Some progress on Lipschitz equivalence of self-similar sets

Huo-Jun Ruan, Zhejiang University

(Joint work with Hui Rao, Yang Wang and Ya-Min Yang)

Sun Yat Sen University – July 4-11, 2010

Outline

- Gap sequence of fractal sets (based on the joint work with Hui Rao and Ya-Ming Yang)
 - Definition of gap sequence in \mathbb{R}^d
 - Gap sequence is a Lipschitz invariant
 - Gap sequence and box dimension
- Algebraic properties of contractive ratios of dust-like self-similar sets (based on the joint work with Hui Rao and Yang Wang)
 - Fundamental work of Falconer-Marsh'1992
 - Dust-like self-similar sets with two branches, and related results

Outline

- Gap sequence of fractal sets (based on the joint work with Hui Rao and Ya-Ming Yang)
 - Definition of gap sequence in \mathbb{R}^d
 - Gap sequence is a Lipschitz invariant
 - Gap sequence and box dimension
- Algebraic properties of contractive ratios of dust-like self-similar sets (based on the joint work with Hui Rao and Yang Wang)
 - Fundamental work of Falconer-Marsh'1992
 - Dust-like self-similar sets with two branches, and related results

Part I

Gap sequence of fractal sets

- An open interval]a,b[is said to be a gap of E if $a,b\in E$ but $]a,b[\cap E=\emptyset.$
- The set of gaps of E is a collection of open intervals and it is at most countable.
- We are interested in the lengths of these intervals, let us list them in a non-increasing order, we shall call this (finite or infinite) sequence of positive reals the gap sequence of E.

For example, the gap sequence of Cantor middle-third set $\mathcal C$ is

$$1/3, 1/9, 1/9, 1/27, 1/27, 1/27, 1/27, 1/81, \dots$$

- An open interval]a,b[is said to be a gap of E if $a,b\in E$ but $]a,b[\cap E=\emptyset.$
- The set of gaps of E is a collection of open intervals and it is at most countable.
- We are interested in the lengths of these intervals, let us list them in a non-increasing order, we shall call this (finite or infinite) sequence of positive reals the gap sequence of E.

For example, the gap sequence of Cantor middle-third set $\mathcal C$ is

 $1/3, 1/9, 1/9, 1/27, 1/27, 1/27, 1/27, 1/81, \dots$

- An open interval]a,b[is said to be a gap of E if $a,b\in E$ but $]a,b[\cap E=\emptyset.$
- The set of gaps of E is a collection of open intervals and it is at most countable.
- We are interested in the lengths of these intervals, let us list them in a non-increasing order, we shall call this (finite or infinite) sequence of positive reals the gap sequence of E.

For example, the gap sequence of Cantor middle-third set $\mathcal C$ is

 $1/3, 1/9, 1/9, 1/27, 1/27, 1/27, 1/27, 1/81, \dots$

- An open interval]a,b[is said to be a gap of E if $a,b\in E$ but $]a,b[\cap E=\emptyset.$
- The set of gaps of E is a collection of open intervals and it is at most countable.
- We are interested in the lengths of these intervals, let us list them in a non-increasing order, we shall call this (finite or infinite) sequence of positive reals the gap sequence of E.

For example, the gap sequence of Cantor middle-third set $\mathcal C$ is

$$1/3, 1/9, 1/9, 1/27, 1/27, 1/27, 1/27, 1/81, \dots$$

...

Figure: Cantor middle-third set C

The idea of gap sequence in one dimension has already been used widely to characterize fractal properties of E, especially when E has zero Lebesgue measure.

- Besicovitch-Tayor (1954): Hausdorff dimension
- Tricot (1981): twelve definitions of fractal dimensions
- Lapidus-Pomerance (1993), Lapidus-Maier (1995),
 Falconer (1995): Minkowski measurability

Our motivation

- Generalize the notion of gap sequence to higher dimensions.
- Apply it: Lipschitz equivalence, box dimension.

The idea of gap sequence in one dimension has already been used widely to characterize fractal properties of E, especially when E has zero Lebesgue measure.

- Besicovitch-Tayor (1954): Hausdorff dimension
- Tricot (1981): twelve definitions of fractal dimensions
- Lapidus-Pomerance (1993), Lapidus-Maier (1995),
 Falconer (1995): Minkowski measurability

Our motivation

- Generalize the notion of gap sequence to higher dimensions.
- Apply it: Lipschitz equivalence, box dimension.

- $C_0 = [0, 1]$ is an interval.
- The number of intervals of C_1 : 2. Distance of two intervals: 1/3.
- The number of intervals of C_2 : 4. Shortest distance of two distinct intervals: 1/9.
- The number of intervals of C_3 : 8. Shortest distance of two distinct intervals: 1/27

Gap sequence: $\underbrace{1/3}_{2-1}, \underbrace{1/9, 1/9}_{4-2}, \underbrace{1/27, 1/27, 1/27, 1/27, 1/27, 1/81, \dots}_{8-4}, \underbrace{1/3}_{8-4}, \underbrace{1/3}_{1/2}, \underbrace{1$

- $C_0 = [0, 1]$ is an interval.
- The number of intervals of C₁: 2.
 Distance of two intervals: 1/3.
- The number of intervals of C_2 : 4. Shortest distance of two distinct intervals: 1/9.
- The number of intervals of C_3 : 8. Shortest distance of two distinct intervals: 1/27

Gap sequence: 1/3, 1/9, 1/9, 1/27, 1/27, 1/27, 1/27, 1/81, . . .

- $C_0 = [0, 1]$ is an interval.
- The number of intervals of C_1 : 2. Distance of two intervals: 1/3.
- The number of intervals of C_2 : 4. Shortest distance of two distinct intervals: 1/9.
- The number of intervals of C_3 : 8.

- $C_0 = [0, 1]$ is an interval.
- The number of intervals of C₁: 2.
 Distance of two intervals: 1/3.
- The number of intervals of C₂: 4.
 Shortest distance of two distinct intervals: 1/9.
- The number of intervals of C₃: 8.
 Shortest distance of two distinct intervals: 1/27.

Sap sequence. $\frac{1}{3}, \frac{1}{9}, \frac{1}{9}, \frac{1}{127}, \frac$

- $C_0 = [0, 1]$ is an interval.
- The number of intervals of C₁: 2.
 Distance of two intervals: 1/3.
- The number of intervals of C₂: 4.
 Shortest distance of two distinct intervals: 1/9.
- The number of intervals of C₃: 8.
 Shortest distance of two distinct intervals: 1/27.

