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Abstract
Phonetization is a crucial step for oral document processing. In
this paper, a new letter-to-phoneme conversion approach is pro-
posed; it is automatic, simple, portable and efficient. It relies
on a machine learning technique initially developed for translit-
eration and translation; the system infers rewriting rules from
examples of words with their phonetic representations. This
approach is evaluated in the framework of the Pronalsyl Pas-
cal challenge, which includes several datasets on different lan-
guages. The obtained results equal or outperform those of the
best known systems. Moreover, thanks to the simplicity of our
technique, the inference time of our approach is much lower
than those of the best performing state-of-the-art systems.
Index Terms: phonetization, inference of rewriting rules,
phonemization, grapheme-to-phoneme, Pronalsyl Challenge

1. Introduction
Phonetization is the process that aims at transforming a se-
quence of words into one or several ways to pronounce it.
It is a crucial step for speech processing (speech recognition,
speech synthesis, audio indexing...). In the first speech pro-
cessing tools, phonetization was performed by dictionary-based
approaches but they have soon reached their limits; many stud-
ies have then tried to develop systems able to handle unknown
words. In this context, the most common approach is the letter-
to-phoneme one: it consists in guessing the pronunciation of
a word from its graphemic form. This is also the approach
adopted in this paper, which is also known as grapheme-to-
phoneme conversion, or phonemization. In practice, it consists
in mapping a word-form (represented as a string of letters) to
another string of symbols representing a prototypical way to
pronounce the word-form.

In our case, this problem of phonetization comes within a
broader task of video indexing relying in part on speech pro-
cessing. This indexing task is beyond the scope of this paper
but it sets important properties. Indeed, in this context, out-
of-vocabulary words are numerous (neologisms, proper nouns,
acronyms, words from specialized domains...), but these words
are often present in written documents associated with the video
stream (Web sites, newspapers, electronic TV guides...). More-
over, the words (mostly used as query terms) are to be con-
sidered independently. It justifies that we are only interested
in single word phonetization; we do not aim at developing a
whole phonetization system capable of handling complete sen-
tences, liaisons, etc., though such a system could benefit of our
work. Finally, for this single word phonetization task, we want
a technique producing high quality results, but which is also
fast, automatic and portable in order to be adapted to different
languages or to subsets of words or even to different speakers.

The system we propose, called IrisaPhon, meets these con-
ditions. The main idea of this approach is to consider the word

phonetization as a transliteration problem. Thus, we adapted a
simple machine learning technique first developed for translit-
eration and translation of biomedical terms [1]. This technique
allows us to infer very efficiently rewriting rules from examples,
that is in our case, from pairs made up of a word-form and its
phonetic representation. Apart from these examples, it uses no
external knowledge, which makes this technique very portable.

In the remainder of this paper, we first describe some of
the main approaches used in phonetization of words. Then, our
technique is detailed in Section 3. In Section 4, we report and
discuss different evaluation results. Future work and conclusive
remarks are finally brought up in the last section.

2. Related work
Many studies have been carried out on automatic (single word)
phonetization. Most of them adopt the letter-to-phoneme con-
version paradigm: a phoneme sequence is generated from the
character sequence representing the word. In some approaches
(e.g. the system LIA PHON [2]), the transition from a sequence
to the other is done through the use of tools (transducers, rewrit-
ing rules...) developed by an expert. These manual approaches,
not portable, are not further detailed in this paper. The machine-
learning based approaches which we are interested in try to
overcome the limiting role of the expert by relying on exam-
ples of word paired with their phonetic representations.

Given the doubly sequential aspect of the problem, the first
common sub-task of most of the machine-learning based ap-
proaches is to establish the relations between the two sequences,
i.e., between the letters and the phonemes in the example pairs.
Many systems only consider 1-1 relations [3, 4] but better re-
sults have been obtained by considering many-to-many align-
ments [5, 6] which better capture the fact that several letters
may be represented by one phoneme, and that one letter may
be represented by several phonemes. Other processing like syl-
labification [7] are also sometimes used but their benefits are
unclear [8, for a discussion]. Given this alignment, the problem
can be seen as a machine learning one: a classifier is inferred
to propose the right (group of) phoneme given a (group of) let-
ter (or group of letters) and its context. The learning techniques
are for example decision trees [3, 9] or lazy learning approaches
[10]. The main drawback of these approaches is that they poorly
take into account the sequential aspect of the input (letters) and
usually do not consider the context in the output (phonemes).

