-list are both a linear function
of the short-list length, hence of sel.

In the standard LSH algorithm, it is possible to estimate
this selectivity from the probability mass function of hash
values, as discussed later in the subsection 3.5.

If exhaustive distance calculation is performed on the short-
list returned by LSH, the overall cost for retrieving the ANN of
a query vector is expressed as

ocost = sel × n × d + qpc. (3)

An interesting measure is the acceleration factor ac over
exhaustive search, which is given by

ac =
n × d
ocost

=
1

sel +
qpc
n×d

. (4)

For very large vector collections, the selectivity term is likely to
dominate the query preparation cost in this equation, as hash-
buckets tends to contain many vectors. This is the rationale for
using the selectivity as the main measurement.

Memory usage
The complexity of the search also includes usage of the

main memory. In this paper, we assume that the complete LSH
data structure fits in main memory. Depending on the strategy
for hashing the vectors, more or less main memory is needed.
As the memory occupation has a direct impact on the scala-
bility of search systems, it is worth noticing that in LSH, this
memory usage is proportional to the number of hash functions
considered and to the number of database vectors:

memory usage = O(l × n). (5)

The number of hash functions used in LSH will hence be
used as the main measurement of the memory usage.

2.3. Dataset
Our vector dataset is extracted from the publicly available

INRIA Holidays dataset1, which is composed of high-definition
real Holiday photos. There are many series of images with a
large variety of scene types (natural, man-made, water and fire
effects, etc). Each series contains somehow visually similar im-
ages, differing however due to various rotations, viewpoint and
illumination changes of the same scenes taken by the photogra-
phers.

These images have been described using the SIFT descrip-
tor (Lowe, 2004), for which retrieving the nearest neighbors is
a very computationally-demanding task. SIFT descriptors have
been obtained on these images using the affine co-variant fea-
tures extractor from Mikolajczyk and Schmid (2004). When
using the standard parameters of the literature, the dimension-
ality of SIFT descriptors is d = 128.

The descriptor collection used in this paper is a subsample
of 1 million descriptors randomly picked from the descriptors
of the image dataset. We also randomly picked 10,000 descrip-
tors used as queries, and another set of 1 million vectors ex-
tracted from a distinct image dataset (downloaded from Flickr)
for the methods requiring a learning stage. Finally, we ran ex-
act searches using the Euclidean distance to get the true nearest
neighbor of each of these query descriptors. This ground-truth
will be the one against which ANN searches will be compared.

3. Hash function evaluation

This section first discusses the key design principles behind
four types of hash functions and the key parameters that mat-
ter for evaluating their performance in the context of LSH. We
first recall the original design, where hash functions are based
on random projections. Following recent literature (Andoni
and Indyk, 2006; Jégou et al., 2008a), we then describe high-
dimensional lattices used for spatial hashing. These two types
of hash functions belong to the family of structured quantizers,
and therefore do not capture the peculiarities of the data collec-
tion’s distribution in space. To contrast with these approaches,
we then discuss the salient features of a k-means unstructured
quantizer for hashing, as well as one if its popular tree-based
variant. Overall, choosing a hash function in LSH amounts to
modifying the definition of g introduced in Section 2.1.

Enunciated these design methods, we then move to evaluate
how each type of hash function performs on the real data col-
lection introduced above. The performance is evaluated for a
single hash function. This accurately reflects the intrinsic prop-
erties of each hash function, while avoiding to introduce the
parameter l (number of distinct hash functions).

3.1. Random projection based
The foundations of the hash functions used in the original

E2LSH approach have been presented in Section 2.1. Overall,
the eventual quantization of the data space is the result of a
product of unbounded scalar quantizers.

1http://lear.inrialpes.fr/people/jegou/data.php
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The key parameters influencing the performance of each
E2LSH hash function are:

• the quantization step w ;

• the number d∗ of components used in the second-level
hash functions g j.

As the parameters bi and m are provided to improve the
diversity between different hash functions, they are arbitrarily
fixed, as we only evaluate the performance of a single hash
function. The values chosen for these parameters do not no-
ticeably impact the selectivty, though large values of m linearly
impacts the query preparation cost. This one remains low for
this structured hashing method.

