Simulation of effective subshifts by two-dimensional SFT

N. Aubrun and M. Sablik

LIGM, Université Paris-Est et LATP, Université de Provence

6 jully 2010

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Tilings as dynamical systems

Let \mathcal{A} be a finite alphabet and consider the grid \mathbb{Z}^d .

The set \mathcal{A}^{Z^d} endowed by the product toplogy is compact and \mathbb{Z}^d acts by shift on $\mathcal{A}^{\mathbb{Z}^d}$:

$$\forall x \in \mathcal{A}^{\mathbb{Z}^d}$$
 and $\forall n, i \in \mathbb{Z}^d, \sigma^n(x)_i = x_{i+n}$

 $\mathcal{A} = \{\blacksquare, \blacksquare\}$

The dynamical system $(\mathcal{A}^{Z^d}, \sigma)$ is called the *full shift*.

Let $\mathbf{T} \subset \mathcal{A}^{\mathbb{Z}^d}$ be a closed σ -invariant subset. The dynamical system (\mathbf{T}, σ) is called a *subshift*.

Subshifts defined by forbiden patterns

For a finite subset $\mathbb{U} \subset \mathbb{Z}^d$ we can consider finite pattern $u \in \mathcal{A}^{\mathbb{U}}$. Let F be a set of patterns, we define the subshift where the forbidden patterns are F:

$$\mathbf{T}_{\mathcal{A},F} = \{x \in \mathcal{A}^{\mathbb{Z}^{d}} / \forall p \in F, p \text{ does not appear in } x\} \subseteq \mathcal{A}^{\mathbb{Z}^{d}}$$

Some class of subshifts:

- **T** fullshift $(\mathbf{T} \in \mathcal{FS}) \Leftrightarrow \Sigma = \mathbf{T}_F = \mathcal{A}^{\mathbb{Z}^d}$, $F = \emptyset$
- **T** subshift of finite type $(\mathbf{T} \in SFT) \Leftrightarrow \exists F$ finite set of patterns such that, $\mathbf{T} = \mathbf{T}_F$
- **T** effective subshift $(\mathbf{T} \in \mathcal{RE}) \Leftrightarrow \exists F$ recursive enumerable set of patterns such that $\Sigma = \mathbf{T}_{F}$.

イロト イポト イヨト イヨト

Example of SFT of dimension 2

Simulation of RE by SFT of dim 2

6 jully 2010 3 / 31

・ロト ・四ト ・ヨト ・ヨト

Example of effective subshifts which are not sofic Let $\mathcal{A} = \{\Box, \blacksquare, \blacksquare\}$. Define:

Assume there exists $\Sigma \subset \Lambda^{\mathbb{Z}^2}$ such that $\pi : \Sigma \to \mathbf{T}$ is a factor and $\Sigma \in S\mathcal{FT}$ of order r. Let n such that $|\Lambda|^{4n \times r+r^2} < 2^{n^2}$. We can find two different square of $\{\Box, \blacksquare\}$ which have the same border. Thus \mathbf{T} is effective but not sofic.

An effective subshift is not sofic:

- if it is minimal with positive entropy
- if for all configurations, the Kolmogorov complexity of every square verify $\mathcal{K}(\text{square } n \times n) \ge \mathcal{O}(n)$.
- ... other conditions?

4 / 31

6 jully 2010

Operations on subshifts, simulation

 \mathcal{S} : set of all subshifts (all dimensions, all finite alphabets)

- Operations on subshifts:
 - op : $\mathcal{S} \to \mathcal{S}$
 - or $op: \mathcal{S} \times \mathcal{S} \to \mathcal{S}$
- *Closure* of a class of subshifts $U \subset S$ by a set of opérations *Op*:

 $Cl_{Op}(\mathcal{U})$: smallest subset of S stable by Op which contains \mathcal{U} .

