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Abstract. This paper presents the benefits of using a generic FPGA
tool set developed at the university of Brest for programming virtual
FPGA structures. From a high level FPGA description, the basic FPGA
tools such a placer, a router or an editor are automatically generated.
The FPGA description is not constrained by any model, so that abstract
FPGA structures, such as virtual FPGAs, can directly exploit the tool
set as their basic programming tools.

1 Introduction

Reconfigurable Computing (RC) aims to use the flexibility of the configurable
logic proposed by FPGA components to enhance computation performance. The
common idea is that RC fills the gap between a general purpose Von Neuman-
n architecture (microprocessor) and a highly specific full custom architecture
(ASIC: Application Specific Integrated Circuit) by programming an appropriate
architecture. Microprocessor performance is limited by the sequential behavior
while ASICs suffer the definitive silicon implementation. FPGA components ap-
pear as a tradeoff between these two alternatives: the same physical support can
be re-programmed (or reconfigured) to support any architecture. Hence, recon-
figurable computing claims to add both the flexibility of programming machines
and the speed of specific architectures.

The reality is not so obvious. First, an FPGA architecture is much slower
than its ASIC counterpart. This is mainly due to its programmable nature, which
requires signals to pass along many programmable electronic switches, compared
to a direct silicon implementation. Second, the synthesis of a specific architecture
onto a FPGA component is still a long and error-prone process that is far to
be completely automated. The architecture to implement is often specified in
VHDL, and requires a lot of simulation steps to be validated. In addition, a
design targeted for a particular reconfigurable platform is usually impossible to
re-use: the portability between different reconfigurable platforms is not ensured
due to the absence of a programming model. Thus, if it is theoreticaly possible to
implement any kind of architecture, the non-portability, the time and the efforts
devoted to implement an architecture tend to weaken the notion of flexibility.

One way for increasing this flexibility is to define a virtual FPGA struc-
ture. In that case, an architecture is not defined relative to a specific FPGA



component, but relative to a virtual FPGA structure which will be implemented
across the different existing components and hopefully across future generations
of FPGA components.

As with any virtual machine, such as the Java Virtual Machine, we must
deal with the loss of performance introduced by the virtual layer. In our case a
virtual structure will have a limited amount of resources (virtual logic blocks)
and the clock speed will be slowed down compared to a real FPGA component.
To keep performance reasonable we propose to specialize the virtual structure
towards a specific field of applications. In that case, the slowness may be partially
compensated by integrating into the virtual level fast specific functions inherent
to the application domain.

If designing a range of specialized virtual FPGA structures targeted to var-
ious application domains will guarantee a minimum of performance, one has to
wonder how these architectures will be programmed. More precisely, the prob-
lem is to develop appropriate utility programming tools, such as the placer or
the router, for each specialized FPGA. Of course, we cannot imagine rewriting
such tools from scratch each time a new FPGA structure is proposed.

This paper addresses this problem. It presents a generic FPGA tool set which,
from a high level specification of a FPGA structure, automatically provides the
basic tools required to configure it. This generic tool has not been developed
especially for programming virtual specialized FPGA structures. Any kind of
FPGA structures can take advantage of it. The purpose, here, is to focus on the
benefit of using this approach in the context of virtual FPGAs.

The rest of the paper is organized as follows: Section 2 briefly describes the
concept of specialized virtual FPGA structures. Section 3 presents the generic
FPGA programming tool set. Section 4 exemplifies a virtual FPGA structure
dedicated to linear systolic arrays and shows how the tool set works. Section 5
concludes this paper.

2 Specialized Virtual FPGA Structures

The concept of virtual FPGA structure is identical to the concept of virtual
machine. Our view of a virtual FPGA is different of the definition given in [6]
where it is seen as an extension of the physical FPGA device: the applications
have a virtual view of the FPGA that is mapped on the available physical device
by the operating system, in a way similar to virtual memory. In other words, the
FPGA is virtualized by multiplexing its physical components. The same idea [10]
has also been followed for increasing the number of FPGA I/O pins, leading to
the concept of virtual wires. In both cases the goal is to extend the capabilities
of the FPGA devices.