Gap sequence:
$$\underbrace{1/3}_{2-1}$$
, $\underbrace{1/9, 1/9}_{4-2}$, $\underbrace{1/27, 1/27, 1/27, 1/27}_{8-4}$, $1/81, \dots$

- A compact subset E of \mathbb{R}^d is said to be δ -connected if for any $x, y \in E$, there is a δ -chain connecting x and y. That is, there is a sequence $\{x_1 = x, x_2, \dots, x_{n-1}, x_n = y\} \subset E$, such that $|x_{j+1} x_j| \le \delta$ holds for $1 \le j \le n 1$.
- We call F ⊂ E a δ-connected component of E if F is δ-connected, but for any F ⊊ F' ⊂ E, F' is not δ-connected.
- Let us denote by $h_E(\delta)$, or $h(\delta)$ for short, the number of δ -connected components of E, which is finite by the compactness of E.

- A compact subset E of \mathbb{R}^d is said to be δ -connected if for any $x,y\in E$, there is a δ -chain connecting x and y. That is, there is a sequence $\{x_1=x,x_2,\ldots,x_{n-1},x_n=y\}\subset E$, such that $|x_{j+1}-x_j|\leq \delta$ holds for $1\leq j\leq n-1$.
- We call F ⊂ E a δ-connected component of E if F is δ-connected, but for any F ⊊ F' ⊂ E, F' is not δ-connected.
- Let us denote by $h_E(\delta)$, or $h(\delta)$ for short, the number of δ -connected components of E, which is finite by the compactness of E.

- A compact subset E of \mathbb{R}^d is said to be δ -connected if for any $x, y \in E$, there is a δ -chain connecting x and y. That is, there is a sequence $\{x_1 = x, x_2, \dots, x_{n-1}, x_n = y\} \subset E$, such that $|x_{i+1} x_i| \le \delta$ holds for $1 \le j \le n 1$.
- We call F ⊂ E a δ-connected component of E if F is δ-connected, but for any F ⊊ F' ⊂ E, F' is not δ-connected.
- Let us denote by h_E(δ), or h(δ) for short, the number of δ-connected components of E, which is finite by the compactness of E.

...

Figure: Cantor middle-third set C

Figure: The function h of C.

Figure: The function h of $C \times C$.

- It can be shown that $h(\delta): \mathbb{R}^+ \to \mathbb{Z}^+$ is a non-increasing function, is locally constant except at the neighborhoods of discontinuous points, and is right continuous.
- Let us denote by $\{a_k\}_{k\geq 1}$ the discontinuous points (or jump points) of h in decreasing order.
- We call $j_k = h(a_{k+1}) h(a_k)$ the multiplicity of a_k and define the gap sequence of E to be the sequence:

$$\underbrace{a_1,\ldots,a_1}_{j_1},\underbrace{a_2,\ldots,a_2}_{j_2},\ldots,\underbrace{a_m,\ldots,a_m}_{j_m},\ldots$$

In the following, we will always assume:

- It can be shown that $h(\delta): \mathbb{R}^+ \to \mathbb{Z}^+$ is a non-increasing function, is locally constant except at the neighborhoods of discontinuous points, and is right continuous.
- Let us denote by $\{a_k\}_{k\geq 1}$ the discontinuous points (or jump points) of h in decreasing order.
- We call $j_k = h(a_{k+1}) h(a_k)$ the multiplicity of a_k and define the gap sequence of E to be the sequence:

$$\underbrace{a_1,\ldots,a_1}_{j_1},\underbrace{a_2,\ldots,a_2}_{j_2},\ldots,\underbrace{a_m,\ldots,a_m}_{j_m},\ldots$$

In the following, we will always assume:

- It can be shown that $h(\delta): \mathbb{R}^+ \to \mathbb{Z}^+$ is a non-increasing function, is locally constant except at the neighborhoods of discontinuous points, and is right continuous.
- Let us denote by $\{a_k\}_{k\geq 1}$ the discontinuous points (or jump points) of h in decreasing order.
- We call $j_k = h(a_{k+1}) h(a_k)$ the multiplicity of a_k and define the gap sequence of E to be the sequence:

$$\underbrace{a_1,\ldots,a_1}_{j_1},\underbrace{a_2,\ldots,a_2}_{j_2},\ldots,\underbrace{a_m,\ldots,a_m}_{j_m},\ldots$$

In the following, we will always assume:

- It can be shown that $h(\delta): \mathbb{R}^+ \to \mathbb{Z}^+$ is a non-increasing function, is locally constant except at the neighborhoods of discontinuous points, and is right continuous.
- Let us denote by $\{a_k\}_{k\geq 1}$ the discontinuous points (or jump points) of h in decreasing order.
- We call $j_k = h(a_{k+1}) h(a_k)$ the multiplicity of a_k and define the gap sequence of E to be the sequence:

$$\underbrace{a_1,\ldots,a_1}_{j_1},\underbrace{a_2,\ldots,a_2}_{j_2},\ldots,\underbrace{a_m,\ldots,a_m}_{j_m},\ldots$$

In the following, we will always assume:

Let *E* and *F* be two compact subsets of \mathbb{R}^d . Let *f* be a function from *E* to *F*.

• The Lipschitz constant of f is defined by

$$M(f) = \sup_{x_1, x_2 \in E; \ x_1 \neq x_2} \left| \frac{f(x_1) - f(x_2)}{x_1 - x_2} \right|.$$

- The map f is said to be Lipschitz if $M(f) < +\infty$.
- f is said to be bi-Lipschitz if f is a bijection and f, f^{-1} are both Lipschitz.
- E and F are said to be Lipschitz equivalent if there exists a bi-Lipschitz function from E to F.

Let *E* and *F* be two compact subsets of \mathbb{R}^d . Let *f* be a function from *E* to *F*.

The Lipschitz constant of f is defined by

$$M(f) = \sup_{x_1, x_2 \in E; \ x_1 \neq x_2} \left| \frac{f(x_1) - f(x_2)}{x_1 - x_2} \right|.$$

- The map f is said to be Lipschitz if $M(f) < +\infty$.
- f is said to be bi-Lipschitz if f is a bijection and f, f^{-1} are both Lipschitz.
- E and F are said to be Lipschitz equivalent if there exists a bi-Lipschitz function from E to F.

Let *E* and *F* be two compact subsets of \mathbb{R}^d . Let *f* be a function from *E* to *F*.

The Lipschitz constant of f is defined by

$$M(f) = \sup_{x_1, x_2 \in E; \ x_1 \neq x_2} \left| \frac{f(x_1) - f(x_2)}{x_1 - x_2} \right|.$$

- The map f is said to be Lipschitz if $M(f) < +\infty$.
- f is said to be bi-Lipschitz if f is a bijection and f, f^{-1} are both Lipschitz.
- E and F are said to be Lipschitz equivalent if there exists a bi-Lipschitz function from E to F.

Let *E* and *F* be two compact subsets of \mathbb{R}^d . Let *f* be a function from *E* to *F*.

The Lipschitz constant of f is defined by

$$M(f) = \sup_{x_1, x_2 \in E; \ x_1 \neq x_2} \left| \frac{f(x_1) - f(x_2)}{x_1 - x_2} \right|.$$

- The map f is said to be Lipschitz if $M(f) < +\infty$.
- f is said to be bi-Lipschitz if f is a bijection and f, f^{-1} are both Lipschitz.
- E and F are said to be Lipschitz equivalent if there exists a bi-Lipschitz function from E to F.