• T simule T' by Op if $T' \in Cl_{Op}(T)$ (notation : $T' \leq_{Op} T$).

$$\mathcal{C}I_{Op}(\mathbf{T}) = \{\mathbf{T}' : \mathbf{T}' \leq_{Op} \mathbf{T}\}.$$

イロト イポト イヨト イヨト

Product operation: Prod

Definition

Let $\mathbf{T}_i \subseteq \mathcal{A}_i^{\mathbb{Z}^d}$ for any $i \in [1, n]$ be *n* subshifts of the same dimension, define:

 $\operatorname{Prod}\left(\mathsf{T}_{1},\ldots,\mathsf{T}_{n}\right)=\mathsf{T}_{1}\times\cdots\times\mathsf{T}_{n}\subseteq\left(\mathcal{A}_{1}\times\cdots\times\mathcal{A}_{n}\right)^{\mathbb{Z}^{d}}.$

<u>Remark</u> : One has $\mathcal{C}I_{\mathsf{Prod}}(\mathcal{FS}) = \mathcal{FS}$ and $\mathcal{C}I_{\mathsf{Prod}}(\mathcal{SFT}) = \mathcal{SFT}$.

N. Aubrun and M. Sablik ()

Simulation of RE by SFT of dim 2

Finite Type operation: **FT**

Définition

Let $\mathbf{T} \in \mathcal{S}$, there exists F' a family of pattern such that $\mathbf{T} = \mathbf{T}_{F'}$. For a finite family F of pattern, define

 $\mathsf{FT}_{F}(\mathsf{T})=\mathsf{T}_{F\cup F'}.$

イロト イヨト イヨト イヨ

Finite Type operation: **FT**

Définition

Let $\mathbf{T} \in \mathcal{S}$, there exists F' a family of pattern such that $\mathbf{T} = \mathbf{T}_{F'}$. For a finite family F of pattern, define

 $\mathsf{FT}_{F}(\mathsf{T})=\mathsf{T}_{F\cup F'}.$

<u>Remark</u> : By definition, one has:

 $\mathcal{C}I_{\mathsf{FT}}(\mathcal{FS}) = \mathcal{SFT}$

イロト イポト イヨト イヨト

Factor operation: Fact

Definition

Let $\mathbf{T} \subseteq \mathcal{A}^{\mathbb{Z}^d}$ be a subshift and let $\pi : \mathcal{A}^{\mathbb{Z}^d} \to \mathcal{B}^{\mathbb{Z}^d}$ be a morphism (continous and $\sigma \circ \pi = \pi \circ \sigma$), $\mathbf{Fact}_{\pi}(\mathbf{T}) = \pi(\mathbf{T}) \subseteq \mathcal{B}^{\mathbb{Z}^d}$ is a factor of \mathbf{T} .

Factor operation: Fact

Definition

Let $\mathbf{T} \subseteq \mathcal{A}^{\mathbb{Z}^d}$ be a subshift and let $\pi : \mathcal{A}^{\mathbb{Z}^d} \to \mathcal{B}^{\mathbb{Z}^d}$ be a morphism (continous and $\sigma \circ \pi = \pi \circ \sigma$), $\mathbf{Fact}_{\pi}(\mathbf{T}) = \pi(\mathbf{T}) \subseteq \mathcal{B}^{\mathbb{Z}^d}$ is a factor of \mathbf{T} .

Example :

$$\mathcal{A} = \{0, 1, 2\} \text{ et } \Sigma \subseteq \mathcal{A}^{\mathbb{Z}}$$

 $\Sigma = \mathbf{T}_{\{00, 22, 01, 12\}} \text{ et } \pi(0) = \pi(2) = 0, \pi(1) = 1$

 $\Rightarrow \pi(\Sigma) = \{x \in \{0,1\}^{\mathbb{Z}} / \text{ blocks of 0 have even length}\} = \mathbf{T}_{\{0,1\},\{10^{2n+1}1:n \in \mathbb{N}\}}$

<u>**Remark**</u> : $SFT \subsetneq Cl_F(SFT)$.

