
1

Parallel Processing for Scanning Genomic Data-Bases

D. Lavenier and J.-L. Pacherie a {lavenier,pacherie}@irisa.fr

aIRISA, Campus de Beaulieu,
35042 Rennes cedex, France

The scan of a genomic data-base aims to detect similarities between dna or protein
sequences. This is a time-consuming operation, especially when weak similarities are
searched. Speeding up the scan can be managed using various strategies of paralleliza-
tion. This paper presents two approaches carried on at irisa: systolic and distributed
parallelization.

1. Introduction

Scanning genomic data-bases is a common and often repeated task in molecular biology.
The need for speeding up this treatment comes from the exponential growth of the banks
(the genomic data-bases) of biological sequences: every year their size scaled by a factor
ranging from 1.5 to 2. The scan operation consists in finding similarities between a
particular sequence (called the query sequence) and all the sequences of a bank. This
operation allows biologists to point out sequences sharing common subsequences. From a
biological point of view, it leads to identify similar functionalities.

Similarities are detected by algorithms whose complexities are quadratic with respect
to the length of the sequences. In practice, this time-consuming operation is reduced
by introducing heuristics in the search algorithms. The main drawback is that the more
efficient the heuristics (from the execution time point of view), the worse the quality of
the results. Furthermore, some search algorithms cannot benefit from the heuristics.

Another approach to get high quality results in a short time goes through parallelization.
In that case, one must determine the best approach among various possibilities: parallel
computer, network of workstations, or dedicated hardware. Actually, the response is not
universal; the three approaches provide equivalent numerical results; but from the user
point of view, it may not bring the same level of satisfaction.

This paper discusses various parallel approaches that have been implemented and tested
at irisa for speeding up the scan of genomic data-bases. One is based on the systolization
of the algorithms on a special-purpose Vlsi coprocessor, while the other is based on the
distribution of the computation. Both have their merits, but also their drawbacks.

In the next section, we present the data-base scanning problem and the two ways of
parallelizing this computation. Sections 3 and 4 detail the two implementations and give
some performance. Based on real experiments, and depending on various criteria, we
conclude by discussing advantages and drawbacks for each approach.



2

Query Sequence

Data Base

Figure 1. Principle of the systolic parallelization for scanning a genomic data-base: the
query sequence is loaded in a linear systolic array (one character per processor) and the
sequence of the bank (the data base) are pipelined through the array.

2. Parallelization of the scan of a genomic data-base

The scan of a genomic data-base involves three actors: a query sequence, a bank of
sequences (the genomic data-base), and a method for finding the similarities between the
query sequence and all the sequences in the bank. If NbS is the size of the bank (NbS =
number of sequences), then the computation consists in NbS pairwise comparisons which
give a score indicating the value of the best similarity found between the two sequences.
The final result of the scan is a list of sequences having the best scores. Additional
computations are usually performed to locate the similarity areas, but the computation
time of this last operation is negligible with respect to the NbS pairwise comparisons.

Thus, speeding up the scan of a genomic data-base reduces essentially to speeding up
the NbS pairwise comparisons. This can be achieved by parallelizing the computation
using two approaches:

1. computing the pairwise comparison task on a dedicated systolic array: in that case,
the search algorithm is parallelized, and the pairwise comparisons are performed
sequentially.

2. splitting the data-bases into P sub-data-bases and performing the computation on
a programmable parallel structure of P nodes: in that case, the search algorithm is
executed sequentially, and P pairwise comparisons are performed in parallel.

The second approach can still be refined by considering two programmable parallel
structures: networks of workstations and massively parallel computers. The two follow-
ing sections respectively present the dedicated approach and the programmable parallel
structures on which the scan of the genomic data-bases have been implemented and tested.

3. Systolic parallelization

The pairwise sequence comparison problem is usually solved by dynamic programming
methods. The great advantages of this approach are the high quality of the results and
the efficiency of the parallelization on systolic arrays [3]. Schematically (see figure 1), the
process of comparing two sequences consists of loading one sequence in a linear systolic
array (one character per cell) and sending the other horizontally, character by character,



3

10

200

400

600

800

1000

1200

100003000100030010030

MCOPS SAMBA theoretical maximum performance

query sequence length

Figure 2. Comparison of a dna query sequence against the virus section of the GenBank
data-base: the curve reports the average MCOPS for different lengths of the query se-
quence. The longer the query sequence the better the samba performance. This is due
to the I/O disk system which prevents the accelerator to be fed at its maximum rate.

on each systolic cycle. If lQ is the length of the query sequence and lDBi the length of
the i-th sequence of the data-base, the pairwise comparison is performed in lQ + lDBi− 1
systolic cycles, instead of lQ × lDBi steps on a sequential processor.

