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Tilings as dynamical systems

Let A be a finite alphabet and consider the grid Zd .
The set AZd

endowed by the product toplogy is compact and Zd acts by shift on
AZd

:
∀x ∈ AZ

d
and ∀n, i ∈ Zd , σn(x)i = xi+n
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The dynamical system (AZd
, σ) is called the full shift.

Let T ⊂ AZd
be a closed σ-invariant subset. The dynamical system (T, σ) is

called a subshift.
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Subshifts defined by forbiden patterns

For a finite subset U ⊂ Zd we can consider finite pattern u ∈ AU.
Let F be a set of patterns, we define the subshift where the forbidden patterns are
F :

TA,F = {x ∈ AZ
d
/∀p ∈ F , p does not appear in x} ⊆ AZ

d

Some class of subshifts:

T fullshift (T ∈ FS) ⇔ Σ = TF = AZd
, F = ∅

T subshift of finite type (T ∈ SFT ) ⇔ ∃F finite set of patterns such that,
T = TF

T effective subshift (T ∈ RE) ⇔ ∃F recursive enumerable set of patterns
such that Σ = TF .
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Example of SFT of dimension 2

A =
¦

,
©

F =

�
,

�
⇓

TA,F :

...

. . . . . .

...

,

...

. . . . . .

...
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Example of effective subshifts which are not sofic
Let A = {�,�,�}. Define:

T = {�,�}Z
2 [8><>:

9>=>;
Assume there exists Σ ⊂ ΛZ

2
such that π : Σ→ T

is a factor and Σ ∈ SFT of order r .
Let n such that |Λ|4n×r+r2

< 2n2
.

We can find two different square of {�,�} which
have the same border.
Thus T is effective but not sofic.

An effective subshift is not sofic:
if it is minimal with positive entropy
if for all configurations, the Kolmogorov complexity of every square verify
K(square n × n) ≥ O(n).
... other conditions?
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Operations on subshifts, simulation

S: set of all subshifts (all dimensions, all finite alphabets)

Operations on subshifts:
I op : S → S
I or op : S × S → S

Closure of a class of subshifts U ⊂ S by a set of opérations Op:

ClOp(U): smallest subset of S stable by Op which contains U .

T simule T′ by Op if T′ ∈ ClOp(T) (notation : T′ ≤Op T).

ClOp(T) = {T′ : T′ ≤Op T}.
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Product operation: Prod

Definition

Let Ti ⊆ AZ
d

i for any i ∈ [1, n] be n subshifts of the same dimension, define:

Prod (T1, . . . ,Tn) = T1 × · · · × Tn ⊆ (A1 × · · · × An)Z
d
.

Σ = TF ⊆ {a, b, c}Z
2

F =

§
∗ a
a ∗ ,

∗ b
b ∗ ,

∗ c
c ∗

ª
Σ′ = TF ′ ⊆

�
,
	Z2

F ′ =

§
,

ª
9>>>>>>>>>=>>>>>>>>>;

⇒

Σ× Σ′ ⊆ {a, b, c, a, b, c}Z
2

F ×
�

,
	U ∪ {a, b, c}U × F ′§

∗ a
a ∗ ,

∗ a
a ∗ ,

∗ a
a ∗ , . . .

ª
Remark : One has ClProd(FS) = FS and ClProd(SFT ) = SFT .
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Finite Type operation: FT

Définition
Let T ∈ S, there exists F ′ a family of pattern such that T = TF ′ .
For a finite family F of pattern, define

FTF (T) = TF∪F ′ .

Remark : By definition, one has:

ClFT(FS) = SFT
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Factor operation: Fact

Definition

Let T ⊆ AZd
be a subshift and let π : AZd → BZd

be a morphism (continous and
σ ◦ π = π ◦ σ), Factπ (T) = π(T) ⊆ BZd

is a factor of T.

Example :
A = {0, 1, 2} et Σ ⊆ AZ
Σ = T{00,22,01,12} et π(0) = π(2) = 0,π(1) = 1

⇒ π(Σ) = {x ∈ {0, 1}Z/ blocks of 0 have even length} = T{0,1},{102n+11:n∈N}

Remark : SFT ( ClF (SFT ).
By definition, ClF (SFT )is the class of sofic subshifts. In dimension 1, it is possible
to characterize sofic subshift as subshifts with regular forbidden patterns.
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Projective Subaction: SA

Definition
Let G be a sub-group of Zd finitely generated by u1, u2, . . . , ud′ (d ′ ≤ d). Let
T ⊆ AZd

be a subshift :

SAG (T) =

¨
y ∈ AZd ′

: ∃x ∈ T such that ∀i1, . . . , id′ ∈ Zd′ ,
yi1,...,id ′ = xi1u1+···+id ′ud ′

«
.
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Example of projective subaction
Let A = {0, 1, 2, 3, 4, a, b}, it is possible to define a SFT T ⊂ AZ2

such that 0 is
a background and finite non 0composant have the following form:

0 0 0 0 0 0 0 0
0 ∗ 1 . . . . . . 1 b 0

0 4
. . . 1 1 . .