By definition, $Cl_F(SFT)$ is the class of *sofic subshifts*. In dimension 1, it is possible to characterize sofic subshift as subshifts with regular forbidden patterns.

Projective Subaction: SA

Definition

Let \mathbb{G} be a sub-group of \mathbb{Z}^d finitely generated by $u_1, u_2, \ldots, u_{d'}$ $(d' \leq d)$. Let $\mathbf{T} \subseteq \mathcal{A}^{\mathbb{Z}^d}$ be a subshift :

$$\mathsf{SA}_{\mathbb{G}}(\mathsf{T}) = \left\{ \begin{array}{l} y \in \mathcal{A}^{\mathbb{Z}^{d'}} : \exists x \in \mathsf{T} \text{ such that } \forall i_1, \dots, i_{d'} \in \mathbb{Z}^{d'}, \\ y_{i_1, \dots, i_{d'}} = x_{i_1 u_1 + \dots + i_{d'} u_{d'}} \end{array} \right\}$$

・ロト ・回ト ・ヨト ・

Example of projective subaction

Let $\mathcal{A} = \{0, 1, 2, 3, 4, a, b\}$, it is possible to define a SFT $\mathbf{T} \subset \mathcal{A}^{\mathbb{Z}^2}$ such that 0 is a background and finite non 0composant have the following form:

0	0	0	0	0	0	0	0
0	*	1			1	Ь	0
		· .				-	
0	4	•	1	1	•	2	0
0	•	4	*	Ь	2	•	0
		-		~	-	·	Ŭ
						•	
0	- 1	4	а	*	2		0
		.*			÷.	-	
0	4	•	3	3	•	2	0
0	а	3			3	*	0
0	0	0	0	0	0	0	0

Let $\mathbb{G} = \{(i, i) : i \in \mathbb{Z}\}$, we have:

$$\mathsf{SA}_{\mathbb{G}}(\mathsf{T}) = \mathsf{T}_{\{*a^nb^m*:n\neq m\}} \notin Sofic.$$

Proposition

 $\begin{array}{l} \mathcal{C}\mathit{I}_{\mathsf{SA}}(\mathcal{RE}) = \mathcal{RE} \\ \text{In particular } \mathcal{C}\mathit{I}_{\mathsf{SA}}(\mathcal{Sofic}) = \mathcal{C}\mathit{I}_{\mathsf{Fact},\mathsf{SA}}(\mathcal{SFT}) \subset \mathcal{RE} \end{array}$

Main result

Theorem (Hochman)

Every effective subshifts of dimension d can be obtained using **SA** and **Fact** on a SFT of dimension d + 2.

 $\mathcal{C}l_{\mathsf{Fact},\mathsf{SA}}(\mathcal{SFT}\cap\mathcal{S}_{d+2})\cap\mathcal{S}_{\leq d}=\mathcal{RE}\cap\mathcal{S}_{\leq d}$

・ロト ・回ト ・ヨト ・

Main result

Theorem (Hochman)

Every effective subshifts of dimension d can be obtained using **SA** and **Fact** on a SFT of dimension d + 2.

 $\mathcal{C}\mathit{I}_{\mathsf{Fact},\mathsf{SA}}(\mathcal{SFT}\cap\mathcal{S}_{d+2})\cap\mathcal{S}_{\leq d}=\mathcal{RE}\cap\mathcal{S}_{\leq d}$

Theorem (Aubrun & S. or Durand & Romashchenko & Shen)

Every effective subshifts of dimension d can be obtained using **SA** and **Fact** on a SFT of dimension d + 1.

$$\mathcal{C}l_{\mathsf{Fact},\mathsf{SA}}(\mathcal{SFT}\cap\mathcal{S}_{d+1})\cap\mathcal{S}_{\leq d}=\mathcal{RE}\cap\mathcal{S}_{\leq d}$$

イロト イポト イヨト イヨト

Four layers

We want to simulate an effective subshift $\Sigma \subseteq \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ with a SFT of dimension 2 (it is easy to generalize to other dimensions). **Different layers:**

- Layer 1: a superposition of configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ (a candidate $x \in \Sigma$?),
- Layer 2: computation zones used by $\mathcal{M}_{\tt Forbid}$ et $\mathcal{M}_{\tt Search}$ equiped with a clock,
- \bullet Layer 3: Turing machine $\mathcal{M}_{\texttt{Forbid}}$ enumerates forbidden patterns,
- Layer 4: Turing machine $\mathcal{M}_{\text{Search}}$ checks the configuration x.

