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Abstract

We proposed in previous articles a qualitative approachéak the compatibility between a model
of interactions and gene expression data. The purpose gbrésent work is to validate this
methodology on a real-size setting. We study the respon&ecofi regulatory network to nu-
tritional stress, and compare it to publicly available DNAcroarray experiments. We show how
the incompatibilities we found reveal missing interactiom the network, as well as observations
in contradiction with available literature.

1 Introduction

There exists a wide range of techniques for the analysis oé gexpression data. Following a
review by Slonim ], we may classify them according to the particular outpetytbompute: 1.
list of significantly over/under-expressed genes undermragodar condition, 2. dimension reduc-
tion of expression profiles for visualization, 3. clustgriof co-expressed genes, 4. classification
algorithms for protein function, tissue categorizatioiseése outcome, 5. inferred regulatory net-
works.

The last category may be extended to all model-based agpsawhere experimental mea-
surements are used to build, verify or refine a model of theegysinder study.
Following this line of research, we showed in previous pajgsee P], [?] and [?]) how to define
and to check consistency between experimental measureraedta graphical regulatory model
formalized as an interaction graph. The purpose of the ptegeark is to validate this methodology
on a real-size setting. More precisely, we show 1. that therdhms we proposed ir?] are able
to handle models with thousands of genes and reactionsa otin methodology is an effective
strategy to extract biologically relevant informationrngene expression data.
For this we built an interaction graph for the regulatorywatk of E. coli K12, mainly relying on
the highly accurate database RegulonDB [?]. Then we compared the predictions of our model
with three independant microarray experiments. Inconhldtes between experimental data and
our model revealed:

* either expression data that is not consistent with reshitsved in literature +e. there is at
least one publication which contradicts the experimentdsurement,

* either missing interactions in the model

We are not the first to address this issue. Actually, in thekvadrGutierrez-Rios and co-workers
[?], an evaluation of the consistency between literature aicdoarray experiments d&. coli K12
was presented. The authors designed on-purpose micrapayiments in order to measure gene
expression profiles of the bacteria under different condgi They evaluate the consistency of their
experimental results first with those reported in the litier@, second with a rule-based formalism
they propose. Our main contribution is the use of algorithtools that allow inference/prediction
of gene expression of a big percentage of the network, arghdas in the case of inconsistency
between a model and expression data.



2 Mathematical framework

2.1 Introductory example

We choose as an illustration a model for the lactose metsiah the bacterium E.Coli (lactose
operon). The interaction graph corresponding to the madaiaésented in Fig.1. This isa common
representation for biochemical systems where arrows slotwedion or inhibition. Basically, an
arrow betweenA and B means that an increase dftends to increase or decreaBedepending
on the shape of the arrow head. Common sense and simple isalloguition can be used to say
that an increase of allolactose (nodeon Figure 1) should result in a decreaselaf:/ protein.
However, if bothLacl andcAM P — C'RP increase, then nothing can be said about the variation
of LacY .

The aim of this section is first, to provide a formal interpitédn for the graphical notation used
in Figure 1; second, to derive constraints on experimengdsurements, which justify our small
scale common sense reasoning; finally apply these constriairthe scale of data produced by
high throughput experimental techniques. For this, werntdsaqualitative modeling f]), which
may be seen as a principled way to derive a discrete systemdroontinuous one.

2.2 Equilibrium shift of a differential system

Let us consider a network of interacting cellular constituents (MRNA, protein, meti#ied. We
denote byX; the concentration of thé" species, and b¥X the vector of concentrations (whose
components areX;). We assume that the system can be adequately described ystemsof
differential equations of the forrﬁd% = F(X,P), whereP denotes a set of control parameters
(inputs to the system). Ateady state of the system is a solution of the system of equations
F(X,P) = 0 for fixed P.

A typical experiment consists in applying a perturbationajegeP) to the system in a given
initial steady state conditionq1, wait long enough for a new steady statg2, and record the
changes ofX;. Thus, we shall interpret the sign of DNA chips differentialta as the sign of the
variationsX % — X",

The particular form of vector functioR is unknown in general, but this will not be needed as
we are interested only in the signs of the variations. Indées only information we need about
F is the sign of its partial derivative%. We callinteraction graph the graph whose nodes are

the constituent$1, ..., n}, and where there is an edge- i iff 2% -£ 0 (an arrow; — i means

X
that the rate of production afdepends onX;). As soon ag' is non Iinear,gfg; may depend on

the actual stat&. In the following, we will assume that thsegn of % is constant, that is, that
J

the interaction graph is independent of the state. Thigrattitong hypothesis, can be replaced by
a milder one specified ir?[ 7] meaning essentially that the sign of the interactions dochange
on a path of intermediate states connecting the initial hedibal steady states.

