
Introduction Method Application Conclusion

Curating a large-scale regulatory network by
evaluating its consistency with expression

datasets

Carito Guziolowski, Jeremy Gruel, Ovidiu Radulescu, Anne
Siegel

Project Symbiose - IRISA-INRIA - Rennes, France

CIBB 2008



Introduction Method Application Conclusion

Objective

Confront regulatory knowledge with experimental data
Regulatory knowledge → influence graph (discrete
possitive and negative interactions)
Experimental Data: → qualitative shifts
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Existing Approaches

Local consistency approaches
Objective: correlation between regulator and targets expression
(consistency)
Applied on: regulons, network modules
Experimental Data: genome scale experiments
Gutierrez et al., Genome Res 2003, Herrgard et al., Genome Res 2003

Causal Models
Objective: detect/validate regulations in the network that explain
observations
Causal rule: “An observed change in expression of a gene, when another
gene is altered (e.g. deleted), implies a regulation between the altered
gene and the observed”
Model optimization, path analysis
Applied on: precise pathways, average size
Experimental Data: Genetic perturbation experiments
Ideker et al., Science, 2001
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Our approach: Global Consistency

Consistency rule: ”The variation of one molecule in the network
must be explained by an influence received from at least one of
its predecessors in the network” (Siegel et al., Biosystems, 2006)

Rule encoded by an equation over qualitative variables: {+, –}
(signs in the graph, signs of gene-expression shifts)
Global consistency in terms of solution of a qualitative system of
equations
Large scale networks and experimental data
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Inconsistency: No
possible {+, –}
value for arcA, fnr

Prediction: Fixed
values of arcA and
fnr that explain the
observations
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Escherichia coli transcriptional network

Large-scale: 1763 nodes, 4491 edges

Hierarchical topology

8 global factors
162 TF
1593 genes

Source: RegulonDB (Salgado et al. 2006)

Regulations:
TF-gene
sigma-gene
complex formation
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Experimental Condition

Condition: Exponential-stationary
growth shift
45 induced/repressed genes
Heterogeneous data
Source: RegulonDB (literature curated)

Ropers et al., Biosystems, 2004.
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Results: inconsistency

1 inconsistent module

We found the missing regulation that explains the
heterogeneous experimental data in the large scale
transcriptional E. coli network
Consistency was obtained after adding a
post-transcriptional effect
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Results: post-transcriptional

New rule (new equation) that models complex
formation:The concentration of a protein complex at the steady state follows
the concentration of the limiting subunit (Radulescu et al., FOSBE 2007)

Applied to the IHF protein
complex of E. coli

ihfA = +, ihfB =–, => IHF = –
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System predictions drastically changed: from predicting
0,01% to predicting 30% of the network products as {+, –}
Small changes in the network may imply larger responses
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Results: Validation of the approach

Corrected transcriptional E. coli network was consistent
with 45 litterature curated exponentially-stationary gene
shifts
The consistency of the network predicted (fixed) 30% of
the network products to explain the experimental data
Validation of predictions: comparision with microarray
outputs (Faith et al., PLoS Biology, 2007)

80% of the reported changes were in agreement
Comparable to other methods validation rate (Covert et al.,
Nature, 2002, Edwards et al., PNAS, 200)
Intersting because we only used a transcriptional model
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Consistency check process

System of
constraints

Concentration
changes

Influence
network

Consistent?

Diagnosis

PredictionExperiments

no

model correction

yes

validate withadd data

Bioquali→ www.irisa.fr/symbiose/bioquali/

Cytoscape Plugin→
www.irisa.fr/symbiose/projects/bioqualiCytoscapePlugin/

www.irisa.fr/symbiose/bioquali/
www.irisa.fr/symbiose/projects/bioqualiCytoscapePlugin/
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Conclusion

Contront large scale transcriptional (incomplete) model
with heterogeneous observations
Formalize reasoning by a system of qualitative equations
Global approach
Diagnostic: Reasoning from a general rule allow us to
retrieve missing post-transcriptional mechanisms that
explain the observations
Post-transcriptional effects: small changes in the network
may cause big differences on predictions
Validated approach on E. coli
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Thank you!
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Signs’ Algebra
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Compared to microarray outputs (Faith et al. 2007 PLoS Biology)

80% of the reported changes were in agreement
And the rest ?

Expression Data
ihfA = +
ihfB = –
fic = +



Introduction Method Application Conclusion

Applications: E. coli (3)

Validation of predictions
Compared to microarray outputs (Faith et al. 2007 PLoS Biology)
80% of the reported changes were in agreement

And the rest ?

Expression Data
ihfA = +
ihfB = –
fic = +

Prediction
crp = –

ompA = –
rpoD = –
rpoS = +
IHF = –



Introduction Method Application Conclusion

Applications: E. coli (3)

Validation of predictions
Compared to microarray outputs (Faith et al. 2007 PLoS Biology)
80% of the reported changes were in agreement

And the rest ?

Expression Data
ihfA = +
ihfB = –
fic = +

Prediction
crp = –

ompA = –
rpoD = –
rpoS = +
IHF = –

Rsd protein forms a complex with RpoD preventing it to
bind RNA-polymerase (Jishage and Ishihama 1998)
active RpoD predicted not rpoD mRNA



Introduction Method Application Conclusion

Applications: E. coli (3)

Validation of predictions
Compared to microarray outputs (Faith et al. 2007 PLoS Biology)
80% of the reported changes were in agreement

And the rest ?

Expression Data
ihfA = +
ihfB = –
fic = +

Prediction
crp = –

ompA = –
rpoD = –
rpoS = +
IHF = –

Rsd protein forms a complex with RpoD preventing it to
bind RNA-polymerase (Jishage and Ishihama 1998)
active RpoD predicted not rpoD mRNA



Introduction Method Application Conclusion

Applications: E. coli (3)

Validation of predictions
Compared to microarray outputs (Faith et al. 2007 PLoS Biology)
80% of the reported changes were in agreement

And the rest ?

Expression Data
ihfA = +
ihfB = –
fic = +

Prediction
crp = –

ompA = –
rpoD = –
rpoS = +
IHF = –

Rsd protein forms a complex with RpoD preventing it to
bind RNA-polymerase (Jishage and Ishihama 1998)
active RpoD predicted not rpoD mRNA


	Introduction