Other approaches focus more directly on these sequential
aspects and take into account phonemes that have already been
transcribed in order to decide of the current phoneme. For ex-
ample, this is the case for the HMM [11] or analogy-based
techniques [12, 13, inter alia]. It has been shown that these
approches could yield good results provided that the relations
between the two sequences were a many-to-many mapping in-
stead of a 1-1 one [5, 13].



Last, some authors have considered approaches relying on
machine learning adapted to handle sequential data. This is
the case of the CSInf (Constraint Satisfaction Inference) system
[14]. Let us also cite the studies of Jaimpojamarn et al. [6, 8]
which rely on a many-to-many letter-to-phoneme alignment and
propose different classifiers (modified SVM and HMM) for
this phonetization task. These last techniques mixing machine
learning and sequential approaches are considered as among
the best performing techniques. We come back on their per-
formances in Section 4.

3. Phonetizing as rewriting
As we previously said, our tool IrisaPhon is based on a sys-
tem of rewriting rule inference initially developed to transliter-
ate biomedical terms. The principles of this system are detailed
hereafter; the description of its use in translation of biomedical
terms can be found in [1].

To phonetize an unknown word, IrisaPhon applies rewrit-
ing rules transforming the letter sequence into one or several
phoneme sequence. The most probable phonetization is chosen
thanks to a language model. The rules and the language model
are learnt from training data, that is lists of words-forms (char-
acter strings) paired with their phonetic representations (strings
of phonetic symbols). Sub-sections 3.1 and 3.2 describe how
the rewriting rules are efficiently inferred, and the use of the
language model is described in Sub-section 3.3. Some remarks
concerning the positioning of IrisaPhon compared with the ex-
isting techniques presented above are given in 3.4.

3.1. Inferring rewriting rules

Inferring rewriting rules from the examples is fairly simple. A
list of words paired with their phonetic representations is given
as input of the system; two characters (resp. # and $) are added
to each word and phonetic representation to indicate the begin-
ing and the end of the sequences. This list of examples is then
processed as explained in Algorithm 1. The alignment in the
first step is made with DPalign (http://www.cnts.ua.ac.be/
˜decadt/?section=dpalign). This piece of software aligns
two sequences by minimizing their edit distance, following the
dynamic programming algorithm of Wagner & Fischer [15].
The substitution costs are computed on the whole set of pairs
to align, and empty characters (written ’ ’) can be inserted if
needed. Thus, it is possible to align grapheme and phoneme
even though their alphabets is different. Hereafter, a rewriting
rule is noted X → Y with X a sub-string of letters and Y a sub-
string of phonemes; the word-form in input of an example pair
W is written input(W ), the phonetic representation in output is
written output(W ); input and output also respectively refer
to the premise and conclusion of a rule. Moreover, align(x, W )
represents the sub-string of phonemes aligned with the sub-
string x in the training pair W . For each difference between

Algorithm 1 Inference of rewriting rules
1: align pairs at the letter level, output the result in L
2: for all pair Wi in L do
3: for all position at which the 2 aligned letters differ in Wi

do
4: find the best rule hypothesis r in the search space E
5: add r to the set of rules R
6: end for
7: end for

two aligned letters, our algorithm generates the rewriting rule
which is considered as the best one according to a score func-
tion. Many rules are eligible; let us consider the difference o/@
in the pair #phonolog y$ / #f @nAl@dZi$. The rewriting rules o →
@, pho → f @, #phono → #f @nA, etc., are possible for example.

The score of a rule is simply computed from the list L: it
is the ratio between the number of times the rule can be applied
and the number of times the premise of the rule matches a sub-
string of a word-form. More formally, it is defined by:
score(r) =

|{W ∈ L | input(r) ⊆ input(W ) ∧ output(r) ⊆ align(input(r), W )}|
|{W ∈ L | input(r) ⊆ input(W )}|

where ⊆ means the inclusion of character strings (e.g. abc ⊆
aabca). Among all the possible rules for this example, the rule
that maximizes this score is kept and the algorithm can proceed
with the next difference in Wi or the next pair of L.