3.2. Hashing with lattices
Lattices have been extensively studied in mathematics and

physics. They were also shown to be of high interest in quanti-
zation (Gray and Neuhoff, 1998; Conway and Sloane, 1982b).
For a uniform distribution, they give better performance than
scalar quantizers (Gray and Neuhoff, 1998). Moreover, finding
the nearest lattice point of a vector can be performed with an
algebraic method (Agrell et al., 2002). This is referred to as
decoding, due to its application in compression.

A lattice is a discrete subset of Rd′ defined by a set of vec-
tors of the form

{x = u1a1 + · · · + udad |u1, · · · , ud ∈ Z} (6)

where a1, · · · , ad are linearly independent vectors of Rd′ , d′ ≥
d. Hence, denoting by A = [a1 · · · ad] the matrix whose columns
are the vectors a j, the lattice is the set of vectors spanned by Au
when u ∈ Zd. With this notation, a point of a lattice is uniquely
identified by the integer vector u.

Lattices offer a regular infinite structure. The Voronoi re-
gion around each lattice points has identical shape and volume
(denoted byV) and is called the fundamental region.

By using lattice-based hashing, we aim at exploiting their
spatial consistency: any two points decoded to the same lattice
point are separated by a bounded distance, which depends only
on the lattice definition. Moreover, the maximum distance be-
tween points inside a single lattice cell tends to be identical for
some particular lattices. In the rest of this paper, we refer to this
phenomenon as the vectorial gain.

Vectorial gain is strongly related to the density of lattices.
The density of a lattice is the ratio between the volume V of
the fundamental region and the volume of its inscribed sphere.
Basically, considering Euclidean lattices, the closer to 1 the
density, the closer to a sphere the fundamental region, and the
greater the vectorial gain. Figure 1 illustrates the vectorial gain
for two 2-d lattices having fundamental region of identical vol-
ume. In other terms, if L2(x, y) is the Euclidean distance be-
tween x and y, and Va (respectively Vb) is the closed domain
of vectors belonging to the region depicted on Figure 1(a) (re-
spectively Figure 1(b)), then:

max
xa∈Va,ya∈Va

L2(xa, ya) � max
xb∈Vb,yb∈Vb

L2(xb, yb) (7)

(a) (b)

Figure 1: Fundamental regions obtained using random projections (a) and the
lattice A2 (b). The disparity of distances between the furthest possible points
in each region dramatically reduces with dense lattices. This illustrates the
vectorial gain.

where
∫

xa∈Va
dxa =

∫
xb∈Vb

dxb (i.e., for identical volumes).
In this paper, we will focus on some particular lattices for

which fast decoding algorithms are known. These algorithms
take advantage of the simplicity of the lattice definition. We
briefly introduce the lattices Dd, D+

d and Ad. More details can
be found in Conway et al. (1987, chap. 4).

• Lattice Dd is the subset of vectors of Zd having an even
sum of the components:

Dd = {(x1, · · · , xd) ∈ Zd :
d∑

i=1

xi even}, d ≥ 3 . (8)

• Lattice D+
d is the union of the lattice Dd with the lattice

Dd translated by adding 1
2 to each coordinate of lattice

points. That translation is denoted by 1
2 + Dd.

D+
d = Dd ∪ (

1
2

+ Dd) . (9)

When d = 8, this lattice is also known as E8, which
offers the best quantization performance for uniform 8-
dimensional vectors.

• Lattice Ad is the subset of vectors of Zd+1 living on the
d-dimensional hyper-plane where the sum of the compo-
nents is null:

Ad = {(x0, x1, · · · , xd) ∈ Zd+1 :
d∑

i=0

xi = 0} . (10)

A vector q belonging to Rd can be mapped to its d + 1-
dimensional coordinates by multiplying it on the right by
the n lines × n + 1 columns matrix:

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
· · · · · · · ·

0 0 0 · · · −1 1

 . (11)

For these lattices, finding the nearest lattice point of a given
query vector is done in a number of steps that is linear with its
dimension (Conway and Sloane, 1982a).