Let *E* and *F* be two compact subsets of \mathbb{R}^d . Let *f* be a function from *E* to *F*.

• The Lipschitz constant of f is defined by

$$M(f) = \sup_{x_1, x_2 \in E; \ x_1 \neq x_2} \left| \frac{f(x_1) - f(x_2)}{x_1 - x_2} \right|.$$

- The map f is said to be Lipschitz if $M(f) < +\infty$.
- f is said to be bi-Lipschitz if f is a bijection and f, f^{-1} are both Lipschitz.
- E and F are said to be Lipschitz equivalent if there exists a bi-Lipschitz function from E to F.

- Falconer-Marsh'1989: Lipschitz equivalence of quasi-self-similar circles.
- Falconer-Marsh'1992: dust-like self-similar sets.
- Wen-Xi'2003: self-similar arcs.
- Xi'2004: dust-like self-conformal sets.
- Rao-R-Xi'2006: just touching self-similar sets and answering an open question of David-Semmes'1997.

- The dimensions of fractal sets
- Falconer-Marsh'1992: A free group associated with a dust-like self-similar set.

- Falconer-Marsh'1989: Lipschitz equivalence of quasi-self-similar circles.
- Falconer-Marsh'1992: dust-like self-similar sets.
- Wen-Xi'2003: self-similar arcs.
- Xi'2004: dust-like self-conformal sets.
- Rao-R-Xi'2006: just touching self-similar sets and answering an open question of David-Semmes'1997.

- The dimensions of fractal sets.
- Falconer-Marsh'1992: A free group associated with a dust-like self-similar set.

- Falconer-Marsh'1989: Lipschitz equivalence of quasi-self-similar circles.
- Falconer-Marsh'1992: dust-like self-similar sets.
- Wen-Xi'2003: self-similar arcs.
- Xi'2004: dust-like self-conformal sets.
- Rao-R-Xi'2006: just touching self-similar sets and answering an open question of David-Semmes'1997.

- The dimensions of fractal sets.
- Falconer-Marsh'1992: A free group associated with a dust-like self-similar set.

- Falconer-Marsh'1989: Lipschitz equivalence of quasi-self-similar circles.
- Falconer-Marsh'1992: dust-like self-similar sets.
- Wen-Xi'2003: self-similar arcs.
- Xi'2004: dust-like self-conformal sets.
- Rao-R-Xi'2006: just touching self-similar sets and answering an open question of David-Semmes'1997.

- The dimensions of fractal sets.
- Falconer-Marsh'1992: A free group associated with a dust-like self-similar set.

Gap sequence and Lipschitz equivalence

Our result: gap sequence is a Lipschitz invariant.

Theorem (Rao-R-Yang'2008)

Let E and F be compact subsets of \mathbb{R}^d with gap sequences $\{\alpha_m\}_{m\geq 1}$ and $\{\beta_m\}_{m\geq 1}$ respectively. If f is a bijection from E to F, then

$$M(f) \ge \sup_{m} \frac{\beta_m}{\alpha_m}.$$

Consequently, if E and F are Lipschitz equivalent, then $\exists 0 < c_1 < c_2 < +\infty$ such that $c_1 < \beta_m/\alpha_m < c_2$ holds for all m.

- If the last condition is satisfied, then we say two infinite real sequence $\{\alpha_m\}$ and $\{\beta_m\}$ are equivalent.
- Any Cantor set is associated with an equivalence class containing its gap sequence, which is a Lipschitz invarian

Gap sequence and Lipschitz equivalence

Our result: gap sequence is a Lipschitz invariant.

Theorem (Rao-R-Yang'2008)

Let E and F be compact subsets of \mathbb{R}^d with gap sequences $\{\alpha_m\}_{m\geq 1}$ and $\{\beta_m\}_{m\geq 1}$ respectively. If f is a bijection from E to F, then

$$M(f) \geq \sup_{m} \frac{\beta_m}{\alpha_m}.$$

Consequently, if E and F are Lipschitz equivalent, then $\exists 0 < c_1 < c_2 < +\infty$ such that $c_1 < \beta_m/\alpha_m < c_2$ holds for all m.

- If the last condition is satisfied, then we say two infinite real sequence $\{\alpha_m\}$ and $\{\beta_m\}$ are equivalent.
- Any Cantor set is associated with an equivalence class containing its gap sequence, which is a Lipschitz invariant.

Gap sequence and Lipschitz equivalence

Our result: gap sequence is a Lipschitz invariant.

Theorem (Rao-R-Yang'2008)

Let E and F be compact subsets of \mathbb{R}^d with gap sequences $\{\alpha_m\}_{m\geq 1}$ and $\{\beta_m\}_{m\geq 1}$ respectively. If f is a bijection from E to F, then

$$M(f) \geq \sup_{m} \frac{\beta_m}{\alpha_m}.$$

Consequently, if E and F are Lipschitz equivalent, then $\exists 0 < c_1 < c_2 < +\infty$ such that $c_1 < \beta_m/\alpha_m < c_2$ holds for all m.

- If the last condition is satisfied, then we say two infinite real sequence $\{\alpha_m\}$ and $\{\beta_m\}$ are equivalent.
- Any Cantor set is associated with an equivalence class containing its gap sequence, which is a Lipschitz invariant.

Gap sequence and Lipschitz equivalence

Our result: gap sequence is a Lipschitz invariant.

Theorem (Rao-R-Yang'2008)

Let E and F be compact subsets of \mathbb{R}^d with gap sequences $\{\alpha_m\}_{m\geq 1}$ and $\{\beta_m\}_{m\geq 1}$ respectively. If f is a bijection from E to F, then

$$M(f) \ge \sup_{m} \frac{\beta_m}{\alpha_m}.$$

Consequently, if E and F are Lipschitz equivalent, then $\exists 0 < c_1 < c_2 < +\infty$ such that $c_1 < \beta_m/\alpha_m < c_2$ holds for all m.

- If the last condition is satisfied, then we say two infinite real sequence $\{\alpha_m\}$ and $\{\beta_m\}$ are equivalent.
- Any Cantor set is associated with an equivalence class containing its gap sequence, which is a Lipschitz invariant.

Theorem (Tricot'1981)

Let E be a compact subset of \mathbb{R} with Lebesgue measure 0 and $\{\alpha_m\}_{m\geq 1}$ be the gap sequence of E, then

$$\overline{\dim}_{B}(E) = \limsup_{m \to \infty} \frac{\log m}{-\log \alpha_{m}}.$$
 (1)

Proposition (Rao-R-Yang'2008)

Let E be a compact set of \mathbb{R}^d , then

$$\overline{\dim}_{B}(E) \geq \limsup_{m \to \infty} \frac{\log m}{-\log \alpha_{m}}.$$
 (2)

The inequality in formula (2) cannot be replaced by equality for higher dimensional case, if we only require that the Lebesgue measure of E equals 0.