3.2. Exploring the search space

Searching for the best rule among all the possible ones is a key
step in our algorithm. In order to do it very efficiently, a hierar-
chical relation is defined between the rules of the search spaces.
This relation is noted down with the symbolº (if r1 º r2, then
r1 is said more general than r2).

Hierarchical relation Let r1 and r2 be two rules, then r1 º
r2 ⇔ (input(r1) ⊆ input(r2) ∧ output(r1) ⊆ output(r2)).

This relation is reflexive, transitive and anti-symmetric [1, for a
proof]; it defines a partial order upon the search space E which
thus can be organized as a lattice. Figure 1 presents an excerpt
of such a lattice, built up from the difference o/@ in the alignment
#phonolog y$ / #f @nAl@dZi$.

In practice, the lattices are explored top-down: the rules are
generated on-the-fly with a simple operator which produces, for
a given rule, every rule immediately more specific. Let us con-
sider for example the rule r1 = o→@ in the previous example.
This rule is the most general one; it is at the top of the lat-
tice in Figure 1. Our algorithm first computes the score of r1

and then generates more specific rules by adding a letter and its
aligned phoneme symbol from Wi at one extremity of the input
and output of r1. For instance, when considering r1, it gives: h
input(r1) → output(r1) and input(r1) n → output(r1) n,

o→ @

ho→ @ on→ @n

hon→ @n ono→ @nA

hono→ @nA onol→ @nAl

#phonolog y$→ #f @nAl@dZi$

pho→ f @

#pho→ #f @

Figure 1: Lattice E from the example o/@ in #phonolog y$ /
#f @nAl@dZi$



Dataset IrisaPhon MIRA [8] M-M HMM [6] Joint n-gram [16] CSInf [14] PbA [?] LIA PHON [2]
Dutch CELEX 95.58 95.32 91.69 – 94.5 – –
German CELEX 93.60 93.61 90.31 92.5 – – –
English NETtalk 71.25 67.82 59.32 64.6 – 65.35 –
English CMUDict 74.40 71.99 65.38 – – – –
French Brulex 94.75 94.51 89.77 89.1 – – –
French IRISA 98.60 – – – – – 76.8

Table 1: Precision (%) of IrisaPhon and other systems (figures from [8]). Values in bold indicate the best results for a given dataset.

thus ho → @ and on → @n. One can easily show that the rules
r2 generated are those immediately more specific than r1, i.e.
{r2 | r1 Â r2 ∧ @ r3 s.t. r1 Â r3 Â r2}.

Choosing a score function compatible with this specializ-
ing operator (and the lattice structure it implies) makes it pos-
sible to quickly explore E . Indeed, computing the score is a
time-consuming task since it requires to try to match the rule
with every pair of the training set L. But by relying on the
way rules are generated, it is possible to compute the score
by examining only a subset of L. Let us consider two rules
r1 and r2 generated from the same example and such that
r1 º r2. When computing the score of r2, we know that, for
any word-form/phonetization pair W , we have: input(r1) ⊆
input(r2) ⊆ input(W ) (same thing for output). It means
that to compute the score of r2, it is sufficient to examine the
pairs covered by r1.

3.3. Choosing the right phonetization

When an unknown word-form needs to be phonetized, every
rewriting rule collected in R are applied; it may lead to nu-
merous phonetization candidates. It is important to note that
these phonetizations are aligned with the initial word-form by
construction. Among all these candidates, only the most proba-
ble will be proposed. This probability is computed in a stan-
dard way with a language model applied on the pair word-
form/phonetization. Thus, the basic information unit (unigram)
is a letter aligned with a phonetic symbol; we note it (for exam-

ple): s
z

. With the usual notation, for a word-form m aligned

with one generated phonetic representation f , respectively com-
posed of letters and phonetic symbols (and possibly the empty
character ) l1, l2, ..., lm and k1, k2, ..., km, the probability is
computed as in Eqn. 1. In practice, an historic of a few letters
is enough and the conditional probabilities are computed on the
training pairs L. In the experiments presented below, this his-
toric is set to 6 letters, and a modified Kneiser-Ney smoothing
is used.
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3.4. Positionning of IrisaPhon

Our technique belongs to the family of machine-learning ap-
proaches taking care of the doubly sequential aspect of the data.
It uses a simple 1-1 alignment, but it is compensated by the fact
that there is no a priori limit on the length of the sub-strings of
letters/phonemes used in the rules, contrary to other techniques
(e.g. MIRA or CSInf). It allows us to better take into account
certain long-distance phonetic phenomena and to better disam-
biguate some character strings.