The main parameters of a lattice hash function are:
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• the scale parameter w, which is similar to the quantization
step for random projections ;

• the number d∗ of components used.

Hashing the data collection using a lattice asks first to ran-
domly pick d∗ components among the original d dimensions—
the natural axes are preserved. Then, given w, the appropri-
ate lattice point is assigned to each database vector. The index
therefore groups all vectors with the same lattice point identifier
into a single bucket.

Remark: The Leech lattice used in Shakhnarovich et al. (2006)
has not been considered here for two reasons. First, it is defined
for d∗ = 24 only, failing to provide any flexibility when opti-
mizing the choice of d∗ for performance. Second, its decoding
requires significantly more operations compared to the others
lattices: 3595 operations per lattice point (Vardy and Be’ery,
1993).2

3.3. k-means vector quantizer

Up to now, we have only considered structured quantizers
which do not take into account the underlying statistics of the
data, except by the choice of the parameters w and d∗. To ad-
dress this problem, we propose to use an unstructured quantizer
learned on a representative set of the vectors to index. Formally,
an unstructured quantizer g is defined as a function

R → [1, . . . , k]
x → g(x) = arg mini=1..k L2 (x, c(i)) (12)

mapping an input vector x to a cell index g(x). The integer k is
the number of possible values of g(x). The vectors c(i), 1 ≤ i ≤
k are called centroids and suffice to define the quantizer.

To construct a good unstructured quantizer, a nice choice is
to use the popular k-means clustering algorithm. In that case,
k corresponds to the number of clusters. This algorithm mini-
mizes3 the overall distortion of reconstructing a given vector of
the learning set using its nearest centroid from the codebook,
hence exploiting the underlying distribution of the vectors. Do-
ing so, the potential of vector quantization is fully beneficial
since it is able to exploit the vectorial gain. Note that, by con-
trast to the structured quantizers, there is no random selection
of the vector components. Hence, the hashing dimension d∗

is equal to the vector dimension d, as the quantizer is learned
directly on the vector space.

However, learning a k-means quantizer may take a long
time when k is large. In practice, bounding the number of it-
erations improves the learning stage without significantly im-
pacting the results. In the following, we have set the maximum
number of iterations to 20 for SIFT descriptors, as higher values
provide comparable results.

2Note, however, that this number is small compared to what is needed for
unstructured quantizers.

3This minimization only ensures to find a local minimum.

3.4. Hierarchical k-means

Approximate variants of the k-means quantizer and the cor-
responding centroid assignment have been proposed (Nistér and
Stewénius, 2006; Philbin et al., 2007) to reduce both the learn-
ing stage and the query preparation costs. We evaluate the hi-
erarchical k-means (HKM) of (Nistér and Stewénius, 2006),
which is one of the most popular approach.

The method consists of computing a k-means with k rel-
atively small, and to recursively computes a k-means for the
internal nodes until obtaining a pre-defined tree height. This
produces a balanced tree structure, where each internal node
is connected to a fixed number of centroids. The search is per-
formed top-down by recursively finding the nearest centroid un-
til a leaf is reached. The method uses two parameters:

• the height ht of the tree ;

• the branching factor bf.

The total number of centroids (leaves) is then obtained as (bf)ht .

Remark: The method used in (Philbin et al., 2007) relies on ran-
domized trees. This method was improved in (Muja and Lowe,
2009) by automatic tuning of the parameters. The method was
shown to outperform HKM, leading to results comparable to
that of standard k-means. Therefore, the results we give here for
the k-means give a good approximation of the selectivity/recall
tradeoff that the package of (Muja and Lowe, 2009) would pro-
vide, with a lower query preparation cost, however.