The linear systolic structure has been implemented on a prototype called samba (Sys-
tolic Accelerator for Molecular Biological Applications) [4,5]. The machine houses 128
dedicated full custom Vlsi processors. The array is connected to a standard workstation
through a Fpga interface which has the major role of managing the partitioning of the
computation at the clock rate of the array.

As a matter of fact, and as explained above, comparing a query sequence against a data-
base ideally assumes an array whose size is equal to the length of the query sequence. In
practice, this never happens: the query sequence is too long (larger than 128 characters)
and requires the sequence comparison to be split into several passes. The partitioning
operates as follows: The 128 first characters of the query sequences are loaded in the
array. Then, the entire data-base crosses the array, while all the data output by the last
processor are memorized. In the next step, the 128 following characters of the query
sequence are loaded. The data previously stored are merged with the data-base, and sent
again to the array. The process is iterated until the end of the query sequence is reached.

The figure 2 shows the performance of samba expressed in millions of computation
cells per second (mcops) as a function of the length of the query sequence. This is the
base unit which is traditionally taken; it represents the computation of one recursion of
the dynamic programming algorithm. In that example, the scan of the virus section of
the GenBank data-base has been made for different lengths of dna query sequences. One
may note that the longer the query sequence the better the performance. This is mainly
due to the restricted bandwidth of the I/O disk system which prevents the array from
being fed at its maximum rate: a short query sequence does not require the computation



4

to be split into several passes. Consequently, the array is fed at the disk rate, which is
generally much slower than the array throughput.

Each processor performs 10 mcops, leading to a samba peak performance of 1280
mcops. In other words, the scan of a genomic data-base can be done in a few dozens of
seconds. For instance, the scan of a protein data-base (swiss-prot, release 34) with a
query sequence of 1000 amino acids using an efficient algorithm [11] [10] is performed in ap-
proximately 30 seconds. By comparison, the fastest sequential implementation (using the
same algorithm) requires more than 15 minutes on a 167 MHz UltraSparc workstation [2],
where the comparison routine has been tuned to exploit efficiently the micro-parallelism
provided by the VIS instruction set of the microprocessor.

4. Distributed Computations

Our strategy for distributing the computation has been driven by the following criteria:
portability, load balancing, and adaptability.

Portability: The portability ensures the application to be able to run on a wide range
of platforms, from local networks to parallel computers. Each platform must be exploited
for its own characteristics without focusing on the code application and the user interface.
For this purpose, we use a basic communication library (pom [8]) along with a parallel
virtual machine model. This model exposes a full connected network with blocking FIFO
communication channels, and is similar to the ones provided by PVM and MPI. The
reason to choose pom is that it provides less but optimized functionalities.

Load balancing strategy: The load balancing strategy has to split the data-base into
pieces and to send them as quickly as possible towards the slave processes. Each message
sent by the master process is then composed of several sequences whose number depends
on the performance of the communication channel. The point is that the communication
routines would stop the master if it attempts to feed a busy slave with too many sequences
while other slaves need to be fed. On the other hand, small messages require a higher
level of reactivity of the master to prevent starvation of some of the slaves. The problem
is to find the appropriate size of the message to avoid overloading of the communication
channel and the starvation of the slaves. Our strategy is to let the slaves inform the mas-
ter that they will need sequences to process. This information is sent before the slaves
have completely finished their current work. On receiving this information, the master
starts the preparation of a new set of sequences and sends it. This mechanism allows
the communication channel to be used as a temporary storage for the transmission of the
sequences.

Adaptability: the calculation of the number of sequences to send is made each time
the master has to feed a particular slave, and is performed independently for each slave.
In other words, the number of sequences sent to each slave varies over the time. The
performance evaluation of the slave communication channel is made using the time spent
by the master to send a message. According to this evaluation, the next volume of
sequences remains unchanged, is increased or decreased. To prevent this strategy from



5

causing eventual network thrashing behavior, a delay is applied before attempting to
modify the size of the messages. This self regulation makes possible both variations of
performance between the processing units and variations of the computational capability
of each slave to be taken into account.

This strategy has been evaluated over various platforms. In order to establish com-
parison, we keep the following characteristics: the computer architecture, the number of
processing units, and the communication network. The table below reports the average
performance (in mcops) for scanning a protein data-base (swiss-prot, release 34) using
query sequences of different lengths.