Layer 1: the candidate $x \in \Sigma$?

We align all letters of the first layer to obtain the same configuration horizontally. Finite condition:

$$\mathsf{Align} = \left\{ \begin{array}{c} \mathsf{a} \\ \hline \mathsf{b} \end{array} \right\}, \mathsf{a} \neq \mathsf{b} \in \mathcal{A}_{\Sigma} \right\}$$

The first layer is constitued by:

$$\mathsf{T}_{\mathsf{Align}} = \mathsf{FT}_{\mathsf{Align}} \left(\mathcal{A}_{\Sigma}^{\mathbb{Z}^2}
ight)$$

Aim:

We want to eliminate each x which contains forbidden patterns of Σ .

・ロト ・回ト ・ヨト ・

We want to code a Turing machine with a SFT

Definition: Turing machine

- A *Turing machine* is $\mathcal{M} = (Q, \Gamma, \sharp, q_0, \delta, Q_F)$ with:
 - Q fite set of states; $q_0 \in Q$ initial state;
 - Γ finite alphabet;
 - $\sharp \notin \Gamma$ white symbol
 - $\delta: Q \times \Gamma \to Q \times \Gamma \times \{\leftarrow, \cdot, \rightarrow\}$ fonction of transition;
 - $F \subset Q_F$ set of final states.

The rule $\delta(q_1, x) = (q_2, y, \leftarrow)$ is coded by:

$$egin{array}{c|c} (q_2,z) & y & z' \ \hline z & (q_1,x) & z' \end{array}$$

It is possible to consider the SFT $\textbf{T}_{\mathcal{M}}$ for a Turing machine \mathcal{M}

Problem

How initialize the computation?

N. Aubrun and M. Sablik ()

Initialisation of the computation

If a particular tile appear just one time, it is easy to initialize the computation by finite type conditions :

But, by compacity, it is impossible to force the presence of a unique tile.

・ロト ・回ト ・ヨト ・

Layer 2: the grid

The alphabets $\mathcal{G}_1\times \mathcal{G}_2$ on which the substitution is defined

Substitution rules:

Layer 2: the grid

Four iterations of the substitution *s*_{Grid}:

By the result of Mozes, the fixe point obtained generates a sofic denoted ${\sf T}_{\tt Grid}.$

ヘロト ヘヨト ヘヨト ヘ

We just consider the projection on \mathcal{G}_1 .

□ : tile of communication $\boxdot, ⊣, \blacksquare$: tiles of computation

We just consider the projection on \mathcal{G}_1 .

□ : tile of communication $\exists, \exists, \blacksquare$: tiles of computation

We just consider the projection on \mathcal{G}_1 .

 $\Box : tile of communication \\ \boxdot, \boxdot, \blacksquare : tiles of computation$

And more generally:

・ロト ・回ト ・ヨト

We have fractionated computation strips of different level (level 1, level 2, level 3):

A computation strip of level n has the following properties :

- the width is 2ⁿ,
- each rows have computation boxes of the same level,
- there is a computation line every 2^n lines.

We have fractionated computation strips of different level (level 1, level 2, level 3):

A computation strip of level n has the following properties :

- the width is 2ⁿ,
- each rows have computation boxes of the same level,
- there is a computation line every 2^n lines.

We have fractionated computation strips of different level (level 1, level 2, level 3):

A computation strip of level n has the following properties :

- the width is 2ⁿ,
- each rows have computation boxes of the same level,
- there is a computation line every 2^n lines.