.
2 0

0
.
.
. 4 ∗ b 2

.

.

. 0

0
.
.
. 4 a ∗ 2

.

.

. 0

0 4 . .
.

3 3
. . . 2 0

0 a 3 . . . . . . 3 ∗ 0
0 0 0 0 0 0 0 0

Let G = {(i , i) : i ∈ Z}, we have:

SAG (T) = T{∗anbm∗:n 6=m} /∈ Sofic .

Proposition
ClSA(RE) = RE
In particular ClSA(Sofic) = ClFact,SA(SFT ) ⊂ RE
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Main result

Theorem (Hochman)
Every effective subshifts of dimension d can be obtained using SA and Fact on a
SFT of dimension d + 2.

ClFact,SA(SFT ∩ Sd+2) ∩ S≤d = RE ∩ S≤d

Theorem (Aubrun & S. or Durand & Romashchenko & Shen)
Every effective subshifts of dimension d can be obtained using SA and Fact on a
SFT of dimension d + 1.

ClFact,SA(SFT ∩ Sd+1) ∩ S≤d = RE ∩ S≤d
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Four layers
We want to simulate an effective subshift Σ ⊆ AΣ

Z with a SFT of dimension 2 (it
is easy to generalize to other dimensions).
Different layers:

Layer 1: a superposition of configuration x ∈ AΣ
Z (a candidate x ∈ Σ?),

Layer 2: computation zones used byMForbid etMSearch equiped with a
clock,
Layer 3: Turing machineMForbid enumerates forbidden patterns,
Layer 4: Turing machineMSearch checks the configuration x .
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Layer 1: the candidate x ∈ Σ?

We align all letters of the first layer to obtain the same configuration horizontally.
Finite condition:

Align =

�
a
b , a 6= b ∈ AΣ

�
The first layer is constitued by:

TAlign = FTAlign

�
AZ

2

Σ

�
Aim:
We want to eliminate each x which contains forbidden patterns of Σ.
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We want to code a Turing machine with a SFT

Definition: Turing machine
A Turing machine isM = (Q, Γ, ], q0, δ,QF ) with:

Q fite set of states; q0 ∈ Q initial state;
Γ finite alphabet;
] /∈ Γ white symbol
δ : Q × Γ→ Q × Γ× {←, · ,→} fonction of transition;
F ⊂ QF set of final states.

The rule δ(q1, x) = (q2, y ,←) is coded by:

(q2, z) y z ′

z (q1, x) z ′

It is possible to consider the SFT TM for a Turing machineM

Problem
How initialize the computation?
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Initialisation of the computation

If a particular tile appear just one time, it is easy to initialize the computation by
finite type conditions :

But, by compacity, it is impossible to force the presence of a unique tile.

N. Aubrun and M. Sablik () Simulation of RE by SFT of dim 2 6 jully 2010 14 / 31



Layer 2: the grid
The alphabets G1 × G2 on which the substitution is defined

Substitution rules:
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Layer 2: the grid

Four iterations of the substitution sGrid:

By the result of Mozes, the fixe point obtained generates a sofic denoted TGrid.
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Description of computation zones

We just consider the projection on G1.

� : tile of communication
q,p,� : tiles of computation
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Description of computation zones

And more generally:
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Description of computation zones

We have fractionated computation strips of different level (level 1, level 2, level 3):

A computation strip of level n has the following properties :
the width is 2n,
each rows have computation boxes of the same level,
there is a computation line every 2n lines.
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Layer 2: A grid and a clock

To initialize the computation we code a clock by finite rules:

The layer 2 can be defined as:

TClock = FTCount∪Consist∪Synchro

�
Prod

�
TGrid, CZ

2��
For a strip of level n, this allows to initialize computation every 22n

.
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How to simulate a Turing machine with TClock

We use the operation FT on Prod
�
TClock,A2

M
�
to add computation ofM in the

strips:

conditions Init : when the clock = 0, the empty word is written on the
comptation zone and the initial state q0 appears at the beggining (symbol q);

conditions Comp : when the clock 6= 0, we use the rules of TM;
conditions Transfer : if the computation is in a communication zone, the
states of the Turing machine is transfered (horizontally and vertically);
conditions Bound : if the computation want to go out the computation
zone, the computation stop.

