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Tilings as dynamical systems

Let A be a finite alphabet and consider the grid 7Z9.

The set AZ* endowed by the product toplogy is compact and Z9 acts by shift on

A7,
vx € A2 and Vn,i € 290" (X)i = Xiyn

A={,H}

The dynamical system (Azd,a) is called the full shift.

Let T C A% be a closed o-invariant subset. The dynamical system (T, o) is
called a subshift.
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Subshifts defined by forbiden patterns

For a finite subset U C Z9 we can consider finite pattern u € AY.

Let F be a set of patterns, we define the subshift where the forbidden patterns are
F:

Tar={xe€ AZd/Vp € F, p does not appear in x} C Az

Some class of subshifts:

o T fullshift (T€FS) & L=Tr=A" F=0

o T subshift of finite type (T € SFT) < 3F finite set of patterns such that,
T=Tr

o T effective subshift (T € RE) < 3F recursive enumerable set of patterns
such that ¥ = Tr.
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Example of SFT of dimension 2

A=
F =

{

(nm
B
I

TA’F: . - .

N. Aubrun and M. Sablik () Simulation of RE by SFT of dim 2 6 jully 2010 3 /31



Example of effective subshifts which are not sofic
Let A= {00, M, W}. Define:

f
T:{D,I}ZZU{
(

Assume there exists ¥ C AZ" such that 7: £ — T '
is a factor and ¥ € SFT of order r.
Let n such that [A|4xr+r* < 20"
We can find two different square of {{J, @} which "
have the same border.

Thus T is effective but not sofic.

An effective subshift is not sofic:
@ if it is minimal with positive entropy
o if for all configurations, the Kolmogorov complexity of every square verify
K(square n x n) > O(n).
@ ... other conditions?
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Operations on subshifts, simulation

S: set of all subshifts (all dimensions, all finite alphabets)

@ Operations on subshifts:
» op:S—S
»orop:SxS—>S

@ Closure of a class of subshifts i/ C S by a set of opérations Op:
Clop(U): smallest subset of S stable by Op which contains /.
o T simule T' by Op if T" € Clop(T) (notation : T <p, T).

C/op(T) = {T/ i <op T}.
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Product operation: Prod

Definition

Let T; C .A,-Zd for any i € [1, n] be n subshifts of the same dimension, define:

Prod (T4,...

,T,,):Tl><~-~><T,,Q(A1><-~-><A,,)Zd.

Y=Tr C{ab, c}ZZ

*

b

*

F:{*
a

a
* [| b

*

Y =Tr c{”

1]

Remark : One has Clpyod(FS) = FS and Clpyod(SFT) = SFT.
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Finite Type operation: FT

Définition
Let T € S, there exists F’ a family of pattern such that T = Tx/.
For a finite family F of pattern, define

FTA(T) = Tror.
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Finite Type operation: FT

Définition
Let T € S, there exists F’ a family of pattern such that T = Tx/.
For a finite family F of pattern, define

FTA(T) = Tror.

Remark : By definition, one has:

Cler(FS)=SFT
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Factor operation: Fact

Definition
Let T C AZ” be a subshift and let 7 : AZ” — BZ be a morphism (continous and
com=moo), Fact, (T) ==(T) C B% is a factor of T.
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Factor operation: Fact

Definition
Let T C AZ” be a subshift and let 7 : AZ” — BZ be a morphism (continous and
com=moo), Fact, (T) ==(T) C B% is a factor of T.

Example :
A=1{0,1,2} et ¥ C A%
¥ = T{00,22,01,12} et 7(0) = 7(2) =0,m(1) =1

= 7(X) = {x € {0,1}%/ blocks of 0 have even length} = T0,1},{102r11:neN}

Remark : SFT C Clg(SFT).
By definition, Clg(SFT)is the class of sofic subshifts. In dimension 1, it is possible
to characterize sofic subshift as subshifts with regular forbidden patterns.
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Projective Subaction: SA