Architecture Network Nb Procs mcops Threshold Speedup Scalability Mode
Origin2000 - 1 8.9 250 - FS
Origin2000 HIPPI 4 28 200 3.15 FS
Origin2000 HIPPI 8 62 110 6.97 FS
UltraSPARC - 1 4.2 60 - FS
UltraSPARC Ethernet 4 9.4 200 2.20 PS
UltraSPARC Myrinet 4 17 110 4.00 FS
UltraSPARC Ethernet 8 39 500 9.30 PS
PentiumPro - 1 3.6 60 - FS
PentiumPro Ethernet 4 13 90 3.60 PS
PentiumPro Ethernet 8 28 170 7.78 PS

Table 1: Measures for various platform configurations are reported. The scan of the same
data-base has been performed for various query sequence lengths. The threshold corre-
sponds to the query sequence length from which the better speed-up is achieved.

First of all, the more number of nodes the better the speed-up. We can ever notice a
superlinear speed-up (UltraSPARC, Ethernet, 8 processors)! It can be explained by the
overlap between the effective computation (the sequence comparison) and the memory
management (access to the data-base): in the distributed version, the master gets data
from the genomic bank while slaves are concurrently performing sequence comparison.
When only one node is involved these actions are performed sequentially.

Furthermore, the measures we have taken pointed out an interesting observation for
the predictability of a specific platform: whatever the characteristics of the platforms, the
executions always share the same basic behavior. The figure 3 (left side) highlights this
behavior for both the mcops and the execution-time, regardless of the architecture. The
curves are both composed of two phases delimited by a threshold point b.

On the left side of b, the efficiency (measured in mcops) continuously increases with
the size of the query sequence while the time spent to process the whole bank remains
constant. The phenomenon is due to an underloading of the slaves, that is some slaves
are starving during the execution. Increasing the size of the query sequence leads to more
calculations for each slave, and then more time is given to the master to send its messages.
At the threshold point, the slaves are never starving and the application has reached the
maximum of its potentiality. The combination of the size of the query sequence, the
number of processors, the speed of the network and the power of processing units has



6

NSPSFS

No ScalabilityPartial ScalabilityFull Scalability
Treshold

Treshold

A

C

Execution Time

MCOPS

B

Size of query sequence Number of processors

Figure 3. Performance behavior: whatever the platform, the mcops and the execution-
time behave identically. On the first phase, the efficiency increases proportionally to
the query sequence length. At point b the platform has reached the maximum of its
possibilities.

reached the perfect balance. From this point, the execution time increases as a linear
function of the length of the query sequence while the mcops remains stable.

We can also focus on the impact of the number of processing units on the performance
for a given architecture. For each configuration it may be observed a global behaviour
characterized by the evolution of the threshold point. This evolution is presented on the
right side of the figure 3. There is a three-part curve. The first part (Full Scalability),
outlines a situation where the network is sufficiently efficient to allow reduction of the
threshold. Full scalability means that more processors increase the speedup and decrease
the threshold point. During the next stage (Partial Scalability), increasing the number
of processors allows the speed-up to be increased, but the threshold point is moved to a
higher value. This means that the network is a bottleneck that limits the efficiency of
the application. Thus, to get better performance, an improvement of the network is a
better choice than increasing the number of processors. On the last stage (No Scalability),
increasing the number of processors is definitively useless. Indeed, the master process is
unable to manage the whole set of slaves.

To conclude this part, we can say that other strategies, like a static split of the data-base
over a set of processing units [1], might provide better performance. However, we have
found that those strategies usually rely on requirements on the underlying distributed
architecture (number and power of processing units for example). Besides they suppose
that the platform used is exclusively dedicated to the scanning of the data-base. On
the other hand, our solution follows a much more adaptable approach. We are able to
match new configurations (additional processing units, network and cpu improvements,
data-base change, etc.) without any modification of the code and automatically make the
most of the improvements. Besides, according to the needs of the biologists we offer an
estimation of the more convenient platform characteristics (number of processing units,
network efficiency). The threshold curve gives informations for platform improvements
while the mcops measure and execution-time curves offer an estimation of performance



7

100 200 300 400 500 600

100

200

time 
(second)

Data Base Bank : SWISS PROT 34 (59,021 Sequences and 21,210,388 amino acids)

Origin2000 (29 nodes)

Origin2000 (7 nodes)

Network (27 nodes)

SAMBA (128 procs)

length of the query sequence

Figure 4. Times for scanning the swiss-prot protein data-base: the reported time is
the total elapsed time, as it directly affects the user; it includes particularly the time for
reading the data-base from the disk.

of a given configuration.