3.5. Experiments and discussion

Figure 2 gives the evaluation of the different types of hash
function introduced in this section. For both random projec-
tion and lattices, the two parameters w and d∗ are optimized.
Figure 2 only presents the optimal ones, which are obtained as
follows. Given a couple of parameters w and d∗, we compute
the nearest neighbor recall at a given selectivity. This process
is repeated for a set of varying couples of parameters, resulting
in a set of tuples associating a selectivity to a nearest neighbor
recall. Points plotted on the curves belong to the roof of the
convex hull of these numbers. Therefore, a point on the figure
corresponds to an optimal parameter setting, the one that gives
the best performance obtained for a given selectivity.

For the k-means hash function, only one parameter has to
be fixed: the number of centroids k, which gives the trade-off

between recall and selectivity. This simpler parametrization is
an advantage in practice. HKM is parametrized by two quan-
tities: the branching factor bf and the height ht of the k-means
tree. We evaluate the extremal cases, i.e., :

• a fixed height (ht = 2, 3) with a varying branching factor

• and a binary tree (bf = 2) with a varying tree height.
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Figure 2: Evaluation of the different types of hash functions on the SIFT dataset.

3.5.1. Vectorial gain
Figure 2 clearly shows that the lattice quantizers provide

significantly better results than random projections, due to the
vectorial gain. These results confirm that the random projec-
tions used in E2LSH are unable to exploit the spatial consis-
tency. Note that this phenomenon was underlined in (Andoni
and Indyk, 2006; Jégou et al., 2008a). However, by contrast to
these works, the lattices we are evaluating are more flexible, as
they are defined for any value of d∗. In particular, the lattice E8
used in (Jégou et al., 2008a) is a special case of the D+ lattice.

Figure 2 also shows that the various types of lattice perform
differently. We observe an improvement of the nearest neighbor
recall with lattices D and D+ compared to random projections
whereas lattice A gives similar performance. The density of D+

is known to be twice the density of D. In high dimensions, the
density of A is small compared to that of D. Overall, density
clearly affects the performance of lattices. However, density is
not the only crucial parameter. The shape of the fundamental
region and its orientation may also be influential, depending on
the distribution of the dataset.

Before discussing the performance of the unstructured quan-
tizers evaluated in this paper and shown on Figure 2, it is nec-
essary to put some emphasis on the behavior of quantization
mechanisms with respect to the distribution of data and the re-
sulting cardinality in Voronoi cells.

3.5.2. Structured vs unstructured quantizers
Hashing with lattices intrinsically defines Voronoi cells that

all have the same size, that of the fundamental region. This is
not relevant for many types of high-dimensional data, as some
regions of the space are quite populated, while most are void.
This is illustrated by Figure 3, which shows how well the k-
means is able to fit the data distribution. Figure 3 depicts the
Voronoi diagram associated with the different hash functions
introduced in this section, and consider two standard distribu-
tions. The dimensions d = d∗ = 2 are chosen for the sake of
presentation.

(a) Random projections (b) A2 lattice

(c) k-means (d) k-means
Uniform distribution Gaussian distribution

Figure 3: Voronoi regions associated with random projections (a), lattice A2 (b)
and a k-means quantizer (c,d).

As mentionned above, by construction the structured quan-
tizers (see Figures 3(a) and 3(b)) introduced above lead to
Voronoi cells of equal sizes. This property is not desirable in
the LSH context, because the number of retrieved points is too
high in dense regions and too small in regions yielding small
vector density.

Considering the k-means quantizer in Figure 3(c), we first
observe that for a uniform distribution, the shape of the cells
is close to the one of the A2 lattice, which is optimal for this
distribution. But k-means is better for other distributions, as
the variable volume of the cells adapts to the data distribution,
as illustrated for a Gaussian distribution in Figure 3(d). The
cell size clearly depends on the vector density. Another obser-
vation is that k-means exploits the prior on the bounds of the
data, which is not the case of the A2 lattice, whose optimality
is satisfied only in the unrealistic setup of unbounded uniform
vectors.

As a result, for structured quantizers, the cell population is
very unbalanced, as shown by Figure 4. This phenomenon pe-
nalizes the selectivity of the LSH algorithm. In contrast to these
quantizers, the k-means hash function exploits both the vec-
torial gain and the empirical probability density function pro-
vided by the learning set. Because the Voronoi cells are quite
balanced, the variance of the number of vectors returned for a
query is small compared to that of structured quantizers.