Example

- 1. Let $E = \mathcal{C} \times [0, 1]$. Then $\overline{\dim}_B(E) = 1 + \frac{\log 2}{\log 3}$, while $\limsup_{m \to \infty} \frac{-\log m}{\log 3} = \frac{\log 2}{\log 3}$.
- 2. Let E be a Cantor set in [0,1] with gap sequence $\{2^{-(m+1)}: m \ge 1\}$. Then $\mathcal{L}^1(E) = 1/2$. Let us embed E into \mathbb{R}^2 , then $\overline{\dim}_B(E) = 1$, while $\limsup_{m \to \infty} \frac{\log m}{-\log n} = 0$.

Proposition (Rao-R-Yang'2008)

Let E be a compact set of \mathbb{R}^d , then

$$\overline{\dim}_{B}(E) \geq \limsup_{m \to \infty} \frac{\log m}{-\log \alpha_{m}}.$$
 (2)

The inequality in formula (2) cannot be replaced by equality for higher dimensional case, if we only require that the Lebesgue measure of E equals 0.

Example

1. Let
$$E = \mathcal{C} \times [0, 1]$$
. Then $\overline{\dim}_B(E) = 1 + \frac{\log 2}{\log 3}$, while $\limsup_{m \to \infty} \frac{\log m}{m} = \frac{\log 2}{2}$.

2. Let *E* be a Cantor set in [0, 1] with gap sequence $\{2^{-(m+1)}: m \ge 1\}$. Then $\mathcal{L}^1(E) = 1/2$. Let us embed *E* into

 \mathbb{R}^2 , then $\overline{\dim}_B(E)=1$, while $\limsup_{m\to\infty}\frac{\log m}{-\log \alpha_m}=0$.

Proposition (Rao-R-Yang'2008)

Let E be a compact set of \mathbb{R}^d , then

$$\overline{\dim}_{B}(E) \geq \limsup_{m \to \infty} \frac{\log m}{-\log \alpha_{m}}.$$
 (2)

The inequality in formula (2) cannot be replaced by equality for higher dimensional case, if we only require that the Lebesgue measure of E equals 0.

Example

1. Let
$$E = \mathcal{C} \times [0, 1]$$
. Then $\overline{\dim}_B(E) = 1 + \frac{\log 2}{\log 3}$, while $\limsup_{m \to \infty} \frac{\log m}{-\log \alpha_m} = \frac{\log 2}{\log 3}$.

2. Let E be a Cantor set in [0,1] with gap sequence $\{2^{-(m+1)}: m \geq 1\}$. Then $\mathcal{L}^1(E) = 1/2$. Let us embed E into \mathbb{R}^2 , then $\overline{\dim}_B(E) = 1$, while $\limsup_{m \to \infty} \frac{\log m}{-\log \alpha_m} = 0$.

Proposition (Rao-R-Yang'2008)

Let E be a compact set of \mathbb{R}^d , then

$$\overline{\dim}_{B}(E) \geq \limsup_{m \to \infty} \frac{\log m}{-\log \alpha_{m}}.$$
 (2)

The inequality in formula (2) cannot be replaced by equality for higher dimensional case, if we only require that the Lebesgue measure of E equals 0.

Example

- 1. Let $E = \mathcal{C} \times [0,1]$. Then $\overline{\dim}_B(E) = 1 + \frac{\log 2}{\log 3}$, while $\limsup_{m \to \infty} \frac{\log m}{-\log \alpha_m} = \frac{\log 2}{\log 3}$.
- 2. Let E be a Cantor set in [0,1] with gap sequence $\{2^{-(m+1)}: m \ge 1\}$. Then $\mathcal{L}^1(E) = 1/2$. Let us embed E into \mathbb{R}^2 , then $\overline{\dim}_B(E) = 1$, while $\limsup_{m \to \infty} \frac{\log m}{-\log \alpha_m} = 0$.

- We will show that for a certain class of fractal sets in \mathbb{R}^d , dimension formula (1) still holds.
- $E(\delta) = \{x \in \mathbb{R}^d : \inf_{y \in E} |x y| \le \delta\}$, the δ -parallel body of E.

Theorem (Rao-R-Yang'2008)

Let *E* be a compact subset of \mathbb{R}^d . If there exist a constant *C* and a sequence $\{\delta_k\}_{k\geq 1}$ tending to 0 such that

- (a). $\lim_{k \to \infty} \frac{\log \delta_k}{\log \delta_{k+1}} = 1,$
- (b). every connected component of $E(\delta_k)$ has Lebesgue measure less than $C\delta_k^d$,

then dimension formula (1) holds.

• Basically, **(b)** requires that δ_k -components of E are small.

- We will show that for a certain class of fractal sets in \mathbb{R}^d , dimension formula (1) still holds.
- $E(\delta) = \{x \in \mathbb{R}^d : \inf_{y \in E} |x y| \le \delta\}$, the δ -parallel body of E.

Theorem (Rao-R-Yang'2008)

Let *E* be a compact subset of \mathbb{R}^d . If there exist a constant *C* and a sequence $\{\delta_k\}_{k\geq 1}$ tending to 0 such that

- (a). $\liminf_{k\to\infty} \frac{\log \delta_k}{\log \delta_{k+1}} = 1$,
- (b). every connected component of $E(\delta_k)$ has Lebesgue measure less than $C\delta_k^d$,

then dimension formula (1) holds.

• Basically, **(b)** requires that δ_k -components of E are small.

- We will show that for a certain class of fractal sets in \mathbb{R}^d , dimension formula (1) still holds.
- $E(\delta) = \{x \in \mathbb{R}^d : \inf_{y \in E} |x y| \le \delta\}$, the δ -parallel body of E.

Theorem (Rao-R-Yang'2008)

Let E be a compact subset of \mathbb{R}^d . If there exist a constant C and a sequence $\{\delta_k\}_{k\geq 1}$ tending to 0 such that

(a).
$$\liminf_{k\to\infty} \frac{\log \delta_k}{\log \delta_{k+1}} = 1$$
,

(b). every connected component of $E(\delta_k)$ has Lebesgue measure less than $C\delta_k^d$,

then dimension formula (1) holds.

• Basically, **(b)** requires that δ_k -components of E are small.

Some fractals such that dimension formula (1) holds:

- E is a self-similar set satisfying strong separation condition.
- E belongs to a certain class of McMullen self-affine sets.

Part II

Algebraic properties of contraction ratios of dust-like self-similar sets

- Let K be a self-similar set determined by the IFS $\{f_1, \ldots, f_m\}$, where each f_j is a similarity on \mathbb{R}^d with contractive ratio ρ_j . We call K a self-similar set with contraction vector (ρ_1, \ldots, ρ_m) .
- We write c.v. for contraction vector.
- Example. Cantor middle-third set is a self-similar set with c.v. (1/3, 1/3).
- We say K is dust-like if $f_i(K) \cap f_j(K) = \emptyset$ for any $i \neq j$.
- For dust-like self-similar set K with c.v. (ρ_1, \ldots, ρ_m) , we have $\dim_H K = s$, where $\sum \rho_i^s = 1$.