More generally, this rule based approach can also be seen

as a lighter version of analogy-based systems which avoids two
of their drawbacks [13]: the combinatory problems induced by
handling the very big analogy lattice and the silence (words not
transcribed due to the absence of a relevant path in the lattice).

4. Experiments
4.1. Experimental data

In order to evaluate our system, we used several datasets cover-
ing different languages and different phoneme sets. We used the
data proposed for the Letter-to-Phoneme Conversion Challenge
(Pronalsyl) of the Pascal network http://pascallin2.ecs.

soton.ac.uk/Challenges/PRONALSYL. Among the available
datasets, we focused on those on which published results ex-
isted for comparison purposes. We also used a French lexicon
developed in-house and named IRISA hereafter. All these sets
are composed of thousands of pairs (16 000 to 300 000) divided
into 10 subsets used to perform 10-fold cross-validation.

The performance is measured in terms of word precision
averaged on the 10 folds, i.e. the proportion of words perfectly
and fully phonetized among the words given to phonetize. Other
evaluation measures exist, particularly in context (phonetization
of a word inside a sentence, given its part-of-speech...) [17, for
a discussion], but do not correspond to our applicative need and
would not allow us to compare IrisaPhon to the state-of-the-art.

4.2. Results

Table 1 presents the precision on the different datasets of Iris-
aPhon, as well as of other state-of-the-art systems when avail-
able for comparison purposes. The results are very good: Iris-
aPhon yields the best precision on almost every set. In partic-
ular, it seems robust on difficult datasets (NETtalk and CMU-
Dict), even though a large part for improvement remains. As it
is noticed by most studies, for every datasets, most of the re-
maining errors are due to the presence of import words (words
borrowed from another language; mainly English).

As it has been underlined in the introduction, IrisaPhon is
to be used in a broader system for indexing video streams in
which it may be trained constantly on different datasets. For
this reason, the computing time of this training step is worth
looking at. Figure 2 details the computing time of the training
phase according to the size of the training set (IRISA dataset)
on a 2.66 GHz computer with 2 Go RAM running Linux. For
comparison, MIRA (which was the best performing system to
our knowledge) was reported to have training steps lasting more
than 32h for about 56 000 training pairs (with a 2.2 GHz com-
puter) [8]. We also report the precision obtained by IrisaPhon
for the different size of training data in Figure 3. In addition, we
indicate the optimal precision, that is the precision that would
be reached if the good phonetization, when present in the gen-
erated candidates, was always chosen. Unsurprisingly, the in-
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Figure 3: Precision according to the size of training set

ference step, that is the search space exploration, is fairly fast
and linear. But it appears clearly that the alignment step is the
bottleneck of our technique. It is also worth noting that the
performances are lower when the training sets are smaller. Of
course, this is due to the smaller number and the lower qual-
ity of the inferred rules, but it seems also due to the language
model as it is shown by the gap between the real precision and
the optimal one.

5. Conclusive remarks and future work
The simple idea of considering the phonetization problem as a
transliteration problem yielded interesting results. Compared to
state-of-the-art systems, IrisaPhon performs very well in terms
of precision and computing time. Of course, the performances
are measured on artificially crafted data; thus, the figures ob-
tained must be considered as maxima and an evaluation in real
conditions have to be done. Embedding IrisaPhon in our video
indexing platform may allow us to address this issue.

Many developments are foreseen for this work. One of
them is to lower the cost of the alignment step which masks
the gains of our fast inference process. Approximate or greedy
alignment methods may address this problem. From a broader
point of view, it may be interesting to extend the single word
phonetization capabilities of IrisaPhon to a context-sensitive
technique which may be useful for other applicative frame-
works. For this extension, two different ways are currently ex-
plored. First, it is easy to include additional information (like
Part-of-Speech or semantic clues) as constraints in the rules and
in the language model [1]. Secondly, to take into account the li-
aison phenomena, it is possible to use a set of special phonetic
symbols indicating that a liaison may occur depending on the
context (for example the last phoneme of word may change if
the next word begins with a vowel phoneme).
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