2.3 Qualitative constraints

In the following, we introduce an equation that relates fige of variation of a species to that of
its predecessors in the interaction graph. To state thigtresth full rigor, we need to introduce
the following algebra on signs.

We call sign algebra the sé¢t, —, ?} (where? stands for indeterminate), endowed with addi-
tion, multiplication and qualitative equality, defined as:
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Some patrticularities of this algebra deserve to be mentione
 the sum oft and- is indeterminate, as is the sum of anything with indetertaina

 qualitative equality is reflexive, symmetric but not trdive, becaus@ is qualitatively equal
to anything; this last property is an obstacle against th@iegttion of classical elimination
methods for solving linear systems.

To summarize, we consider experiments that can be modeflezhaquilibrium shift of a
differential system under a change of its control paransetén this setting, DNA chips provide
the sign of variation in concentration of many (but not neeei$y all) species in the network. We
consider the signs( X% — X°") of the variation of some speciédetween the initial stat& ¢!
and the final statéf e, Both states are stationary and unknown.

In [?], we proved that under some reasonable assumptions, ilcydartif the sign ofg—f;j_ is
constant in states along a path connectiptyandeq2, then the following relation holds in sign
algebra for all species

OF;
X,

)s(X5" — X1 €y

J

R LD IR

jéEpred(i)

wheres : R — {+, -} is the sign function, and wheje-ed(i) stands for the set of predecessors of
specieg in the interaction graph. This relation is similar to a lineation of the syster®’ (X, P) =

0. Note however, that as we only consider signs and not gussytthis relation is valid even for
large perturbations (se&][for a complete proof).

2.4 Analyzing a network: a simple example

Let us now describe a practical use of these results. Giventaraction graph, say for instance
the graph illustrated in Figure 1, we use Equation 1 at eade wdthe graph to build a qualitative
system of constraints. The variables of this model are tiyessof variation for each species. The
gualitative system associated to our lactose operon medebposed in the right side of Figure
1. In order to take into account observations, measuredbi@s should be replaced by their sign
values. Asolution of the qualitative system is defined as a valuation of itsaldes, which does
not contain any ?” (otherwise, the constraints would have a trivial solutvaith all variables set to
"?”) and that, according to the qualitative equality algelwil,satisfy all qualitative constraints in
the system. If the model is correct and if data is accuraa the qualitative system must posses
at least one solution.

Le

Lacl ~ —A (1)

Li Lacl cAMP-CRP LacZ =~ cAMP — Lacl (3)
J\ / ( Li ~ Le+ LacY — LacZ (4)
LacZ G =~ Li+ LacZ (5)
s ta cAMP ~ -G (6)
G | LacY =~ cAMP — Lacl (7)

Figure 1:Interaction graph for the lactose operon and its assoc@atitative system. In the graph, arrows
ending with ">" or ” —|” imply that the initial product activates or represses thedpction of the product
of arrival, respectively.



A first step then is to check theelf-consistency of the graph, that is to find if the qualitative
system without observations has at least one solu@backing consistency between experimental
measurements and an interaction graph boils down to inatengf the variables which are mea-
sured with their experimental value, and see if the resyléipstem still has a solution. If this is
the case, then it is possible to determine if the model ptedmme variations. Namely, it happens
that a given variable has the same value in all solutionse$itstem. We call such variabldard
component. The values of the hard components are the predictions ohtigel.

Whenever the system has no solution, a simple stratedyagmose the problemis to isolate a
minimal set of inconsistent equations. In our experimeatgeedy approach was enough to solve
all inconsistencies (see next section). Note that in oudingeisolating a subset of the equations
is equivalent to isolating a subgraph of the interactiorpgraThe combination of the diagnosis
algorithm and a visualization tool is particularly usefat model refinement.

Finally, let us mention that we provided if][an efficient representation of qualitative systems,
leading to effective algorithms, some of them could be usegkt further insights into the model
under study. We shall see in the next section, that theseitigs are able to deal with large scale
networks.

3 Results

3.1 Construction of the Escherichia coli regulatory network

For buildingE.coli regulatory network we relied on the transcriptional regiolainformation pro-
vided by RegulonDB (], [?]) on March 2006. From the file containiriganscription factor to
gene interactions we have built the regulatory network &.coli as a set of interactions of the
form A — B sign wheresign denotes the value of the interactioh: —, ?(expressed, repressed,
undetermined), and and B can be considered as genes or proteins, depending on tbevifadj
situations:

e The interactiongenA — genB was created when botfenA and genB are notified by
RegulonDB, and when the proteih, synthesized byenA, is among the transcriptional
factors that regulatgen B. See Figure 2 A.