Turning back to Figure 2, one can clearly observe the better
performance of the k-means hash function design in terms of
the trade-off between recall and selectivity. For the sake of fair-
ness, the codebook (i.e., the centroids) has been learned on a
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Figure 4: Population of cells by decreasing order for different lattices and k-
means.

distinct set: k-means being an unsupervised learning algorithm,
learning the quantizer on the set of data would overestimate the
quality of the algorithm for a new set of vectors. The improve-
ment obtained by using this hash function construction method
is very significant: the selectivity is about two order of magni-
tude smaller for the same recall.

Although HKM is also learned to fit the data, it is inferior
to k-means, due to poorer quantization quality. The lower the
branching factor is, the closer the results are compared to those
of k-means. The two extremal cases depicts in Fig. 2, i.e., 1)
a fixed tree height of 2 with varying branching factor and 2)
the binary tree (bf = 2) delimits the regions in which all other
settings lie. As expected, the performance of HKM in terms of
selectivity/recall is the inverse of the one in terms of the query
preparation cost. Therefore, considering Equation 3, the trade-
off between bf and ht appears to be a function of the vector
dataset size.

3.5.3. Query preparation cost
Table 1 shows the complexity of the query preparation cost

qpc associated with the different hash functions we have intro-
duced. Note that this table reflects the typical complexity in
terms of the number of operations. It could clearly be refined
by considering the respective costs of these knowing the archi-
tecture on which the hashing is performed.

Lattices are the most efficient quantizers, even compared
with random projections. Using the k-means hash function is
slower than using random projection for typical parameters.
HKM is a good compromise, as it offers a relatively low query
preparation cost while adapting to the data.

4. Querying mechanisms

In this section, we detail how the k-means approach is used
to build a complete LSH system, and analyze the corresponding
search results. The resulting algorithm is referred to as KLSH
in the following. We then build upon KLSH by proposing and
evaluating more sophisticated strategies, somehow similar in

hash function query preparation cost
random projection (E2LSH) m × d + d∗ × l
lattice Dd∗ d∗ × l
lattice D+

d∗ d∗ × l
lattice Ad∗ d∗ × l
k-means k × d × l
HKM bf × ht × l

Table 1: Query preparation cost associated with the different hash functions.

Algorithm 1 – KLSH, search procedure
Input: query vector q
Output: short-list sl

sl = ∅

for j = 1 to l do
// find the nearest centroid of q from codebook j:
i∗ = arg min

i=1,...,k
L2(q, c j,i)

sl = sl ∪ {x ∈ cluster(c j,i∗)}
end for

spirit to those recently introduced in the literature, namely multi-
probing and query adaptive querying.

4.1. KLSH

Indexing d-dimensional descriptors with KLSH proceeds as
follows. First, it is necessary to generate l different k-means
clustering using the same learning set of vectors. This diversity
is obtained by varying initializations4 of the k-means. Note that
it is very unlikely that these different k-means gives the same
solution for k high enough, as the algorithm converges to a lo-
cal minimum only. Once these l codebooks are generated, each
one being represented by its centroids {c j,1, . . . , c j,k}, all the vec-
tors to index are read sequentially. A vector to index is assigned
to the nearest centroid found in one codebook. All codebooks
are used in turn for doing the l assignments for this vector be-
fore moving to the next vector to index. Note this mechanism
replaces the standard E2LSH H and g j hash functions from
Section 2.

At search time, the nearest centroid for each of the l k-
means codebooks is found for the query descriptor. The database
vectors assigned to these same centroids are then concatenated
in the short-list, as depicted by Algorithm 1. From this point,
the standard LSH algorithm takes on for processing the short
list.