Definition

Let G be a sub-group of Z¢ finitely generated by uy, up, ..., ugy (d' < d). Let
T C A2 be a subshift :

yl'1,...,id/ = Xi1u1+~--+id/ Uyr

d’ . . ’
SA([;(T)Z{ y € A% . 3x € T such that Vi, ..., iqy € Z9 }

.
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Example of projective subaction

Let A ={0,1,2,3,4, a, b}, it is possible to define a SFT T C AZ® such that 0is

a background and finite non Ocomposant have the following form:

o o 0 0 o o 0o o
0 x 1 1 b o
o a4 . 1 1 a 2 o
o : 4 * b 2 )
o : 4 a * 2 .o
o a4 - 3 3 o2 o
0 a 3 3 * 0
o o 0 0 [ o o o

Let G = {(i,i) : i € Z}, we have:

SAG (T) = T{*a"b”'*:n;ém} g SOﬁC.

Proposition

Clsa(RE) = RE
In particular Clsa(Sofic) = Clract,sa(SFT) C RE
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Main result

Theorem (Hochman)

Every effective subshifts of dimension d can be obtained using SA and Fact on a
SFT of dimension d + 2.

C/Fact,SA(S]:T N Sd+2) n Sgd =REN Sgd
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Main result

Theorem (Hochman)

Every effective subshifts of dimension d can be obtained using SA and Fact on a
SFT of dimension d + 2.

C/Fact,SA(S]:T N Sd+2) N Sgd =REN Sgd

Theorem (Aubrun & S. or Durand & Romashchenko & Shen)

Every effective subshifts of dimension d can be obtained using SA and Fact on a
SFT of dimension d + 1.

C/Fact,SA(S-FT N Sd+1) N Ssd =REN Sgd
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Four layers

We want to simulate an effective subshift ¥ C As?Z with a SFT of dimension 2 (it
is easy to generalize to other dimensions).
Different layers:

e Layer 1: a superposition of configuration x € As? (a candidate x € ¥?),

o Layer 2: computation zones used by Mgorpiq €t Msearcn €quiped with a
clock,

o Layer 3: Turing machine Mgqpiqa €enumerates forbidden patterns,

o Layer 4: Turing machine Mgearen checks the configuration x.

Search
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Layer 1: the candidate x € X7

We align all letters of the first layer to obtain the same configuration horizontally.

Finite condition: H
Align:{,a;«ébeAz}

The first layer is constitued by:

TAIign = FTAIign (A%z)

Aim:
We want to eliminate each x which contains forbidden patterns of . J
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We want to code a Turing machine with a SFT

Definition: Turing machine
A Turing machine is M = (Q,T, 4, go, 0, Qr) with:
o Q@ fite set of states; gp € Q initial state;
o [ finite alphabet;
o f ¢ I white symbol
0 0:QxI— QxT x{«, ,—} fonction of transition;
o F C QF set of final states.

The rule 6(q1,x) = (g2, y, <) is coded by:

(q27z) Yy Zz
z (q1,x) | z

~

It is possible to consider the SFT T for a Turing machine M

How initialize the computation?

Problem J
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Initialisation of the computation

If a particular tile appear just one time, it is easy to initialize the computation by
finite type conditions :

But, by compacity, it is impossible to force the presence of a unique tile.
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Layer 2: the grid

The alphabets G; x G, on which the substitution is defined

Ga
BRI OHIoi4
G (¢ R F@ (&
5 B B T T T @
4 51 ®
B R H -

Substitution rules:
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Layer 2: the grid

Four iterations of the substitution sgi4:

L2 S S Ay S P

]

PR APPF e (TP

IO T T e e o et

[P AP | P T

S gy B [

—_—

o

[P P PR CEPrT o TP e P (P PP P P CEPrT o (P e P (TP
LIS | [ P R N T P O O [ Ty o O A T o P
00 0t 0 Tt et 0t 0 L 0 O R W Y O M 0 0 B W A
LIS [ S T S I P T R [ [ A o I [ S 3 T A [ [ I
pnunaniisnussnl inncsuniisncessisncunniinsunanl inncinniisncunnl fanunaniinnussnl SnncnuniisncengiinncunnEinnunnnl innunniinncsny!