As opposed, we see a virtual FPGA as a simplified version of a physical
FPGA. The idea is not to enhance the FPGA features, in terms of a higher
number of logic blocks or a better frequency, but to set a stable and portable
structure like a virtual machine. Transposed to the hardware domain, a virtual
FPGA is a regular pattern of virtual configurable logic blocks, each of them
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Fig. 1. Physical layer and Virtual layer: A virtual configurable logic block is made of
several physical ones.

made up of several physical ones (cf figure 1). Compared to a virtual machine, it
has nearly the same advantages and drawbacks. On the positive side it provides:

– A portable structure: Architectures targeted to a virtual FPGA structure
can be implemented on any physical FPGA supporting the virtual layer.

– An open structure: The details of the structure are not constrained by
confidentiality. They can be made freely available, allowing groups of people
to develop and test their own tools.

– A way to investigate new FPGA structures: Today, available FPGA com-
ponents are not well suited for reconfigurable computing. They are mainly
designed to meet the market requirement (ASIC substitution) and don’t sup-
port advanced functionalities such as fast dynamic or partial reconfiguration.

On the negative side we can point out:

– the reduction of available resources: a virtual logic block will be made of sev-
eral physical ones, leading probably to a reduction of an order of magnitude
in terms of useful hardware. This is may be the price to pay for portability.

– the speed: the architectures mapped onto FPGA components are renowned
to be slow compared to an ASIC implementation. Adding an intermediate
layer will further slow them down!

– the absence of programming tools: the tools provided by the FPGA vendors
are useless for mapping an architecture on the virtual layer. New tools are
required and must be developed.

The solution we propose to remedy the speed problem is to specialize virtual
FPGA structures to target specific applications or well-defined models of archi-
tectures. In this case, the low speed may be partially compensated by integrating



into the virtual level fast specific functions inherent to the architecture or the
application domain. The idea of specialization is illustrated in section 4.

However, from our point of view, the absence of programming tools is a much
more serious barrier to the concept of virtual FPGA. The main reason is that
developing such tools is a long and complex task. There are no development tools,
such as retargetable C compilers [8] available for microprocessors. Everything
must be nearly redesigned from scratch. The next section presents the generic
FPGA programming tool set developed at the University of Brest as a solution
to suppress this stage.

3 The Generic FPGA Programming Tool Set

The software we have developed aims to provide very quickly a set of essential
tools for programming a FPGA structure (virtual or not). The first step is to
specify the FPGA structure. It is then compiled and a tool set (placer-router,
editor, estimator, ...) is immediately generated. This section focuses first on how
a FPGA structure is specified, then the different available tools are described.
We end by giving a word about the implementation.

3.1 Specification of a FPGA structure

An FPGA structure is always a hierarchical organization of patterns replicated
in a regular way. Pattern are an assembly of cells and routing resources. Cells
may contain one or several look-up tables (LUT), registers, and specific functions
such as, for example, carry propagation logic. Routing includes wires and their
interconnection mechanism (transistors, tri-states, multiplexers).

An FPGA structure is specified using a grammar style. For example, the
simplified FPGA structure shown in figure 2 is simply specified as follows:

(ARRAY ((DOMAIN 0 99 0 99)

(COMPOSITE (WIRE wireH) (WIRE wireV)

(SWITCH switch (Type disjoint))

(FUNCTION funct (INPUTS in0 in1 in2 in3) (OUTPUTS out))

(CONNECT

’funct out connectTo: wireH’

’wireH connectTo: func in0’

’wireH connectTo: func in1’

’wireV connectTo: func in2’

’wireV connectTo: func in3’

’wireH connectTo: switch east’

’wireH connectTo: (self relativeAt: 1@0) switch west’

’wireV connectTo: switch south’

’wireV connectTo: (self relativeAt: 0@-1) switch north’)

))

It specifies an array of 100 × 100 cells. A cell is composed of 2 wires (wireH
and wireV), one switch and one 4-input logic function. All the possible connec-
tions are specified with the keyword connectTo.
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Fig. 2. FPGA structure example. It is a 2D array of identical cells. A cell is composed
of one switch and one 4-input boolean function.

A specification may contain different kinds of cells. In that case, the abutment
of different cells is resolved using a specific mechanism, called PortMapper. It
describes the signal interconnection at the cell borders and specifies how the
routing is managed. Cells located on the borders of an array are managed by
adding specific resources to the elements rather than by defining new kinds of
elements.

An important specification possibility is that an FPGA structure can be
totally or partially parameterized. It allows the designer of the reconfigurable
structure to tune elements such as the granularity of the logic functions, the
number of routing resources, etc. This is particularly useful during the definition
step for guiding the designer towards the best choices.

3.2 The Tool Set

Once the FPGA structure has been specified, a basic set of tools is available for
programming this structure. The next subsections detail the different tools we
provide.