Layer 2: A grid and a clock

To initialize the computation we code a clock by finite rules:

The layer 2 can be defined as:

$$\mathsf{T}_{\texttt{Clock}} = \mathsf{FT}_{\mathsf{Count} \cup \mathsf{Consist} \cup \mathsf{Synchro}} \left(\mathsf{Prod} \left(\mathsf{T}_{\texttt{Grid}}, \mathcal{C}^{\mathbb{Z}^2} \right) \right)$$

For a strip of level *n*, this allows to initialize computation every 2^{2^n} .

We use the operation FT on Prod (T_{Clock}, A_M^2) to add computation of M in the strips:

 conditions Init : when the clock = 0, the empty word is written on the comptation zone and the initial state q₀ appears at the beggining (symbol ⊡);

• • • • • • • • • • • •

We use the operation FT on Prod (T_{Clock}, A_M^2) to add computation of M in the strips:

- conditions Init : when the clock = 0, the empty word is written on the comptation zone and the initial state q₀ appears at the beggining (symbol ⊟);
- conditions **Comp** : when the clock \neq 0, we use the rules of $T_{\mathcal{M}}$;

< ロト (同) (三) (三)

We use the operation FT on $Prod\left(T_{\texttt{Clock}},\mathcal{A}_{\mathcal{M}}^{2}\right)$ to add computation of $\mathcal M$ in the strips:

- conditions Init : when the clock = 0, the empty word is written on the comptation zone and the initial state q₀ appears at the beggining (symbol ⊟);
- conditions **Comp** : when the clock \neq 0, we use the rules of $T_{\mathcal{M}}$;
- conditions **Transfer** : if the computation is in a communication zone, the states of the Turing machine is transfered (horizontally and vertically);

イロト イポト イヨト イヨト

We use the operation FT on Prod (T_{Clock}, A_M^2) to add computation of M in the strips:

- conditions Init : when the clock = 0, the empty word is written on the comptation zone and the initial state q₀ appears at the beggining (symbol ⊟);
- conditions **Comp** : when the clock \neq 0, we use the rules of $T_{\mathcal{M}}$;
- conditions **Transfer** : if the computation is in a communication zone, the states of the Turing machine is transfered (horizontally and vertically);
- conditions **Bound** : if the computation want to go out the computation zone, the computation stop.

イロト イポト イヨト イヨト

We use the operation FT on Prod (T_{Clock}, A_M^2) to add computation of M in the strips:

- conditions Init : when the clock = 0, the empty word is written on the comptation zone and the initial state q₀ appears at the beggining (symbol ⊟);
- conditions **Comp** : when the clock $\neq 0$, we use the rules of $T_{\mathcal{M}}$;
- conditions **Transfer** : if the computation is in a communication zone, the states of the Turing machine is transfered (horizontally and vertically);
- conditions **Bound** : if the computation want to go out the computation zone, the computation stop.

For a Turing machine \mathcal{M} , one can consider:

$$\mathsf{T}_{\mathcal{M}} = \mathsf{FT}_{\mathsf{Work}_{\mathcal{M}}}\left(\mathsf{Prod}\left(\mathsf{T}_{\mathtt{Grid}}, \mathcal{A}_{\mathcal{M}}^{\mathbb{Z}^{2}}\right)\right)$$

where $Work_{\mathcal{M}} = Transfer \cup Init \cup Comp \cup Bound$.