[ 3 S A S ey T ) WS )

FIPE TP 0 CPE AP o CIPET O PTCAT )  PEp  PEPre  CPRr T  POPITT 0 PP PP o CIPET ] PTEATE)  TPET T TP T

[ T o D

By the result of Mozes, the fixe point obtained generates a sofic denoted Tgpiq.

16 / 31
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Description of computation zones

We just consider the projection on Gj.

R I L N B

O : tile of communication
B, Hd, W : tiles of computation
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O : tile of communication
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Description of computation zones

We just consider the projection on Gj.

O : tile of communication
B, Hd, W : tiles of computation
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Description of computation zones

And more generally:

Simulation of RE by SFT of dim 2
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Description of computation zones

We have fractionated computation strips of different level (level 1, level 2, level 3)
o the width is 2"

A computation strip of level n has the following properties

@ each rows have computation boxes of the same level,
@ there is a computation line every 2" lines.
o = = = Ha



Description of computation zones

We have fractionated computation strips of different level (level 1, level 2, level 3):
o the width is 27,

A computation strip of level n has the following properties :

@ there is a computation line every 2" lines.
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@ each rows have computation boxes of the same level,
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Description of computation zones

We have fractionated computation strips of different level (level 1, level 2, level 3):
o the width is 27,

A computation strip of level n has the following properties :

@ each rows have computation boxes of the same level,
@ there is a computation line every 2" lines.
o> <3 = E fDac



Layer 2: A grid and a clock

To initialize the computation we code a clock by finite rules:

N o P i Ee N |

The layer 2 can be defined as:
TClock = FTCountUConsistUSynchro (PrOd (TGl‘id7 CZZ))

For a strip of level n, this allows to initialize computation every 22,
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How to simulate a Turing machine with Teiock

We use the operation FT on Prod (Tmock,Af\/t) to add computation of M in the
strips:

@ conditions Init : when the clock = 0, the empty word is written on the
comptation zone and the initial state qo appears at the beggining (symbol B);
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How to simulate a Turing machine with Teiock

We use the operation FT on Prod (Tmock,Af\A) to add computation of M in the
strips:

@ conditions Init : when the clock = 0, the empty word is written on the
comptation zone and the initial state gy appears at the beggining (symbol H);

@ conditions Comp : when the clock # 0, we use the rules of T 4;
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How to simulate a Turing machine with Teiock

We use the operation FT on Prod (Tmock,Af\A) to add computation of M in the
strips:

@ conditions Init : when the clock = 0, the empty word is written on the
comptation zone and the initial state gy appears at the beggining (symbol H);
@ conditions Comp : when the clock # 0, we use the rules of T 4;

@ conditions Transfer : if the computation is in a communication zone, the
states of the Turing machine is transfered (horizontally and vertically);

N. Aubrun and M. Sablik () Simulation of RE by SFT of dim 2 6 jully 2010 19 / 31



How to simulate a Turing machine with Teiock

We use the operation FT on Prod (T01ock7,43\4) to add computation of M in the
strips:

@ conditions Init : when the clock = 0, the empty word is written on the
comptation zone and the initial state gy appears at the beggining (symbol H);
@ conditions Comp : when the clock # 0, we use the rules of T 4;

@ conditions Transfer : if the computation is in a communication zone, the
states of the Turing machine is transfered (horizontally and vertically);

@ conditions Bound : if the computation want to go out the computation
zone, the computation stop.
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How to simulate a Turing machine with Teiock

We use the operation FT on Prod (TmocmA%A) to add computation of M in the
strips:

@ conditions Init : when the clock = 0, the empty word is written on the
comptation zone and the initial state gy appears at the beggining (symbol H);
@ conditions Comp : when the clock # 0, we use the rules of T 4;

@ conditions Transfer : if the computation is in a communication zone, the
states of the Turing machine is transfered (horizontally and vertically);

@ conditions Bound : if the computation want to go out the computation
zone, the computation stop.