Input Format The logic to implement in the FPGA structure must be de-
scribed as a netlist of logic functions. There must be a direct relation between
the available resources and the netlist. For instance, a 5-input function is not
allowed in the netlist if the FPGA structure accepts only 4-input functions. The
LUT partitioning has to be done before. We currently accept the Berkeley Logic
Interchange Format (BLIF) for working environment convenience, but the EDIF
format will be the standard way to input the designs in a future version.

Place-and-route The placer relies on a simulated annealing algorithm. All
nodes (logic functions) are placed randomly before the annealing starts. At each
step, pairs of nodes are swapped. The global interconnection cost is evaluated. In
case it is higher than the previous one, all the swapped nodes are discard even if
local costs are lower. This new placement is considered for the next iteration. Bad



moves can be accepted with a decreasing probability to prevent the algorithm
from being trapped into a local minimum. The router starts once the placement
is achieved, so that any pre-placed solution or partially placed and routed circuit
can be considered. The router is a PathFinder-like router, owning a negotiated
scheme for resolving congestion over the routing resources. The router iterates
until no congestion remains. All resources have an associated cost depending
on the congestion of the resource. Each iteration detects all the signals sharing
a congested resource to be ripped up and rerouted. This mechanism forces the
signals to use unnecessarily congested resources, as these resources make the cost
of the route prohibitive relative to alternative routes.

Regular Editing The placer router is well suited for random logic. However,
when the objective is to achieve high performance, circuits must be structured
as regular assemblies of patterns. To specify regular circuits, a higher level tool
than the placer-router is needed. The regular editor provides a way to replicate
modules within the FPGA structure. The layout can be parameterized by the
size of modules, and geometric positions can be either absolute or relative. The
regular editor takes as input a structural description. This description is a 1D
or 2D array of modules (or BLIF descriptions).

Floorplanning The editor process no optimization over the assembly of mod-
ules. This leads to acceptable results only if the modules are of comparable size.
The floorplanner replaces the common behavior of the editor. The placement of
the modules is processed under some optimization criteria (global area, routing
cost, etc.). A floorplanner applies a divide and conquer strategy when placing
and routing large circuits: they can be partitioned, either at a logic level or at an
application level and split into several sub-circuits. Then, these smaller circuits
are placed and routed. The floorplanner recomposes the global circuit from the
produced modules.

Estimators The quality of the place-and-route stage must be analyzed, with re-
spect to several criteria. The technology mapping stage results in a set of nodes
and nets to be implemented that depend on the logic granularity. The placer
processes an annealing schedule over the location of the nodes based on a cost
function and a bounding box. The algorithm is parametrized to enable different
quality/cpu time trade-offs. A timing analyser is being added. Frequency per-
formance estimation of the circuits will be then possible. An important point is
that every resource owns a private set of parameters, so that the virtual layer can
be tuned on demand by extracting useful information from the physical layer.

3.3 Implementation

The Generic FPGA Programming Tool Set is developed in the Visualwork-
s object-oriented programming environment, using SmallTalk as programming
language. An FPGA structure is then represented as a composition of classes we
can express at four distinct levels:



– The first level is called the abstract model. It represents all the different kinds
of elements that can be found inside a FPGA structure: routing, registers,
logic blocks, organization, etc. Each of these elements is represented by an
abstract class1 which describes its properties and its behavior.

– The second level is called the concrete model. It represents the specific ele-
ments of an FPGA structure: clbs, patterns, etc. These elements are mod-
eled through a set of concrete classes.

– The third level is produced by instantiation of the classes of the concrete
model. This model, called the architecture, is a copy of the FPGA struc-
ture the concrete model describes. This level is the one that the tool set
manipulates.

– The last level relies on the abstract model to produce the concrete model.
It is instantiated by compilation of the FPGA structure specification. It
permits fast architectural exploration as parameters (from the specification)
can be quickly modified, allowing the concrete model to be rebuilt from new
values.

Each tool manipulates the elements of the FPGA structure through its soft-
ware interface (api). This api is described within the abstract model, so that any
element of an architecture inherits from and conforms to it. As a consequence,
the tools manipulate only the abstract level. They are decoupled from the model
so that the model can be upgraded with few or no changes to the tools. Similarly,
new tools can be added which run over existing models.

4 Example: Virtual Structure for Linear Systolic Arrays

We illustrate the functionalities of the generic FPGA programming tool set by
defining a virtual FPGA structure well suited for implementing linear systolic
arrays.