For a Turing machineM, one can consider:

TM = FTWorkM

�
Prod

�
TGrid,AZ

2

M

��
where WorkM = Transfer ∪ Init ∪ Comp ∪ Bound.
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How to simulate a Turing machine with TClock

↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑

↑ ↑ ↑ ↑ a
↑
↔

↑
↔ b (q‖, ‖)

↑
↔

↑
↔ ] ↑ ↑ ↑ ↑

↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑

a
↑
↔

↑
↔ (qb+, ])

↑
↔

↑
↔

↑
↔

↑
↔

↑
↔

↑
↔

↑
↔

↑
↔ ]

↑
↔

↑
↔ ]

↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑

↑ ↑ ↑ ↑ a
↑
↔

↑
↔ b (q‖, ])

↑
↔

↑
↔ ] ↑ ↑ ↑ ↑

↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑ ↑ a (qb+, ]) ↑

↑ ↑ ↑ ↑ a
↑
↔

↑
↔ (qb+, ]) ]

↑
↔

↑
↔ ] ↑ ↑ ↑ ↑

↑ (q0, ]) ] ↑ (q0, ]) ] (q0, ]) ] ↑ (q0, ]) ] ↑
(q0, ]) ↔ ↔ ] ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ] ↔ ↔ ]
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Layer 3: Detection of forbidden patterns byMForbid

MForbid generates forbidden patterns for Σ

each strip has a responsibility zone andMForbid checks if a forbidden pattern
appears in this zone;

Zone de responsabilité de MForbidz }| {
a0 a1 a2 . . . . . . . . . . . . aN

f0 f1 f2 . . .

f0 f1 f2 . . .

f0 f1 f2 . . .

to obtain the value in the layer 1 of ak ,MForbid need the help ofMSearch:
MForbid gives the address k and receive ak
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Responsability zones ofMForbid

Responsability zones must scan all the configuration considered, thus
responsability zones of same level overlap (. . . x−2x−1x0 ∈ L(Σ) and
x0x1x2 · · · ∈ L(Σ) does not imply that . . . x−2x−1x0x1x2 · · · ∈ L(Σ)).

The size of a responsability zone of level n is 6× 4n−1.
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Responsability zones must scan all the configuration considered, thus
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x0x1x2 · · · ∈ L(Σ) does not imply that . . . x−2x−1x0x1x2 · · · ∈ L(Σ)).

The size of a responsability zone of level n is 6× 4n−1.
The Turing machineMForbid of a level n can ask atMSearch of the same level or
neighborMSearch of the same level.
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Layer 4: The Turing machineMSearch

We want to construct a Turing machineMSearch which can comunicate with
different levels in view to explore all the configuration cheaked.
When you give a strip it is possible to give an address of each boxes in function of
the place in a de-substitute pattern:

The black box address is 231 and the grey box address is 020.
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Communication betweenMSearch of different level

With the alphabet G2, we construct channels of communication:
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Communication betweenMSearch of different level

Principle :
each border of a computation zone (q or p) is in the center of a rectangle of
level n;
for each rectangle of level n, there is in connection only with q and p of two
Turing machines of level n − 1
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MSearch holds

EachMSearch has enough space to code address:
I the size of computation zone of level n is 2n,
I the size of a responsability zone of level n is 6× 4n−1,
I with an alphabet of cardinality 4, we just need n bits.

EachMSearch can calculate for a givenMForbid:
I let t(n) be the time taken by MSearch to give an answer to a Turing machine
MForbid of order n. One has

t(n) ≤ n × 2n + 4× t(n − 1)

So t(n) ≤ 2n ×O(n22n).
I a clock of level n is initialised every 22n

I the time of answer is "absorbed" by the exponential time of the clock.
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The final construction

condition Request : MF askMSearch the value of a box in the respnsability
zone and wait the answer
condition Forbid : we exclude the configuration whenMForbid encounter a
forbidden pattern

TFinal = FTWorkMRequest∪WorkMSearch∪Com∪Forbid
�
TLayer

�
.

where
TLayer = Prod

�
FTAlign

�
AZ

2�
,TClock,AZ

2

MForbid
,AZ

2

MSearch

�
To obtain Σ :

operation Fact to keep only letters of AΣ

operation SA to keep only an horizontal line
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Application 1: An order on subshifts
A Turing machine with semi-oracle L has the following behaviour: the machine
reads an entry pattern p and writes a pattern on the oracle tape, until the state q?

is reached. If the pattern written on the oracle tape is in L then the machine
stops, else it keeps on calculating.
We can define the following semi-order:

L � L′ ⇐⇒ ∃ML
′
a Turing machine with semi-oracle L′

such that dom(ML
′
) = L.

Theorem
Let T be a strongly specified subshift, one has:

ClProd,Fact,FT,SA,SE(T) = {TL : L � L(T)c} .
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Application 2: Expansive directions
Let Σ ⊂ AZ2

be a subshift. Σ is expansive according a line ∆ if two
configurations x , y ∈ Σ are similar around ∆, then x = y .

Theorem
For an effective subshift, the bounds of expansive cone are exactely given by
effective number.

What happen for sofic subshift?
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Application 3: Effective multidimensional S-adic systems
Let s1 : ∗ → ∗ ∗

∗ ∗ and s2 : ∗ → ∗ ∗
∗ ∗ be two square substitutions.

Let (τi )N be an effective sequence of {0; 1}.
Define the effective multidimensionel {s1; s2}-adic systems following τ :

T = {x ∈ AZ
2

: admisible patterns are sτ0 ◦ sτ1 ◦ · · · ◦ sτk−1 ◦ sτk ( )}

Theorem
Effective multidimensional S-adic systems are sofic.
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Application 4: Discrete plane
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