1	а	(q _{b+} , ♯)	1	1	а	(q _{b+} , ♯)	↑	1	а	(q _{b+} , ♯)	1	1	
1	↑	Ť	Ŷ	a	$\stackrel{\uparrow}{\leftrightarrow}$	$\stackrel{\uparrow}{\leftrightarrow}$	Ь	(q ∥,∥)	$\stackrel{\uparrow}{\leftrightarrow}$	$\stackrel{\uparrow}{\leftrightarrow}$	#	1	
1	а	(q _{b+} , ♯)	↑	1	а	(q _{b+} , ♯)	↑	↑	а	(q _{b+} , ♯)	↑	1	
а	$\stackrel{\uparrow}{\leftrightarrow}$, ↑ ↔	(q _{b+} , ♯)	$\stackrel{\uparrow}{\leftrightarrow}$, ↑ ↔	$\stackrel{\uparrow}{\leftrightarrow}$	$\stackrel{\uparrow}{\leftrightarrow}$	$\stackrel{\uparrow}{\leftrightarrow}$, ↑ ↔	 ↔	$\stackrel{\uparrow}{\leftrightarrow}$	Ħ	
1	а	(q _{b+} , ♯)	↑	1	a	(q _{b+} , ♯)	↑	↑	a	(q _{b+} , ♯)	1	1	
1	↑	Ť	Ŷ	a	$\stackrel{\uparrow}{\leftrightarrow}$	$\stackrel{\uparrow}{\leftrightarrow}$	Ь	(q ∥, ♯)	$\stackrel{\uparrow}{\leftrightarrow}$	$\stackrel{\uparrow}{\leftrightarrow}$	#	1	
1	а	(q _{b+} , ♯)	↑	1	а	(q _{b+} , ♯)	↑	↑	а	(q _{b+} , ♯)	↑	1	
1	↑	↑	↑	1	↑	↑	↑	↑	↑	↑	↑	1	
1	а	(q _{b+} , ♯)	↑	1	a	(q b+, ♯)	↑	↑	a	(q _{b+} , ♯)	1	1	
1	↑	↑	↑	a	$\stackrel{\uparrow}{\leftrightarrow}$	$\stackrel{\uparrow}{\leftrightarrow}$	(q _{b+} , ♯)	Ħ	$\stackrel{\uparrow}{\leftrightarrow}$	$\stackrel{\uparrow}{\leftrightarrow}$	Ħ	1	
1	(q ₀, ♯)	#	↑		(q 0, ♯)	#			(q 0, ♯)	#		1	(9
(q ₀ , ♯)	\leftrightarrow	\leftrightarrow	#	\leftrightarrow	#								

-

・ロト ・ 日 ・ ・ モ ト ・

Layer 3: Detection of forbidden patterns by $\mathcal{M}_{\texttt{Forbid}}$

 $\bullet~\mathcal{M}_{\texttt{Forbid}}$ generates forbidden patterns for Σ

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Layer 3: Detection of forbidden patterns by $\mathcal{M}_{\texttt{Forbid}}$

- $\bullet~\mathcal{M}_{\texttt{Forbid}}$ generates forbidden patterns for Σ
- \bullet each strip has a responsibility zone and $\mathcal{M}_{\tt Forbid}$ checks if a forbidden pattern appears in this zone;

Layer 3: Detection of forbidden patterns by $\mathcal{M}_{\texttt{Forbid}}$

- $\bullet~\mathcal{M}_{\texttt{Forbid}}$ generates forbidden patterns for Σ
- each strip has a responsibility zone and \mathcal{M}_{Forbid} checks if a forbidden pattern appears in this zone;

 to obtain the value in the layer 1 of a_k, M_{Forbid} need the help of M_{Search}: M_{Forbid} gives the address k and receive a_k

イロト イポト イヨト イヨト

Responsability zones of $\mathcal{M}_{\texttt{Forbid}}$

Responsability zones must scan all the configuration considered, thus responsability zones of same level overlap $(\ldots x_{-2}x_{-1}x_0 \in \mathcal{L}(\Sigma)$ and $x_0x_1x_2\cdots \in \mathcal{L}(\Sigma)$ does not imply that $\ldots x_{-2}x_{-1}x_0x_1x_2\cdots \in \mathcal{L}(\Sigma)$).