The results for KLSH are displayed Figure 5. One can see
that using a limited number of hash functions is sufficient to
achieve high recall. A higher number of centroids leads to the
best trade-off between search quality and selectivity. However,
as indicated section 2.2, the selectivity measures the asymptotic
behavior for large datasets, for which the cost of this qpc stage

4This is done by modifying the seed when randomly selecting the initial
centroids from the learning set.
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Figure 5: Performance LSH with k-means hash functions for a varying number
l of hash functions.
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Figure 6: Acceleration factor of LSH over exhaustive search. Both the query
preparation cost and the final distance calculation are included.

is negligible compared to that of treating the set of vectors re-
turned by the algorithm.

For small datasets, the selectivity does not solely reflect the
“practical” behavior of the algorithm, as it does not take into
account qpc. For KLSH, the overall cost is:

ocost = sel × n × d + k × l × d. (13)

The acceleration factor therefore becomes:

ac =
1

sel + k×l
n

. (14)

Figure 6 shows the acceleration factor obtained for a dataset
of one million vectors, assuming that a full distance calculation
is performed on the short-list. This factor accurately represents
the true gain of using the ANN algorithm when the vectors are
stored in main memory. Unlike what observed for asymptoti-
cally large datasets, for which the selectivity is dominant, one

Algorithm 2 – Multi-probe KLSH, search procedure
Input: query vector q
Output: short-list sl

sl = ∅

for j = 1 to l do
// find the mp nearest centroids of q from codebook j:
(i∗1, . . . , i∗m) = mp- arg min

i=1,...,k
L2(q, c j,i)

sl = sl ∪
⋃

i∗=i∗1,...,i∗m
{x ∈ cluster(c j,i∗)}

end for

can observe that there is an optimal value of the quantizer size
obtained for k = 512. It offers the best trade-off between the
query preparation cost and the post-processing of the vectors.
Note that this optimum depends on the database size: the larger
the database, the larger should be the number of centroids.

As a final comment, in order to reduce the query prepara-
tion cost for small databases, a approximate k-means quantizer
could advantageously replace the standard k-means, as done
in (Philbin et al., 2007). Such quantizers assign vectors to cell
indexes in logarithmic time with respect to the number of cells
k, against linear time for standard k-means. This significantly
reduces the query preparation cost, which is especially useful
for small datasets.

4.2. Multi-probe KLSH

Various strategies have been proposed in the litterature to
increase the quality of the results returned by the original LSH
approach. One series of mechanisms extending LSH uses a so-
called multi-probe approach. In this case, at query time, several
buckets per hash function are retrieved, instead of one (see Lv
et al. (2007) and Joly and Buisson (2008)). Probing multiple
times the index increases the scope of the search, which, in turn,
increases both recall and precision.

Originally designed for structured quantizers, this multi-
probe approach can equally be applied to our unstructured scheme
with the hope of also improving precision and recall. For the
k-means hash functions, multi-probing can be achieved as fol-
lows. Having fixed the number mp of buckets that we want to
retrieve, for each of the l hash function, we select the mp clos-
est centroids of the unstructured quantizer g j = {c j,1, . . . , c j,k}.
Algorithm 2 briefly presents the procedure.

The vectors associated with the selected mp buckets are then
returned for the l hash functions. Note that choosing mp = 1 is
equivalent to using the basic KLSH approach. The total number
of buckets retrieved is l × mp. Therefore, for a fixed number of
buckets, the number of hash functions is reduced by a factor
mp. The memory usage and the query preparation cost are thus
divided by this factor.

Figure 7 shows the results obtained when using l = 1 and
varying values of mp, i.e. for a single hash function. The re-
sults are reasonably good, especially considering the very low
memory usage associated with this variant. However, compar-
ing Figures 5 and 7, the recall is lower for the same selectivity.
This is not surprising, as in KLSH, the vectors which are re-
turned are localized in the same cell, whereas the multi-probe
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Figure 7: Multi-probe KLSH for a single hash function (l = 1) and varying
numbers of visited cells mp.

 1

 10

 100

 1000

 0.5  0.6  0.7  0.8  0.9  0.95  1

ac
ce

le
ra

tio
n 

fa
ct

or

NN recall

mp=1

2
3

5
7
10

15
20
30

k=128
k=512

k=2048
k=8192

Figure 8: Multi-probe KLSH: Acceleration factor of LSH over exhaustive
search.

variant returns some vectors that are not assigned to the same
centroid.