- Let K be a self-similar set determined by the IFS $\{f_1, \ldots, f_m\}$, where each f_j is a similarity on \mathbb{R}^d with contractive ratio ρ_j . We call K a self-similar set with contraction vector (ρ_1, \ldots, ρ_m) .
- We write c.v. for contraction vector.
- Example. Cantor middle-third set is a self-similar set with c.v. (1/3, 1/3).
- We say K is dust-like if $f_i(K) \cap f_i(K) = \emptyset$ for any $i \neq j$.
- For dust-like self-similar set K with c.v. (ρ_1, \ldots, ρ_m) , we have $\dim_H K = s$, where $\sum \rho_j^s = 1$.

- Let K be a self-similar set determined by the IFS $\{f_1, \ldots, f_m\}$, where each f_j is a similarity on \mathbb{R}^d with contractive ratio ρ_j . We call K a self-similar set with contraction vector (ρ_1, \ldots, ρ_m) .
- We write c.v. for contraction vector.
- Example. Cantor middle-third set is a self-similar set with c.v. (1/3, 1/3).
- We say K is dust-like if $f_i(K) \cap f_j(K) = \emptyset$ for any $i \neq j$.
- For dust-like self-similar set K with c.v. (ρ_1, \ldots, ρ_m) , we have $\dim_H K = s$, where $\sum \rho_j^s = 1$.

- Let K be a self-similar set determined by the IFS $\{f_1, \ldots, f_m\}$, where each f_j is a similarity on \mathbb{R}^d with contractive ratio ρ_j . We call K a self-similar set with contraction vector (ρ_1, \ldots, ρ_m) .
- We write c.v. for contraction vector.
- Example. Cantor middle-third set is a self-similar set with c.v. (1/3, 1/3).
- We say K is dust-like if $f_i(K) \cap f_j(K) = \emptyset$ for any $i \neq j$.
- For dust-like self-similar set K with c.v. (ρ_1, \ldots, ρ_m) , we have $\dim_H K = s$, where $\sum \rho_j^s = 1$.

- For any c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}_d(\overrightarrow{\rho}) := \mathcal{D}_d(\rho_1, \dots, \rho_m)$ to be all dust-like self-similar sets with c.v. (ρ_1, \dots, ρ_m) in \mathbb{R}^d .
- Throughout the talk, the dimension *d* will be implicit.
- We write $\mathcal{D}(\overrightarrow{\rho})$ for $\mathcal{D}_d(\overrightarrow{\rho})$.
- We define $\dim_H \mathcal{D}(\overrightarrow{\rho}) = \dim_H E$, for some (then for all) $E \in \mathcal{D}(\overrightarrow{\rho})$.

- For any c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}_d(\overrightarrow{\rho}) := \mathcal{D}_d(\rho_1, \dots, \rho_m)$ to be all dust-like self-similar sets with c.v. (ρ_1, \dots, ρ_m) in \mathbb{R}^d .
- Throughout the talk, the dimension d will be implicit.
- We write $\mathcal{D}(\overrightarrow{\rho})$ for $\mathcal{D}_d(\overrightarrow{\rho})$.
- We define $\dim_H \mathcal{D}(\overrightarrow{\rho}) = \dim_H E$, for some (then for all) $E \in \mathcal{D}(\overrightarrow{\rho})$.

- For any c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}_d(\overrightarrow{\rho}) := \mathcal{D}_d(\rho_1, \dots, \rho_m)$ to be all dust-like self-similar sets with c.v. (ρ_1, \dots, ρ_m) in \mathbb{R}^d .
- Throughout the talk, the dimension d will be implicit.
- We write $\mathcal{D}(\overrightarrow{\rho})$ for $\mathcal{D}_d(\overrightarrow{\rho})$.
- We define $\dim_H \mathcal{D}(\overrightarrow{\rho}) = \dim_H E$, for some (then for all) $E \in \mathcal{D}(\overrightarrow{\rho})$.

One well-known result on Lipschitz equivalence of dust-like self-similar sets:

Proposition

 $E \sim F$ for any $E, F \in \mathcal{D}(\overrightarrow{\rho})$.

• Define $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\overrightarrow{\rho})$ and $F \in \mathcal{D}(\overrightarrow{\tau})$.

One well-known result on Lipschitz equivalence of dust-like self-similar sets:

Proposition

 $E \sim F$ for any $E, F \in \mathcal{D}(\overrightarrow{\rho})$.

• Define $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\overrightarrow{\rho})$ and $F \in \mathcal{D}(\overrightarrow{\tau})$.

Fundamental result by Falconer and Marsh

Theorem (Falconer-Marsh'1992)

Let $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$, $\overrightarrow{\tau} = (\tau_1, \dots, \tau_n)$ be two c.v.s with $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$. Let $s = \dim_H \mathcal{D}(\overrightarrow{\rho}) = \dim_H \mathcal{D}(\overrightarrow{\tau})$. Denote

- $\mathbb{Q}(a_1,\ldots,a_m)$: subfield of \mathbb{R} generated by \mathbb{Q} and a_1,\ldots,a_m .
- $\operatorname{sgp}(a_1,\ldots,a_m)$: subsemigroup of (\mathbb{R}^+,\times) generated by a_1,\ldots,a_m .

Then

- (1) $\mathbb{Q}(\rho_1^s,\ldots,\rho_m^s)=\mathbb{Q}(\tau_1^s,\ldots,\tau_n^s);$
- (2) $\exists p, q \in \mathbb{Z}^+$, s.t. $\operatorname{sgp}(\rho_1^p, \ldots, \rho_m^p) \subset \operatorname{sgp}(\tau_1, \ldots, \tau_n)$ and $\operatorname{sgp}(\tau_1^q, \ldots, \tau_n^q) \subset \operatorname{sgp}(\rho_1, \ldots, \rho_m)$.
 - (2) $\iff \exists p, q \in \mathbb{Z}^+$, s.t. $\operatorname{sgp}(\rho_1^{sp}, \dots, \rho_m^{sp}) \subset \operatorname{sgp}(\tau_1^s, \dots, \tau_n^s)$ and $\operatorname{sgp}(\tau_1^{sq}, \dots, \tau_n^{sq}) \subset \operatorname{sgp}(\rho_1^s, \dots, \rho_m^s)$.

$$\mathcal{D}(1/3, 1/3) \not\sim \mathcal{D}(r, r, r)$$
, where $2 \cdot (1/3)^s = 1 = 3 \cdot r^s$.