5. Discussion and Conclusion

For comparing performance between the systolic and the distributed approach, mea-
surements have been conducted using the same input data and the same search algorithm
(the Smith and Waterman algorithm [11]). This algorithm is known for its high quality,
but is never used due to its expensive execution time. The figure 1 shows the average time
for scanning a typical protein data-base (swiss-prot, release 34); different lengths of the
query sequence are considered for the three following approaches: samba, an Ethernet
network of 27 heterogeneous SUN workstations (15 UltraSparc, 2 Sparc SS20, 10 Sparc
SS5), and a parallel computer, Origin2000 from SiliconGraphics [6] with 7 and 29 nodes
(processor R10 000, 190 MHz).

One must now consider the best solution for a biological laboratory which wishes to
improve the time for scanning the genomic data-bases. Many criteria have to be consid-
ered: the size of the sequences submitted to the scan, the amount of sequences which
must be treated daily, the computer resources available locally, the financial policy of the
laboratory, the cost of managing the hardware and software, etc.

Focusing on the speed, the best score is achieved both by the Origin2000 parallel com-
puter (using 29 nodes) or by the samba dedicated machine. If we consider now the price
of the two systems, the samba solution, as a pluggable workstation device, is undoubt-
edly the best choice if this solution would be commercially available. The cost of a PCI
samba board is estimated to be less than $ 10,000 while a 32 processor Origin2000 parallel
computer goes beyond $ 1million !

Now, if the need is sporadic, even for processing long query sequences, it is probably



8

better to use the local computer resources and distribute the computation over a few
machines. The computation time will be longer compared to a dedicated hardware or a
parallel computer, but it will not constitute a bottleneck.

But we must go beyond the current needs. The point is that the size of the genomic
data-bases are growing exponentially, and that this growth is superior to that of the micro-
processors. Even if sequential implementations can be sporadically improved by using new
microprocessor features (such the MMX instructions [2,7]), speed-up will mainly come
from the increasing clock frequency (1.25 per year [9]); but this growth rate won’t be
enough to sustain the data-base explosion. In the future, more parallelism will be needed.

Designing larger linear systolic arrays or using larger parallel structures are no longer
valid: the optimal size of the systolic arrays for scanning a data-base is the length of the
query sequence; beyond that, no speed-up is achieved. The cost and the maintenance of a
100 processor parallel machine prohibits its use in the biological laboratory environment.
For the next decades, the solution we advocate is a mixed approach between dedicated
and distributed solution, that is plugging samba-like boards into dedicated networked
workstations. In that case, the efficiency of the samba cards imposes the use of a high
speed network such as ATM or Myrinet.

REFERENCES

1. E. Glemet and J.J. Codani. LASSAP, a LArge Scale Sequence compArison Package.
CABIOS, 13(2):137–143, 1997.

2. A. Wozniak. Using video-oriented instructions to speed up sequence comparison.
CABIOS, 13(2):145–150, 1997.

3. D. Lavenier. Dedicated Hardware for Biological Sequence Comparison. Journal of
Universal Computer Science, 2(2):77–86, 1996.

4. D. Lavenier. SAMBA: Systolic Accelerator for Molecular Biological Applications.
Technical Report RR 2845, INRIA, 1996.

5. P. Guerdoux-Jamet, D. Lavenier, C. Wagner and P. Quinton. Design and Implemen-
tation of a Parallel Architecture for Biological Sequence Comparison. In LNCS 1123
(EURO-PAR’96), Lyon, France, 1996.

6. SiliconGraphics. The perfect system for evolving compute, memory, and I/O.
http://www.sgi.com/Products/hardware/servers/products/Origin2000Desk.html,
1996.

7. B. Alpern, L. Carter and K.S. Gatlin. Microparallelism and High-Performance Protein
Matching. In Proceedings of the 1995 ACM/IEEE Supercomputing Conference, San
Diego, California, USA, 1995.

8. F. Guidec and Y. Mahéo. POM: a Parallel Observable Machine. In Proceedings of
PARCO’95, Gent, Belgium, 1995.

9. J.E. Vuillemin. On computing power. LNCS, 782:69–86, 1993.
10. O. Gotoh. An Improved Algorithm for Matching Biological Sequences. J. Mol. Biol.,

162:705–708, 1982.
11. T.F. Smith and M.S. Waterman. Identification of Common Molecular Subsequences.

J. Mol. Biol, 147:195–197, 1981.