For small datasets, for which the query preparation cost is
not negligible, this multi-probe variant is of interest. This is
the case for our one million vectors dataset: Figure 8 shows
the better performance of the multi-probe algorithm compared
to the standard querying mechanism (compare to Figure 6).
This acceleration factor compares favorably against state-of-
the-art methods of the literature. In a similar experimental setup
(dataset of 1 million SIFT descriptors), (Muja and Lowe, 2009)
reports, for a recall of 0.90, an acceleration factor lower than
100, comparable to our results but for a higher memory usage:
the multi-probe KLSH structure only uses 4 bytes per descriptor
for mp = 1.

4.3. Query-adaptive KLSH

While multi-probing is one direction for improving the qual-
ity of the original structured LSH scheme, other directions ex-

ist, like the query-adaptive LSH by Jégou et al. (2008a). In a
nutshell, this method adapts its behavior because it picks from
a large pool of existing random hash-functions the ones that are
the most likely to return the nearest neighbors, on a per-query
basis.

As it enhances result quality, this principle can be applied
to our unstructured approach. Here, instead of using a single
k-means per hash function, it is possible to maintain a poll of
independent k-means. At query time, the best k-means can be
selected for each hash-function, increasing the likelyhood of
finding good neighbors.

Before developping the query-Adaptive KLSH, we must de-
scribe the original query-adaptive LSH to facilitate the under-
standing of the remainder. Query-Adaptive LSH as described
in Jégou et al. (2008a) proceeds as follows (this is also summa-
rized in Algorithm 3):

• The method defines a pool l of hash functions, with l
larger than in standard LSH.

• For a given query vector, a relevance criterion λ j is com-
puted for each hash function g j. This criterion is used to
identify the hash functions that are most likely to return
the nearest neighbor(s).

• Only the buckets associated with the p most relevant hash
functions are visited, with5 p ≤ l.

The relevance criterion proposed in (Jégou et al., 2008a)
corresponds, for the E8 lattice, to the distance between the query
point and the center of the Voronoi cell. We use the same crite-
rion for our KLSH variant. For the query vector q, λ is defined
as

λ(g j) = min
i=1,...,k

L2

(
q, c j,i

)
. (15)

It turns out that this criterion is a byproduct of finding the
nearest centroid. Therefore, for a fixed number l of hash func-
tions, the pre-processing cost is the same as in the regular query-
ing method of KLSH. These values are obtained to select the p
best hash function as

p- arg min
j=1,...,l

λ(g j). (16)

The selection process is illustrated by the toy example of
Figure 9, which depicts a structure comprising l = 4 k-means
hash functions. Intuitively, one can see that the location of a de-
scriptor x in the cell has a strong impact on the probability that
its nearest neighbor is hashed in the same bucket. On this ex-
ample, only the second clustering ( j = 2) puts the query vector
and its nearest neighbor in the same cell.

In order for the query-adaptive KLSH to have interesting
properties, one should use a large number l of hash functions.
This yields two limitations for this variant:

• the memory required to store the hash tables is increased;

5For p = l, the algorithm is equivalent to the KLSH.
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• the query preparation cost is higher, which means that
this variant is interesting only for very large datasets, for
which the dominant cost is the processing of the vectors
returned by the algorithm.

The selection of the best hash functions is not time consum-
ing since the relevance criterion is obtained as a by-product of
the vector quantization for the different hash functions. How-
ever, this variant is of interest if we use more hash functions
than in regular LSH, hence in practice its query preparation cost
is higher. For a reasonable number of hash functions and a large
dataset, the bottleneck of this query adaptive variant is the last
step of the “exact” LSH algorithm. This is true only when the
dominant cost is the processing cost of the search for the exact
nearest neighbors within the short-list obtained by parsing the
buckets. This is not the case in our experiments on one mil-
lion vectors, in which the acceleration factor obtained for this
variant is not as good as those of KLSH and multi-probe KLSH.

