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Introduction

Objective

@ Confront regulatory knowledge with experimental data
e Regulatory knowledge — influence graph (discrete
possitive and negative interactions)
e Experimental Data: — qualitative shifts




Introduction

Existing Approaches

@ Local consistency approaches

Obijective: correlation between regulator and targets expression
(consistency)

Applied on: regulons, network modules

Experimental Data: genome scale experiments

Gutierrez et al., Genome Res 2003, Herrgard et al., Genome Res 2003

@ Causal Models

Objective: detect/validate regulations in the network that explain
observations

Causal rule: “An observed change in expression of a gene, when another
gene is altered (e.g. deleted), implies a regulation between the altered
gene and the observed”

Model optimization, path analysis

Applied on: precise pathways, average size

Experimental Data: Genetic perturbation experiments

Ideker et al., Science, 2001



Method

Our approach: Global Consistency

@ Consistency rule: "The variation of one molecule in the network
must be explained by an influence received from at least one of
its predecessors in the network” (Siegel et al., Biosystems, 20086)

@ Rule encoded by an equation over qualitative variables: {+,—}
(signs in the graph, signs of gene-expression shifts)

@ Global consistency in terms of solution of a qualitative system of
equations

@ Large scale networks and experimental data
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Consistency analysis: Examples
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Method

Consistency analysis: Examples

Inconsistency
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Application

Escherichia coli transcriptional network

@ Large-scale: 1763 nodes, 4491 edges

@ Hierarchical topology @ Regulations:

@ 8 global factors @ TF-gene
) @ sigma-gene
@ 1593 genes @ complex formation

@ Source: RegulonDB (Salgado et al. 2006)



Application

Experimental Condition
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@ Condition: Exponential-stationary
growth shift

@ 45 induced/repressed genes
@ Heterogeneous data
@ Source: RegulonDB (literature curated)

Exponential phase

Time

Ropers et al;; Biosystems, 2004.
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Results: inconsistency

@ 1 inconsistent module

Network inconsistent with Data

Correction: Add External Signal
Atlung et al, J Bacteriol, 1996
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@ We found the missing regulation that explains the

heterogeneous experimental data in the large scale
transcriptional E. coli network
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@ We found the missing regulation that explains the
heterogeneous experimental data in the large scale
transcriptional E. coli network

@ Consistency was obtained after adding a
post-transcriptional effect
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Results: post-transcriptional

@ New rule (new equation) that models complex
formation:The concentration of a protein complex at the steady state follows
the concentration of the limiting subunit (Radulescu et al., FOSBE 2007)
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Results: post-transcriptional

@ New rule (new equation) that models complex
formation:The concentration of a protein complex at the steady state follows
the concentration of the limiting subunit (Radulescu et al., FOSBE 2007)

@ Applied to the IHF protein
complex of E. coli

@ ihfA =+, ihfB =——, => IHF = —
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Results: post-transcriptional

@ New rule (new equation) that models post-transcriptional
behaviours:The concentration of a protein complex at the steady state
follows the concentration of the limiting subunit (Radulescu et al., FOSBE 2007)
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Results: post-transcriptional

@ New rule (new equation) that models post-transcriptional
behaviours:The concentration of a protein complex at the steady state
follows the concentration of the limiting subunit (Radulescu et al., FOSBE 2007)
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@ System predictions drastically changed: from predicting
0,01% to predicting 30% of the network products as {+,—}
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Results: post-transcriptional

@ New rule (new equation) that models post-transcriptional
behaviours:The concentration of a protein complex at the steady state
follows the concentration of the limiting subunit (Radulescu et al., FOSBE 2007)

IHF genes expression

10000

8000 — |-

@ Applied to the IHF protein
complex of E. coli

@ ihfA =+, ihfB=— =>IHF =-
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@ System predictions drastically changed: from predicting
0,01% to predicting 30% of the network products as {+,—}

@ Small changes in the network may imply larger responses
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Results: Validation of the approach

@ Corrected transcriptional E. coli network was consistent
with 45 litterature curated exponentially-stationary gene
shifts

@ The consistency of the network predicted (fixed) 30% of
the network products to explain the experimental data

@ Validation of predictions: comparision with microarray
outputs (Faith et al., PLoS Biology, 2007)
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@ The consistency of the network predicted (fixed) 30% of
the network products to explain the experimental data

@ Validation of predictions: comparision with microarray
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o Comparable to other methods validation rate (Covert et al.,
Nature, 2002, Edwards et al., PNAS, 200)
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Results: Validation of the approach

@ Corrected transcriptional E. coli network was consistent

with 45 litterature curated exponentially-stationary gene
shifts

@ The consistency of the network predicted (fixed) 30% of
the network products to explain the experimental data
@ Validation of predictions: comparision with microarray
outputs (Faith et al., PLoS Biology, 2007)
o 80% of the reported changes were in agreement

o Comparable to other methods validation rate (Covert et al.,
Nature, 2002, Edwards et al., PNAS, 200)

e Intersting because we only used a transcriptional model



Conclusion

Consistency check process

add data ) validate with .
Experiments Prediction

. yes

Concentration
changes

N\,

y no

model correction . .
Diagnosis

@ Bioquali — www.irisa.fr/symbiose/bioquali/
@ Cytoscape Plugin —

www.lrisa.fr/symbiose/projects/bioqualiCytoscapePlugin/

Influence
network
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Conclusion

Conclusion

@ Contront large scale transcriptional (incomplete) model
with heterogeneous observations

@ Formalize reasoning by a system of qualitative equations
@ Global approach

@ Diagnostic: Reasoning from a general rule allow us to
retrieve missing post-transcriptional mechanisms that
explain the observations

@ Post-transcriptional effects: small changes in the network
may cause big differences on predictions

@ Validated approach on E. coli
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Conclusion

Thank you!



Qualitative System
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Conclusion

Signs’ Algebra

Sign Algebra Consistency measure
F x = 5 source influence R target variation
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Conclusion

Validation of the predictions

@ Compared to microarray outputs (Faith et al. 2007 PLoS Biology)
@ 80% of the reported changes were in agreement
@ And the rest ?
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Conclusion

Applications: E. coli (3)

@ Validation of predictions
o Compared to microarray outputs (Faith et al. 2007 PLoS Biology)
@ 80% of the reported changes were in agreement

@ And therest ?
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@ Rsd protein forms a complex with RpoD preventing it to
bind RNA-polymerase (Jishage and Ishihama 1998)
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Applications: E. coli (3)

@ Validation of predictions
e Compared to microarray outputs (Faith et al. 2007 PLoS Biology)
e 80% of the reported changes were in agreement

@ And therest ?
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@ Rsd protein forms a complex with RpoD preventing it to
bind RNA-polymerase (Jishage and Ishihama 1998)

@ active RpoD predicted not rpoD mRNA
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