4.1 Architecture

Figure 3 represents the virtual FPGA structure we want to implement. It is
a linear array of two-input N-bit cells. A cell can be configurated as a logic
or arithmetic function. The two inputs can be connected to neighboring cells
ranging from 7 to the left to 7 to the right. To program a systolic architecture
on this virtual FPGA structure, one has to place-and-route a systolic processor
and to replicate it over the whole structure. Of course, the router must ensure
that the routing of a single processor is suitable for replication.

A 8-bit cell has been designed for experimentation purposes and synthesized
for the Xilinx Virtex family. In addition to all the basic logic functions, a cell can
perform high level arithmetic operations such addition/subtraction or min/max
operations. A cell includes all the required configuration mechanism and fits into
65 Virtex slices. A Virtex-1000 component (filled at 80%) can then house 150
1 An abstract class owns no instances, and acts as a template for subclass production.



Fig. 3. Virtual Linear Systolic Array: it is composed of a linear array of 2-input N-bit
configurable operators. The output of one configurable operator can reach the input of
14 adjacent operators (7 to its left and 7 to its right)

such configurable 8-bit operators. By extension, the Virtex-II XCV2-10K, for
example, will be able to fit 800 8-bit configurable operators.

4.2 Using the Tool Set

To highlight the tool set functionalities let us take a systolic architecture de-
rived from a real application: the comparison of DNA sequences. The purpose,
here, is not to describe how a systolic array can implement this task (details of
implementation can be found in [7]) but to show how such an architecture can
be easily implemented.

Figure 4 represents a systolic DNA processor and its associated netlist. It is
composed of a few 8-bit operators. Each line of the body of the cell represents a
zero-, a one- or a 2-input function that a configurable operator can house. The
process for implementing an array is first to place and route one processor, then
to replicate it over the virtual structure.

A virtual structure representing a linear array of 800 8-bit configurable op-
erators has been specified. Then we run the place-and-route tool giving as input
the BLIF netlist corresponding to one processor. It takes only 3 seconds on a
standard PC to place-and-route one processor. Then we replicate it 88 times to
fill up the virtual array. It just takes a fraction of second to perform this last
task.

This first experiment highlights the possibilities of the FPGA tool set as a
good candidate for virtual FPGA structures. First it confirms that specifying
a new FPGA structure is fast. It takes less than a couple of hours to write
down the specification and half a day for tuning the graphical editor (cf figure
5) parameter. Although this FPGA structure is quite simple, it gives an idea of
the time one can expect to spend for getting the minimum basic set of tools.
It is also worth mentioning that once the general structure is set, further slight
modifications can be performed very quickly.

Second, a high level specification of a FPGA structure permits some ab-
straction. In our case, the datapath width of the cells is not stated. Neither is
the connection width between the processors. We just specify that an operator
connects its neighbors in an interval ranging from 7 operators to the left to 7
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Fig. 4. Systolic processor for DNA comparison: schematic and netlist description

operators to the right. The place-and-route step is thus independent of the size
of the configurable operators. It is also very fast since a set of wires (a bus) is
routed as a single entity.

Third, the regularity can be fully exploited, both for placement and routing.
The editor provides the possibility to replicate a regular pattern that has been
previously placed-and-routed. These features usually don’t exist, or are extreme-
ly limited, in other tools, leading to a poor exploitation of the regularity [5]. In
the context of automatic loop parallelization, for example, the synthesis step
for deriving a hardware regular array from high level specifications can now be
shrunk to a few minutes [3]. To keep the global synthesis time low, the mapping
time onto a reconfigurable structure needs to be very fast.

5 Conclusion

The tool set we have presented does not aim to challenge the today’s best placers
and routers (such as VPR [2]) in terms of speed. The objective is to offer a
prospective tool that fits non conventional architecture features and benefits
from the absence of layers from the high level behavioral logic to the hardware
execution management.

Our approach focuses on genericity, by decoupling the tools from the mod-
el. No assumption is made over the range of representable architectures. This
means that an architecture is described as an arbitrary composition of resources
(logic, routing, ...). The routing channels can start and end at any location on
the architecture. The logic blocks can be LUTs, operators, potentially pieces
of hardwired circuits, etc. These last features make this approach particularly
well suited for designing non conventional FPGA structures such as specialized
virtual FPGAs.
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Fig. 5. FPGA editor: it shows a partial view of the DNA systolic array.
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