Algorithm 3 – Query-adaptive KLSH, search procedure
Input: query vector q
Output: short-list sl

sl = ∅

// select the p hash functions minimizing λ(g j(q)):
( j1, . . . , jp) = p- arg min

j=1,...,l
λ(g j(q))

for j ∈ ( j1, . . . , jp) do
// find the nearest centroid of q from codebook j:
i∗ = arg min

i=1,...,k
L2(q, c j,i)

sl = sl ∪ {x ∈ cluster(c j,i∗)}
end for

Figure 10 gives the selectivity obtained, using only one vot-
ing hash function (p = 1), for varying sizes l of the set of hash
functions. Unsurprisingly, the larger l, the better the results.
However, most of the gain is attained by using a limited num-
ber of hash functions. For this dataset, choosing l = 10 seems a
reasonable choice.

Now, using several voting hash functions, i.e., for p > 1,
one can observe in Figure 11 that the query-adaptive mecha-
nism significantly outperforms KLSH in terms of the trade-off

between selectivity and efficiency. In this experiment the size
of the pool is fixed to l = 100. However, on our “small” dataset
of one million descriptors, this variant is not interesting for this
large number of hash functions: the cost of the query prepa-
ration stage (k × l × d) is too high with respect to the post-
processing stage of calculating the distances on the short-list.
This contradictory result stems from the indicator: the selectiv-
ity is an interesting complexity measurement for large datasets
only, for which the query preparation cost is negligible com-
pared to that of processing the vectors returned by the algo-
rithm.

4.4. Discussion

4.4.1. Off-line processing and parametrization
One of the drawbacks of k-means hash functions over struc-

tured quantizers is the cost of creating the quantizer. This is es-
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Figure 11: Query adaptive KLSH: performance for a fixed pool of l = 100
k-means hash functions and a varying number p of selected hash functions.

pecially true for the query-adaptive variant, where the number
l of hash functions may be high. However, in many applica-
tions, this is no a critical point, as this clustering is performed
off-line. Moreover, this is somewhat balanced by the fact that
KLSH admits a simpler optimization procedure to find the op-
timal parametrization, as we only have to optimize the parame-
ter k, against two parameters w and d∗ for the structured quan-
tizer. Finally, approximate k-means reduces the cost of both the
learning stage and the query preparation. It is therefore not sur-
prising that the emerging state-of-the-art ANN methods, e.g.,
(Muja and Lowe, 2009), relies on such partitioning methods.

4.4.2. Which querying mechanism should we use?
It appears that each of the querying mechanism proposed in

this section may be the best, depending on the context: dataset
size, vector properties and resource constraints. The less memory-
demanding method is the multi-probe version. For very large
datasets and with no memory constraint, query-adaptive KLSH
gives the highest recall for a fixed selectivity. If, for the fine
verification, the vectors are read from a low-efficiency storage
device, e.g., a mechanical hard drive, then the query-adaptive
version is also the best, as in that case the bottleneck is to read
the vectors from the disk. As a general observation, multi-
probe and query adaptive KLSH offer opposite properties is
terms of selectivity, memory usage and query preparation cost.
The “regular” KLSH is in between, offering a trade-off between
these parameters. Overall, the three methods are interesting, but
for different operating points.

5. Conclusion

In this paper, we have focused on the design of the hash
functions and the querying mechanisms used in conjunction
with the popular LSH algorithm. First, confirming some results
of the literature in a real application scenario, we have shown
that using lattices as stronger quantizers significantly improve

the results compared to the random projections used in the Eu-
clidean version of LSH. Second, we have underlined the lim-
itations of structured quantizers, and show that using unstruc-
tured quantizers as a hash functions offer better performance,
because it is able to take into account the distribution of the
data. The results obtained by k-means LSH are appealing: very
high recall is obtained by using only a limited number of hash
functions. The speed-up over exhaustive distance calculation is
typically greater than 100 on a one million vector dataset for a
reasonable recall. Finally, we have adapted and evaluated two
recent variants of the literature, namely multi-probe LSH and
query-adaptive LSH, which offer different trade-offs in terms
of memory usage, complexity and recall.
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