For a Turing machine M, one can consider:

TM = FTWorkM (PI‘Od (TGrid7 A%))

where Work ,, = Transfer U Init U Comp U Bound.
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How to simulate a Turing machine with Teiock

T a (a+, 1) T T a (ab+, 1) T T a (g, ) [ T [ T
" T T T a & & b (ay, 1) & 4 # T
T a (ab+, #) T T a (ab+, #) T T a (ab+, #) T T 4
<> > > > End End End End > End <
T a (gb+, #) T T a (ab+, ) T T a (gb+, #) T T -‘
T T T T
T T T + a “ < b (). £) < “ g |1
a (a+, 1) a (ap+, ) a [CEE))
T T T T T
a (av+, ) a (av+, 1) a (a4, 1)
T T T T a <I> <I> (ap+, #) d <I> <I> # T
T (90, #) ] T (g0, 1) [] (90, #) [] T [ (a0
7 I S 3 I N B I M T RN - M
o = = = = 9ac
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Layer 3: Detection of forbidden patterns by Mrorpig

@ MEorbia generates forbidden patterns for ©

o = = E A
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Layer 3: Detection of forbidden patterns by Mrorpig

@ MEorbia generates forbidden patterns for ©

@ each strip has a responsibility zone and Mgqpi4 checks if a forbidden pattern
appears in this zone;
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Layer 3: Detection of forbidden patterns by Megorpig

@ MEorbia generates forbidden patterns for ©

@ each strip has a responsibility zone and Mgqpi4 checks if a forbidden pattern
appears in this zone;

Zone de responsabilité de Mrorbia

wlalal [ —

@ to obtain the value in the layer 1 of ax, Mporpia need the help of Mgearen:
MeEorpiq gives the address k and receive ay
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Responsability zones of Mgorpiqg

Responsability zones must scan all the configuration considered, thus
responsability zones of same level overlap (...x_ox_1x € £(X) and
Xox1X2 - - € L(X) does not imply that ... x_ox_1x9x1%2 - - - € L(X)).

The size of a responsability zone of level nis 6 x 471,
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Responsability zones of Mgorpiqg

Responsability zones must scan all the configuration considered, thus
responsability zones of same level overlap (...x_ax_1x € £(X) and
Xox1X2 - -+ € L(X) does not imply that ...x_ox_1xox1 X2 - - € L(X)).

The size of a responsability zone of level nis 6 x 471,

The Turing machine Mgqpig Of a level n can ask at Mgearen of the same level or
neighbor Mgearen Of the same level.
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Layer 4: The Turing machine Msearcn

We want to construct a Turing machine Mgearcn Which can comunicate with
different levels in view to explore all the configuration cheaked.

When you give a strip it is possible to give an address of each boxes in function of
the place in a de-substitute pattern:

87
0 1 2 3
n—1
o1 2 30 1 2 3|0 1 2 3|0 1 2 3 1
[ [ [ 1 [ [ [m [T sp2

The black box address is 231 and the grey box address is 020.
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Communication between Mggarcn Of different level

With the alphabet G», we construct channels of communication:
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Communication between Mggarcn Of different level

With the alphabet G», we construct channels of communication:

[l F : B e +---1
B it SOt T e B AhR REEE SRR R R R S

i

-
LUESEE
A

EH L
tH
R R
s

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Communication between Mggarcn Of different level

Principle :

@ each border of a computation zone (H or {) is in the center of a rectangle of
level n;

o for each rectangle of level n, there is in connection only with H and H of two
Turing machines of level n — 1
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MSearch h0|d5

1T 11
M M M [ M M M M M M _m m

IlllllllllllIll!]llllllllllllllIIIIIIIIIIIIIIIIII

o Each Mgearen has enough space to code address:

> the size of computation zone of level nis 2",

> the size of a responsability zone of level nis 6 x 4" 1,

» with an alphabet of cardinality 4, we just need n bits.

o = = E A
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MSearch h0|d5

(T T
——— E—
|l||l|||||l|||||||||||||_§||||||||||||||||l|||l||l||l||l||l||l|||||||||||||||

o Each Mgearen has enough space to code address:
> the size of computation zone of level nis 2",
> the size of a responsability zone of level nis 6 x 4" 1,
» with an alphabet of cardinality 4, we just need n bits.
@ Each Mggaren can calculate for a given Mgorpia:

> let t(n) be the time taken by Msgearcn to give an answer to a Turing machine
Meorbia Of order n. One has

t(n) <nx2"+4xt(n—1)

So t(n) < 2" x O(n*2").
» a clock of level n is initialised every 22
> the time of answer is "absorbed" by the exponential time of the clock.
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The final construction

@ condition Request : Mg ask Msearch the value of a box in the respnsability
zone and wait the answer

@ condition Forbid : we exclude the configuration when Mg,.1,:4 encounter a
forbidden pattern

Trina1 = FTworkMRequest UWork g, ,p o, UComUForbid (TLayer) .

where
TLayer = PI’Od (FTAlign ("4 ) TClock7 AMForbld’ AMSearch)

To obtain X :
@ operation Fact to keep only letters of Ay
@ operation SA to keep only an horizontal line
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Application 1: An order on subshifts

A Turing machine with semi-oracle L has the following behaviour: the machine
reads an entry pattern p and writes a pattern on the oracle tape, until the state g»
is reached. If the pattern written on the oracle tape is in £ then the machine
stops, else it keeps on calculating.

We can define the following semi-order:

L£=L «—3IM-E a Turing machine with semi-oracle £’
such that dom(M*') = L.

Theorem
Let T be a strongly specified subshift, one has:

Clrod,Fact, FT.sA,se(T) = {Tz : L < L(T)¢}.
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Application 2: Expansive directions

Let ¥ C A% be a subshift. ¥ is expansive according a line A if two
configurations x, y € ¥ are similar around A, then x = y.

Theorem

For an effective subshift, the bounds of expansive cone are exactely given by
effective number.

What happen for sofic subshift?
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Application 3: Effective multidimensional S-adic systems
Let 51 : — EE and s, : — : be two square substitutions.

Let (77)n be an effective sequence of {0;1}.

Define the effective multidimensionel {s;; s, }-adic systems following 7:

T={xe¢ A% . admisible patterns are s, 0 s, o---os; os; ()}

Lt £ dd bt g g
D ES60 b daies
ERTE EpTh S d@Tee
B £ 60 b hd da g

Theorem
Effective multidimensional S-adic systems are sofic.
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Application 3: Effective multidimensional S-adic systems
Let s : — EE and s, : — : be two square substitutions.

Let (77)n be an effective sequence of {0;1}.

Define the effective multidimensionel {s;; s, }-adic systems following 7:

T={xe¢ A% admisible patterns are s,, 0 s, o---os;  os; ()}

[ L
[ i
[ L
[ L
[ L
[ i
(H L
[ L

| Ny W [y [ Ny U [y Ny Ny | Ny |

[
[
[
[
[
[
[
[

bl s Bl b dh
g gy
ol e e ol
bbb b b
s s s sy

A1l O
epp=llsy
A O
Al O
] O
] O
A1 [
] O

ol s les bl
[ NNy Ny Ny [ N [y [y [ Ny Ny |
i ralralrir—

H1H
1
15
Epps
15
1
H 1
Eaps

| s s 1
oI e e T e B e B e e
ol el ch
s

sl
! |
sl
] | C
sl
alill
] | O
]| O

5SS N LS S S A N RS

&
&
&
i
1
1
H
&

ol s H b H o
iy
e A =l —

Theorem J

Effective multidimensional S-adic systems are sofic.
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Application 4: Discrete plane

o = = E A
N. Aubrun and M. Sablik () Simulation of RE by SFT of dim 2



	Sub-shifts
	Définitions
	Four dynamical operations on subshifts

	Main result
	Simulation of effective subshifts
	Four layers
	Layer 1: the candidate x?
	Layer 2: the grid
	Layer 3: The Turing machine MForbid
	Layer 4: The Turing machine MSearch
	The final construction

	Applications
	Application 1: An order on subshifts
	Application 2: Expansive directions
	Application 3: Effective multidimensional S-adic systems
	Application 4: Discrete plane