The size of a responsability zone of level *n* is $6 \times 4^{n-1}$.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Responsability zones of $\mathcal{M}_{ extsf{Forbid}}$

Responsability zones must scan all the configuration considered, thus responsability zones of same level overlap $(\ldots x_{-2}x_{-1}x_0 \in \mathcal{L}(\Sigma)$ and $x_0x_1x_2\cdots \in \mathcal{L}(\Sigma)$ does not imply that $\ldots x_{-2}x_{-1}x_0x_1x_2\cdots \in \mathcal{L}(\Sigma)$).

The size of a responsability zone of level *n* is $6 \times 4^{n-1}$.

The Turing machine $\mathcal{M}_{\text{Forbid}}$ of a level *n* can ask at $\mathcal{M}_{\text{Search}}$ of the same level or neighbor $\mathcal{M}_{\text{Search}}$ of the same level.

Layer 4: The Turing machine $\mathcal{M}_{\text{Search}}$

We want to construct a Turing machine $\mathcal{M}_{\text{Search}}$ which can comunicate with different levels in view to explore all the configuration cheaked. When you give a strip it is possible to give an address of each boxes in function of

the place in a de-substitute pattern:

The black box address is 231 and the grey box address is 020.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Communication between $\mathcal{M}_{\texttt{Search}}$ of different level

With the alphabet \mathcal{G}_2 , we construct channels of communication:

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Communication between $\mathcal{M}_{\texttt{Search}}$ of different level

With the alphabet \mathcal{G}_2 , we construct channels of communication:

Communication between $\mathcal{M}_{\texttt{Search}}$ of different level

Principle :

- each border of a computation zone (⊟ or ⊟) is in the center of a rectangle of level n;
- for each rectangle of level *n*, there is in connection only with \boxdot and \boxdot of two Turing machines of level n-1

$\mathcal{M}_{\texttt{Search}}$ holds

 \bullet Each $\mathcal{M}_{\texttt{Search}}$ has enough space to code address:

- the size of computation zone of level n is 2ⁿ,
- the size of a responsability zone of level *n* is $6 \times 4^{n-1}$,
- with an alphabet of cardinality 4, we just need n bits.

$\mathcal{M}_{\texttt{Search}}$ holds

 \bullet Each $\mathcal{M}_{\texttt{Search}}$ has enough space to code address:

- the size of computation zone of level n is 2^n ,
- ▶ the size of a responsability zone of level n is 6 × 4ⁿ⁻¹,
- with an alphabet of cardinality 4, we just need n bits.

• Each $\mathcal{M}_{\texttt{Search}}$ can calculate for a given $\mathcal{M}_{\texttt{Forbid}}$:

▶ let t(n) be the time taken by $\mathcal{M}_{\text{Search}}$ to give an answer to a Turing machine $\mathcal{M}_{\text{Forbid}}$ of order *n*. One has

$$t(n) \leq n \times 2^n + 4 \times t(n-1)$$

So $t(n) \leq 2^n \times \mathcal{O}(n^2 2^n)$.

- a clock of level n is initialised every 2^{2ⁿ}
- the time of answer is "absorbed" by the exponential time of the clock.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The final construction

- condition Request : M_F ask M_{Search} the value of a box in the responsability zone and wait the answer
- \bullet condition Forbid : we exclude the configuration when $\mathcal{M}_{\tt Forbid}$ encounter a forbidden pattern

$$\mathbf{T}_{\texttt{Final}} = \mathbf{FT}_{\mathsf{Work}_{\mathcal{M}_{\texttt{Request}}} \cup \mathsf{Work}_{\mathcal{M}_{\texttt{Search}}} \cup \mathsf{Com} \cup \mathsf{Forbid}\left(\mathbf{T}_{\texttt{Layer}}\right).$$

where

$$\mathbf{T}_{\texttt{Layer}} = \mathsf{Prod}\left(\mathsf{FT}_{\mathsf{Align}}\left(\mathcal{A}^{\mathbb{Z}^2}\right), \mathsf{T}_{\texttt{Clock}}, \mathcal{A}_{\mathcal{M}_{\texttt{Forbid}}}^{\mathbb{Z}^2}, \mathcal{A}_{\mathcal{M}_{\texttt{Search}}}^{\mathbb{Z}^2}\right)$$