Proof

- Denote $\rho_1 = \rho_2 = 1/3$, $\tau_1 = \tau_2 = \tau_3 = r$. Then $\rho_i^s = 1/2$, $\tau_i^s = 1/3$, $\forall j$.
- $\operatorname{sgp}(\rho_1^n, \rho_2^n) = \{(1/2)^n : n \in \mathbb{N}\},\ \operatorname{sgp}(\tau_1^s, \tau_2^s, \tau_3^s) = \{(1/3)^n : n \in \mathbb{N}\}.$
- $\operatorname{sgp}(\rho_1^{sp}, \rho_2^{sp}) \not\subset \operatorname{sgp}(\tau_1^s, \tau_2^s, \tau_3^s)$ for any $p \in \mathbb{Z}^+$.

$$\mathcal{D}(1/3, 1/3) \not\sim \mathcal{D}(r, r, r)$$
, where $2 \cdot (1/3)^s = 1 = 3 \cdot r^s$.

Proof.

- Denote $\rho_1 = \rho_2 = 1/3$, $\tau_1 = \tau_2 = \tau_3 = r$. Then $\rho_j^s = 1/2$, $\tau_j^s = 1/3$, $\forall j$.
- $\operatorname{sgp}(\rho_1^{sp}, \rho_2^{sp}) = \{(1/2)^{np} : n \in \mathbb{N}\}, \\ \operatorname{sgp}(\tau_1^{s}, \tau_2^{s}, \tau_3^{s}) = \{(1/3)^{n} : n \in \mathbb{N}\}.$
- $\operatorname{sgp}(\rho_1^{sp}, \rho_2^{sp}) \not\subset \operatorname{sgp}(\tau_1^s, \tau_2^s, \tau_3^s)$ for any $p \in \mathbb{Z}^+$.

$$\mathcal{D}(1/3, 1/3) \not\sim \mathcal{D}(r, r, r)$$
, where $2 \cdot (1/3)^s = 1 = 3 \cdot r^s$.

Proof.

- Denote $\rho_1 = \rho_2 = 1/3$, $\tau_1 = \tau_2 = \tau_3 = r$. Then $\rho_j^s = 1/2$, $\tau_j^s = 1/3$, $\forall j$.
- $\operatorname{sgp}(\rho_1^{sp}, \rho_2^{sp}) = \{(1/2)^{np} : n \in \mathbb{N}\}, \\ \operatorname{sgp}(\tau_1^s, \tau_2^s, \tau_3^s) = \{(1/3)^n : n \in \mathbb{N}\}.$
- $\operatorname{sgp}(\rho_1^{sp}, \rho_2^{sp}) \not\subset \operatorname{sgp}(\tau_1^s, \tau_2^s, \tau_3^s)$ for any $p \in \mathbb{Z}^+$.

<ロ > → □ → → □ → → □ → への○

$$\mathcal{D}(1/3, 1/3) \not\sim \mathcal{D}(r, r, r)$$
, where $2 \cdot (1/3)^s = 1 = 3 \cdot r^s$.

Proof.

- Denote $\rho_1 = \rho_2 = 1/3$, $\tau_1 = \tau_2 = \tau_3 = r$. Then $\rho_j^s = 1/2$, $\tau_j^s = 1/3$, $\forall j$.
- $\operatorname{sgp}(\rho_1^{sp}, \rho_2^{sp}) = \{(1/2)^{np} : n \in \mathbb{N}\}, \\ \operatorname{sgp}(\tau_1^s, \tau_2^s, \tau_3^s) = \{(1/3)^n : n \in \mathbb{N}\}.$
- $\operatorname{sgp}(\rho_1^{sp}, \rho_2^{sp}) \not\subset \operatorname{sgp}(\tau_1^s, \tau_2^s, \tau_3^s)$ for any $p \in \mathbb{Z}^+$.

Question

What's the necessary and sufficient condition for $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$?

- We assume that $\rho_1 \leq \rho_2$, $\tau_1 \leq \tau_2$ and $\rho_1 \leq \tau_1$.
- Conjecture. $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$ iff $(\rho_1, \rho_2) = (\tau_1, \tau_2)$.

Question

What's the necessary and sufficient condition for $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$?

- We assume that $\rho_1 \leq \rho_2$, $\tau_1 \leq \tau_2$ and $\rho_1 \leq \tau_1$.
- Conjecture. $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$ iff $(\rho_1, \rho_2) = (\tau_1, \tau_2)$.

Question

What's the necessary and sufficient condition for $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$?

- We assume that $\rho_1 \leq \rho_2$, $\tau_1 \leq \tau_2$ and $\rho_1 \leq \tau_1$.
- Conjecture. $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$ iff $(\rho_1, \rho_2) = (\tau_1, \tau_2)$.

Assume that $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$. By Fal-Mar' theorem, one of followings must happen:

Case 1. $\exists \lambda \in (0,1)$, and $p_1,p_2,q_1,q_2 \in \mathbb{Z}^+$ such that

$$\rho_1 = \lambda^{p_1}, \quad \rho_2 = \lambda^{p_2}, \quad \tau_1 = \lambda^{q_1}, \quad \tau_2 = \lambda^{q_2}.$$

Case 2. $\exists \lambda, \mu \in (0,1)$ with $\log \lambda / \log \mu \notin \mathbb{Q}$, and $p_1, q_1, p_2, q_2 \in \mathbb{Z}^+$ such that

$$\rho_1 = \lambda^{p_1}, \quad \rho_2 = \mu^{q_1}, \quad \tau_1 = \lambda^{p_2}, \quad \tau_2 = \mu^{q_2},$$

or

$$\rho_1 = \lambda^{p_1}, \quad \rho_2 = \mu^{q_1}, \quad \tau_2 = \lambda^{p_2}, \quad \tau_1 = \mu^{q_2}.$$

Assume that $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$. By Fal-Mar' theorem, one of followings must happen:

Case 1. $\exists \lambda \in (0,1)$, and $p_1, p_2, q_1, q_2 \in \mathbb{Z}^+$ such that

$$\rho_1 = \lambda^{p_1}, \quad \rho_2 = \lambda^{p_2}, \quad \tau_1 = \lambda^{q_1}, \quad \tau_2 = \lambda^{q_2}.$$

Case 2. $\exists \lambda, \mu \in (0,1)$ with $\log \lambda / \log \mu \notin \mathbb{Q}$, and $p_1, q_1, p_2, q_2 \in \mathbb{Z}^+$ such that

$$\rho_1 = \lambda^{p_1}, \quad \rho_2 = \mu^{q_1}, \quad \tau_1 = \lambda^{p_2}, \quad \tau_2 = \mu^{q_2},$$

or

$$\rho_1 = \lambda^{p_1}, \quad \rho_2 = \mu^{q_1}, \quad \tau_2 = \lambda^{p_2}, \quad \tau_1 = \mu^{q_2}.$$

Assume that $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$. By Fal-Mar' theorem, one of followings must happen:

Case 1. $\exists \lambda \in (0,1)$, and $p_1, p_2, q_1, q_2 \in \mathbb{Z}^+$ such that

$$\rho_1 = \lambda^{p_1}, \quad \rho_2 = \lambda^{p_2}, \quad \tau_1 = \lambda^{q_1}, \quad \tau_2 = \lambda^{q_2}.$$

Case 2. $\exists \lambda, \mu \in (0,1)$ with $\log \lambda / \log \mu \notin \mathbb{Q}$, and $p_1, q_1, p_2, q_2 \in \mathbb{Z}^+$ such that

$$\rho_1 = \lambda^{\rho_1}, \quad \rho_2 = \mu^{q_1}, \quad \tau_1 = \lambda^{\rho_2}, \quad \tau_2 = \mu^{q_2},$$

or

$$\rho_1 = \lambda^{p_1}, \quad \rho_2 = \mu^{q_1}, \quad \tau_2 = \lambda^{p_2}, \quad \tau_1 = \mu^{q_2}.$$

Let's study Case 1 first.