e The interactionl ' — genB was created when we found TF as an heterodimer protein
(protein-complex formed by the union of 2 proteins) thatulatesgen B. See Figure 2 B.
In E.coli transcriptional network we have found 4 protein-complewdsch are: IHF, HU,
RcsB, and GatR.

e The interactioyenA — T F was created when we found the transcriptional factor TF as an
heterodimer protein angkn A synthesizes one of the proteins that form TF. See Figure 2 B.
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Figure 2: Representation of genetical interactior(#) Negative regulation (repression) of gefieu by
the transcription factof'ur represented agur — fiu —. (B) Biological interaction of genes:f A and
ihf B forming the protein-complex IHF representediag A — IHF + andihfB — IHF +, positive
regulation of geneceA by the protein complex IHF represented b§{ ' — aceA +



3.2 Adding sigma factors to obtain self-consistency

Using the methods and the algorithms described with detdiP]iwe built a qualitative system
of equations for the interaction graph obtained frBrooli network. For solving qualitative equa-
tions we have used our own tool, the PYTHON module PYQUALIe Bystem was not found
to be self-consistent and we used a procedure available @UALI library to isolate a minimal
inconsistent subgraph (see Figure 3). A careful readindgnefavailable literature led us to con-
sider the regulations involving sigma factors which weréafly absent from the network. Once
added to complete the network, we obtained a netwofA&88 interactions and 529 components
(genes, protein-complexes, and sigma-factors). This fisddork (global network) was found to
be self-consistent.

>
//\'hm THF = ihfA + ihfB (1) /_\ith ~— 1poD HF ~ ihfA + ihiB (1)
/ >< ~ ih ih

IHF — A ) IHF — ihfA =~ —THF +rpoS + rpoD (2)
bihm ibfB ~ - IHF (3) Q/ihm =T pes iWfB ~ —THF + rpoS + rpoD (3)
Figure 3: (Left) A minimal inconsistent subgraph, isolated from thkole E.coli regulatory network us-

ing PYQUALI. (Right) Correction proposed after careful dézg of available literature on ihfA and ihfB
regulation.

3.3 Compatibility of a network with a set of observations

A compatible network can be tested with different sets okoetions of varied stresses: thermal,
nutritional, hypoxic,etc. An observation is a pair of values of the fogane = sign wheresign

can bet or —indicating that the gene is expressed or respectively sspcbunder certain condition.

To test the global network d&. coli, we have chosen a set of 40 observations for the stationary
phase condition provided by RegulonDB (Table 1).

Table 1:Table of the 40 variations of products observed under statiopgrowth phase condition. Source:
RegulonDB March 2006

gene variation|| gene variation|| gene variation|| gene variation|| gene  variation
acnA + csiE + gadC + osmB + recF +
acrA + cspD + hmp + osmE + rob +
adhE + dnaN + hns + osmY + sdaA —
appB + dppA + hyaA + OtsA + sohB —
appC + fic + ihfA — otsB + treA +
appY + gabP + ihfB - polA + yeiL +
blc + gadA + Irp + proP + yfiD +
bolA + gadB + mpl + proX + yihl —

The set of 40 observations of the stationary phase was fauibe inconsistent with the global
network ofE. coli. We found a direct inconsistency in the system of equatiansed by the values
fixed by the observations given to ihfA and ihfBih fA = — ih f B = —}, implying repression of
these genes under stationary phase. This mathematicahpatbility agreed with the literature
related to geneg f A andih f B expression under stationary growing phase. Stu®gl?],[?],[?]
agree that transcription af. f A andih f B increases during stationary phase. Supported by this
information, we have modified the observationsiof A andih f B and the compatibility test of
the global network oE.coli was successful.



3.4 Predictions over a compatible network from a set of observations

As mentioned earlier, a regulatory network is said to be mbast with a given set of observations
when the associated qualitative system has at least ongosolif a variable is fixed to the same
value in all solutions, then mathematically we are talkimgat a hard component, which is a
prediction or inference for this set of observations.

Figure 4: Global E.coli regulatory network with transcriptional and sigma-fastamteractions (3883 in-
teractions and 1529 products). Blue and red interactiopgesent activation or, respectively, repression.
Green and blue nodes correspond to positive and negatiesvaiions (40). Red nodes (381) are the total
inferred variations of products under stationary growthgdhcondition.