To obtain Σ :

- \bullet operation Fact to keep only letters of \mathcal{A}_{Σ}
- operation SA to keep only an horizontal line

イロト イポト イヨト イヨ

Application 1: An order on subshifts

A *Turing machine with semi-oracle* \mathcal{L} has the following behaviour: the machine reads an entry pattern p and writes a pattern on the oracle tape, until the state $q_{?}$ is reached. If the pattern written on the oracle tape is in \mathcal{L} then the machine stops, else it keeps on calculating.

We can define the following semi-order:

 $\mathcal{L} \preceq \mathcal{L}' \iff \exists \mathcal{M}^{\mathcal{L}'} \text{ a Turing machine with semi-oracle } \mathcal{L}'$ such that $dom(\mathcal{M}^{\mathcal{L}'}) = \mathcal{L}.$

Theorem

Let ${\boldsymbol{\mathsf{T}}}$ be a strongly specified subshift, one has:

$$\mathcal{C}{\it I}_{{\sf Prod},{\sf Fact},{\sf FT},{\sf SA},{\sf SE}}({\sf T})=\{{\sf T}_{\mathcal{L}}:\mathcal{L}\preceq\mathcal{L}({\sf T})^c\}\,.$$

Application 2: Expansive directions

Let $\Sigma \subset \mathcal{A}^{\mathbb{Z}^2}$ be a subshift. Σ is *expansive* according a line Δ if two configurations $x, y \in \Sigma$ are similar around Δ , then x = y.

Theorem

For an effective subshift, the bounds of expansive cone are exactely given by effective number.

What happen for sofic subshift?

N. Aubrun and M. Sablik ()

Application 3: Effective multidimensional S-adic systems

Let $s_1 : \underbrace{\ast} \to \underbrace{\ast}_{\ast} \underbrace{\ast}_{\ast}$ and $s_2 : \underbrace{\ast} \to \underbrace{\ast}_{\ast} \underbrace{\ast}_{\ast}$ be two square substitutions. Let $(\tau_i)_{\mathbb{N}}$ be an effective sequence of $\{0; 1\}$. Define the effective multidimensionel $\{s_1; s_2\}$ -adic systems following τ :

 $\mathbf{T} = \{ x \in \mathcal{A}^{\mathbb{Z}^2} : \text{admisible patterns are } s_{\tau_0} \circ s_{\tau_1} \circ \cdots \circ s_{\tau_{k-1}} \circ s_{\tau_k}(\square) \}$

Theorem

Effective multidimensional S-adic systems are sofic.

N. Aubrun and M. Sablik ()

Simulation of RE by SFT of dim 2

Application 3: Effective multidimensional S-adic systems

Let $s_1 : \underbrace{\ast} \to \underbrace{\ast}_{\ast} \underbrace{\ast}_{\ast}$ and $s_2 : \underbrace{\ast} \to \underbrace{\ast}_{\ast} \underbrace{\ast}_{\ast}$ be two square substitutions. Let $(\tau_i)_{\mathbb{N}}$ be an effective sequence of $\{0; 1\}$. Define the effective multidimensionel $\{s_1; s_2\}$ -adic systems following τ :

 $\mathbf{T} = \{ x \in \mathcal{A}^{\mathbb{Z}^2} : \text{admisible patterns are } s_{\tau_0} \circ s_{\tau_1} \circ \cdots \circ s_{\tau_{k-1}} \circ s_{\tau_k} (\square) \}$

Theorem

Effective multidimensional S-adic systems are sofic.

N. Aubrun and M. Sablik ()

Simulation of RE by SFT of dim 2

Application 4: Discrete plane

N. Aubrun and M. Sablik ()

Simulation of RE by SFT of dim 2

6 jully 2010 31 / 31

э

・ロト ・日子・ ・ヨト・