• From $s = \dim_H \mathcal{D}(\rho_1, \rho_2) = \dim_H \mathcal{D}(\tau_1, \tau_2)$, we have

$$(\lambda^{p_1})^s + (\lambda^{p_2})^s = (\lambda^{q_1})^s + (\lambda^{q_2})^s = 1$$

- Denote $x = \lambda^s$, then $x^{p_1} + x^{p_2} = x^{q_1} + x^{q_2} = 1$.
- That is,

$$x^{p_1} + x^{p_2} - 1 = 0$$
 and $x^{q_1} + x^{q_2} - 1 = 0$

- Using Ljunggren's result on the irreducibility of trinomials $x^n \pm x^m \pm 1$, we proved that the above happen iff
 - $(p_1, p_2) = (q_1, q_2)$ or
 - $(p_1, p_2, q_1, q_2) = \gamma(5, 1, 3, 2)$ for some $\gamma \in \mathbb{Z}^+$.

Let's study Case 1 first.

• From $s = \dim_H \mathcal{D}(\rho_1, \rho_2) = \dim_H \mathcal{D}(\tau_1, \tau_2)$, we have

$$(\lambda^{p_1})^s + (\lambda^{p_2})^s = (\lambda^{q_1})^s + (\lambda^{q_2})^s = 1.$$

- Denote $x = \lambda^s$, then $x^{p_1} + x^{p_2} = x^{q_1} + x^{q_2} = 1$.
- That is,

$$x^{p_1} + x^{p_2} - 1 = 0$$
 and $x^{q_1} + x^{q_2} - 1 = 0$

- Using Ljunggren's result on the irreducibility of trinomials $x^n \pm x^m \pm 1$, we proved that the above happen iff
 - $(p_1, p_2) = (q_1, q_2)$ or
 - $(p_1, p_2, q_1, q_2) = \gamma(5, 1, 3, 2)$ for some $\gamma \in \mathbb{Z}^+$.

Let's study Case 1 first.

• From $s = \dim_H \mathcal{D}(\rho_1, \rho_2) = \dim_H \mathcal{D}(\tau_1, \tau_2)$, we have

$$(\lambda^{p_1})^s + (\lambda^{p_2})^s = (\lambda^{q_1})^s + (\lambda^{q_2})^s = 1.$$

- Denote $x = \lambda^s$, then $x^{p_1} + x^{p_2} = x^{q_1} + x^{q_2} = 1$.
- That is,

$$x^{p_1} + x^{p_2} - 1 = 0$$
 and $x^{q_1} + x^{q_2} - 1 = 0$

- Using Ljunggren's result on the irreducibility of trinomials $x^n \pm x^m \pm 1$, we proved that the above happen iff
 - $(p_1, p_2) = (q_1, q_2)$ or
 - $(p_1, p_2, q_1, q_2) = \gamma(5, 1, 3, 2)$ for some $\gamma \in \mathbb{Z}^+$.

Let's study Case 1 first.

• From $s = \dim_H \mathcal{D}(\rho_1, \rho_2) = \dim_H \mathcal{D}(\tau_1, \tau_2)$, we have

$$(\lambda^{p_1})^s + (\lambda^{p_2})^s = (\lambda^{q_1})^s + (\lambda^{q_2})^s = 1.$$

- Denote $x = \lambda^s$, then $x^{p_1} + x^{p_2} = x^{q_1} + x^{q_2} = 1$.
- That is,

$$x^{p_1} + x^{p_2} - 1 = 0$$
 and $x^{q_1} + x^{q_2} - 1 = 0$

- Using Ljunggren's result on the irreducibility of trinomials $x^n \pm x^m \pm 1$, we proved that the above happen iff
 - $(p_1, p_2) = (q_1, q_2)$ or
 - $(p_1, p_2, q_1, q_2) = \gamma(5, 1, 3, 2)$ for some $\gamma \in \mathbb{Z}^+$.

Let's study Case 1 first.

• From $s = \dim_H \mathcal{D}(\rho_1, \rho_2) = \dim_H \mathcal{D}(\tau_1, \tau_2)$, we have

$$(\lambda^{p_1})^s + (\lambda^{p_2})^s = (\lambda^{q_1})^s + (\lambda^{q_2})^s = 1.$$

- Denote $x = \lambda^s$, then $x^{p_1} + x^{p_2} = x^{q_1} + x^{q_2} = 1$.
- That is,

$$x^{p_1} + x^{p_2} - 1 = 0$$
 and $x^{q_1} + x^{q_2} - 1 = 0$

- Using Ljunggren's result on the irreducibility of trinomials $x^n \pm x^m \pm 1$, we proved that the above happen iff
 - $(p_1, p_2) = (q_1, q_2)$ or
 - $(p_1, p_2, q_1, q_2) = \gamma(5, 1, 3, 2)$ for some $\gamma \in \mathbb{Z}^+$.

• That is, Case 1 happens will imply $(\rho_1, \rho_2) = (\tau_1, \tau_2)$ or there exists $\lambda \in (0, 1)$, s.t.

$$(\rho_1, \rho_2, \tau_1, \tau_2) = (\lambda^5, \lambda, \lambda^3, \lambda^2). \tag{3}$$

We will check that if Eqn (3) holds, then $\mathcal{D}(\lambda_1, \lambda_2) \sim \mathcal{D}(\tau_1, \tau_2)$.

• Consider IFSs $\{f_1, f_2\}$ and $\{f_1, f_2 \circ f_1, f_2 \circ f_2\}$, we have

$$\mathcal{D}(\lambda^5, \lambda) \sim \mathcal{D}(\lambda^5, \lambda^6, \lambda^2),$$

• Consider IFSs $\{f_1, f_2\}$ and $\{f_1 \circ f_1, f_1 \circ f_2, f_2\}$, we have $\mathcal{D}(\lambda^3 \ \lambda^2) \sim \mathcal{D}(\lambda^6 \ \lambda^5 \ \lambda^2)$

• That is, Case 1 happens will imply $(\rho_1, \rho_2) = (\tau_1, \tau_2)$ or there exists $\lambda \in (0, 1)$, s.t.

$$(\rho_1, \rho_2, \tau_1, \tau_2) = (\lambda^5, \lambda, \lambda^3, \lambda^2). \tag{3}$$

We will check that if Eqn (3) holds, then $\mathcal{D}(\lambda_1, \lambda_2) \sim \mathcal{D}(\tau_1, \tau_2)$.