We have mentioned that the regulatory network includingnsidgactors is consistent with the set
of 40 observations for stationary phase, after some cdaorecActually there are abot 66 - 10
solutions of the qualitative system which are consisterhwhe 40 observations of stationary
phase. Furthermore, in all these solutiosts, variables of the system have always the same value
(they are hard components, see Figure 4). In other words, eve able to predict the variation:
expressed+) or repressed—) of 381 components of our networki% of the products of the
network). We provide a subset of these predictions in Table 2

Table 2: Table of 42 products inferred under stationary pltasdition.

gene  variation|| gene  variation|| gene  variation|| gene variation

IHF + cpxR + fucR + lysR + —
ada + crp + fur + melR + gense variation
agaR + cusR + galR + mngR + L%?(R i
alsR + cynR + gcvA + oxyR + SOXS N
araC + cysB + glcC + phoB + SR T
argP + cytR + gntR + prpR + trpR 4
argR + dnaA + ivy + rbsR + tyrR 4
baeR + dsdC + iscR + rhaR +

cadC + evgA + lexA + rpoD +

3.5 Validation of the predicted genes

In order to verify whether the 381 predictions obtained fretationary phase data were valid,
we have compared them with three sets of microarray datéeckla the expression of genes of



E.Coli during stationary phase. The result obtained is showedbleTa The number of compared
genes corresponds to the common genes, the validated gendsse genes which variation in
the prediction is the same as in the microarray data set.

Table 3: Validation of the prediction with microarray datis

Source of microarray data Compared genes Validated genes (%
Gutierrez-Rios and co-workerg][ stationary phase 249 34%

Gene Expression Omnibus{[[ ?]), stationary phase after 20 minute292 51.71%

Gene Expression Omnibu<{[[ 7]), stationary phase after 60 minute281 51.2%

From the sets of microarray data provided by GEO (Gene Esmrmnibus) for stationary
phase measured after 20 and 60 minutes, we have taken inbordogene expressions whose
absolute value is above a specific threshold and compargdimede expression data with the 381
predictions. The percentage of validation obtained fdedent values of thresholds is illustrated in
Figure 5. This percentage increases with the threshold;iwikinormal because stronger variations
are more reliable.

Number of genes compared
325
)

Percentage of Validation

90

300
80 / =9 275
” /e/u : K 20 3
= = 2 o225
& o0 /_/j~r—5 2 200 BN
c £
50 175 -
=] i D 20 min o \\ o o 20 min
B a0 s 80min o 150 ~ + 60 min
he] i 125 =
© 30 g 100 o
s 20 O s -
&
50 T | S —
10 . T
0 T T T T T T T T T 1 0 T T T T T T T T T 1
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Floor Floor

Figure 5:(Left) Percentage of validation of the 381 predicted vévia of genes with microarray data sets

from GEO (Gene Expression Omnibus) for stationary phase 8@ and 60 minutes. For both experiments

we validate the 381 predictions with different sets of mé&ray observations considering only those genes
which absolute value of expression is above certain valhreghold). (Right) Number of genes considered
for the validation for the different used thresholds of botltroarray data sets.

The percentage of our predictions that does not agree watinibroarray results is due to:

» Erroneous microarray indications for certain genes. TaeegzthA, cfa, cprA, cprR,
gor are predicted as expressed by our model and as repressed hyidioarray data?.
Nevertheless, there is strong evidence that they are esguteduring the stationary phase

(see P, ?)).

* Incompleteness of our network model. Our model predicis the genelvC' is expressed,
which contradicts microarray data. More careful studigsdocument the decrease of the
protein IlvC' due to an interaction withip P which is absent in our model. Indeed, under
the introduction of a negative interaction between theseisg,:lvC' is no longer a hard
component, which lifts the conflict with data.



4 Conclusions

Given an interaction graph of a thousand products, sudb.@si regulatory network, we were
able to test its self-consistency and its consistency vadpect to observations. We have used
mathematical methods first exposedm?, 7.

We have found that thE.coli transcriptional regulatory network, obtained from Regqib®
site [?],[?] is not self consistent, but can be made self-consistentdolyng to it sigma-factors
which are transcription initiation factors. The self-cmtent network (including sigma-factors) is
not consistent with data provided by RegulonDB for the stary growth phase d.coli. Sources
of inconsistency were mistaken observations.

Finally, a step of inference/prediction was achieved beiblg to infer 381 new variations of
products (25% of the total products of the network) fr&neoli global network (transcriptional
plus sigma-factors interactions). This inference wasda&d with microarray results, obtaining
in the best case that 40% of the inferred variations wereistarg (37% were not consistent and
23% of them could not be associated to a microarray meast¥ehave used our approach to spot
several imprecisions in the microarray data and missirgractions in our model.

This approach can be used in order to increase the consysbeteen network models and
data, which is important for model refinement. Also, it mayseto increase the reliability of
the data sets. We plan to use this approach to test diffexgarienental conditions ovet.coli
network in order to complete its interaction network modekhould be also interesting to test it
with different (signed and oriented) regulatory networkRdl.the tools provided to arrive to these
results were packaged in a Python library caR&@QUALI which will be soon publicly available.
All scripts and data used in this article are available uporpke request to the authors.