• Consider IFSs $\{f_1, f_2\}$ and $\{f_1, f_2 \circ f_1, f_2 \circ f_2\}$, we have

$$\mathcal{D}(\lambda^5, \lambda) \sim \mathcal{D}(\lambda^5, \lambda^6, \lambda^2),$$

• Consider IFSs $\{f_1, f_2\}$ and $\{f_1 \circ f_1, f_1 \circ f_2, f_2\}$, we have

$$\mathcal{D}(\lambda^3, \lambda^2) \sim \mathcal{D}(\lambda^6, \lambda^5, \lambda^2).$$

• That is, Case 1 happens will imply $(\rho_1, \rho_2) = (\tau_1, \tau_2)$ or there exists $\lambda \in (0, 1)$, s.t.

$$(\rho_1, \rho_2, \tau_1, \tau_2) = (\lambda^5, \lambda, \lambda^3, \lambda^2). \tag{3}$$

We will check that if Eqn (3) holds, then $\mathcal{D}(\lambda_1, \lambda_2) \sim \mathcal{D}(\tau_1, \tau_2)$.

• Consider IFSs $\{f_1, f_2\}$ and $\{f_1, f_2 \circ f_1, f_2 \circ f_2\}$, we have

$$\mathcal{D}(\lambda^5,\lambda) \sim \mathcal{D}(\lambda^5,\lambda^6,\lambda^2),$$

• Consider IFSs $\{f_1, f_2\}$ and $\{f_1 \circ f_1, f_1 \circ f_2, f_2\}$, we have

$$\mathcal{D}(\lambda^3, \lambda^2) \sim \mathcal{D}(\lambda^6, \lambda^5, \lambda^2).$$

• That is, Case 1 happens will imply $(\rho_1, \rho_2) = (\tau_1, \tau_2)$ or there exists $\lambda \in (0, 1)$, s.t.

$$(\rho_1, \rho_2, \tau_1, \tau_2) = (\lambda^5, \lambda, \lambda^3, \lambda^2). \tag{3}$$

We will check that if Eqn (3) holds, then $\mathcal{D}(\lambda_1, \lambda_2) \sim \mathcal{D}(\tau_1, \tau_2)$.

• Consider IFSs $\{f_1, f_2\}$ and $\{f_1, f_2 \circ f_1, f_2 \circ f_2\}$, we have

$$\mathcal{D}(\lambda^5, \lambda) \sim \mathcal{D}(\lambda^5, \lambda^6, \lambda^2),$$

• Consider IFSs $\{f_1, f_2\}$ and $\{f_1 \circ f_1, f_1 \circ f_2, f_2\}$, we have

$$\mathcal{D}(\lambda^3,\lambda^2) \sim \mathcal{D}(\lambda^6,\lambda^5,\lambda^2).$$

Let's study Case 2 now.

• Given a c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$. Define

$$\langle \overrightarrow{\rho} \rangle := \langle \rho_1, \dots, \rho_m \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \dots, \alpha_m \in \mathbb{Z} \}.$$

- $\langle \overrightarrow{\rho} \rangle$ is a free abelian group and has a nonempty basis.
- Define $rank\langle \overrightarrow{\rho} \rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle \overrightarrow{\rho} \rangle \leq m$.
- If $rank\langle \overrightarrow{\rho} \rangle = m$, we say $\overrightarrow{\rho}$ has full rank.

Let's study Case 2 now.

• Given a c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$. Define

$$\langle \overrightarrow{\rho} \rangle := \langle \rho_1, \dots, \rho_m \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \ \alpha_1, \dots, \alpha_m \in \mathbb{Z} \}.$$

- $\langle \overrightarrow{\rho} \rangle$ is a free abelian group and has a nonempty basis.
- Define $rank\langle \overrightarrow{\rho} \rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle \overrightarrow{\rho} \rangle \leq m$.
- If $rank\langle \overrightarrow{\rho} \rangle = m$, we say $\overrightarrow{\rho}$ has full rank.

Let's study Case 2 now.

• Given a c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$. Define

$$\langle \overrightarrow{\rho} \rangle := \langle \rho_1, \dots, \rho_m \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \ \alpha_1, \dots, \alpha_m \in \mathbb{Z} \}.$$

- $\langle \overrightarrow{\rho} \rangle$ is a free abelian group and has a nonempty basis.
- Define $rank\langle \overrightarrow{\rho} \rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle \overrightarrow{\rho} \rangle \leq m$.
- If $rank\langle \overrightarrow{\rho} \rangle = m$, we say $\overrightarrow{\rho}$ has full rank.

• By theorem of Fal-Mar, if $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$, then

$$\mathrm{rank}\langle \overrightarrow{\rho} \rangle = \mathrm{rank}\langle \overrightarrow{\tau} \rangle = \mathrm{rank}\langle \overrightarrow{\rho}, \overrightarrow{\tau} \rangle,$$

where

$$\langle \overrightarrow{\rho}, \overrightarrow{\tau} \rangle := \langle \rho_1, \dots, \rho_m, \tau_1, \dots, \tau_n \rangle$$

for
$$\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$$
 and $\overrightarrow{\tau} = (\tau_1, \dots, \tau_n)$.

Theorem (Rao-R-Wang'2010)

Assume that both $\overrightarrow{\rho}$ and $\overrightarrow{\tau}$ have full rank m. Then $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ if and only if $\overrightarrow{\tau}$ is a permutation of $\overrightarrow{\rho}$.

• By theorem of Fal-Mar, if $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$, then

$$\operatorname{rank}\langle \overrightarrow{\rho} \rangle = \operatorname{rank}\langle \overrightarrow{\tau} \rangle = \operatorname{rank}\langle \overrightarrow{\rho}, \overrightarrow{\tau} \rangle,$$

where

$$\langle \overrightarrow{\rho}, \overrightarrow{\tau} \rangle := \langle \rho_1, \dots, \rho_m, \tau_1, \dots, \tau_n \rangle$$

for
$$\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$$
 and $\overrightarrow{\tau} = (\tau_1, \dots, \tau_n)$.

Theorem (Rao-R-Wang'2010)

Assume that both $\overrightarrow{\rho}$ and $\overrightarrow{\tau}$ have full rank m. Then $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ if and only if $\overrightarrow{\tau}$ is a permutation of $\overrightarrow{\rho}$.

Theorem (Rao-R-Wang'2009)

 $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$ if and only if $(\rho_1, \rho_2) = (\tau_1, \tau_2)$ or there exists $\lambda \in (0, 1)$, s.t.

$$(\rho_1, \rho_2, \tau_1, \tau_2) = (\lambda^5, \lambda, \lambda^3, \lambda^2).$$

Thank you!