Choosing Word Occurrences

for the Smallest Grammar Problem

Rafael Carrascosal, Matthias Gallé?,
Francois Coste?, Gabriel Infante-Lopez!

INLP Group 2Symbiose Project
U. N. de Cérdoba IRISA / INRIA
Argentina France
umMr IRISA
me| @ ~wos JBIINRIA
LATA

May, 25t 2010

Smallest Grammar Problem

Problem Definition
Given a sequence s, find a context-free grammar G(s) of minimal
size that generates exactly this and only this sequence.

Smallest Grammar Problem

Problem Definition
Given a sequence s, find a context-free grammar G(s) of minimal
size that generates exactly this and only this sequence.

Example

s ="how much wood would a woodchuck chuck if a
woodchuck could chuck wood?”, a possible G(s) (not
necessarily minimal) is

S — how much N2 W/V3 N4 /V1 if N4 C/V3 N1 N2 ?

Ny — chuck
N, — wood
N3 — ould
N4 — 4 N2 N1

Smallest Grammar Problem

Problem Definition
Given a sequence s, find a context-free grammar G(s) of minimal

size that generates exactly this and only this sequence.

Applications

e Data Compression
e Sequence Complexity

e Structure Discovery

Smallest Grammar Problem

Problem Definition
Given a sequence s, find a context-free grammar G(s) of minimal
size that generates exactly this and only this sequence.

Applications

e Structure Discovery

InetheebeginningeGodecreatedetheeheaveneandetheeearth

@©Nevill-Manning 1997

Smallest Grammar Problem

Problem Definition
Given a sequence s, find a context-free grammar G(s) of minimal
size that generates exactly this and only this sequence.

Remark
Not only S, but any non-terminal of the grammar generates only
one sequence of terminal symbols: cons :: N — &*

Smallest Grammar Problem

Problem Definition
Given a sequence s, find a context-free grammar G(s) of minimal
size that generates exactly this and only this sequence.

Remark
Not only S, but any non-terminal of the grammar generates only

one sequence of terminal symbols: cons :: N — &*
how much Ny wis Ny Ny if Ng cN3 Ny Np ?

-

Ny — chuck cons(S) = s

Ny — wood = cons(Ny) = chuck

N3 — ould cons(Ny) = wood

Ny — a NpNq cons(N3) = ould
cons(Ng) = a woodchuck

Smallest Grammar Problem

Problem Definition
Given a sequence s, find a context-free grammar G(s) of minimal

size that generates exactly this and only this sequence.

Size of a Grammar

Gl= > (wl+1)

N—weP

Smallest Grammar Problem

Problem Definition
Given a sequence s, find a context-free grammar G(s) of minimal

size that generates exactly this and only this sequence.

Size of a Grammar

Gl= > (lwl+1)

N—weP
S — how much Ny w5 Ny Ny if Ng cN3 Ny Ny ?
Ny — chuck
No — wood
N3 — ould
Ny — a Ny Ny

4

how much Ny wN3 Ng Ny if Ng cN3 Ny Ny | chuck | wood | ould | a Ny Ny |

Previous Approaches

1. Practical algorithms: Sequitur (and offline friends). 1996
“Compression and Explanation Using Hierarchical Grammars”. Nevill-Manning & Witten. The Computer
Journal. 1997

2. Compression theoretical framework: Grammar Based Code.
2000

“Grammar-based codes: a new class of universal lossless source codes”. Kieffer & Yang. IEEE T on
Information Theory. 2000

3. Approximation ratio to the size of a Smallest Grammar in the
worst case. 2002

“The Smallest Grammar Problem”, Charikar et.al. IEEE T on Information Theory. 2005

Previous Approaches

1. Practical algorithms: Sequitur (and offline friends). 1996

“Compression and Explanation Using Hierarchical Grammars”. Nevill-Manning & Witten. The Computer

Journal. 1997

Offline algorithms

e Maximal Length (ML): take longest repeat, replace all
occurrences with new symbol, iterate.

Offline algorithms

e Maximal Length (ML): take longest repeat, replace all
occurrences with new symbol, iterate.

S — how_much_wood_would_a_woodchuck_chuck_
if_a_woodchuck_could_chuck_wood?

Offline algorithms

e Maximal Length (ML): take longest repeat, replace all
occurrences with new symbol, iterate.

S — how_much_wood_would_a_woodchuck_chuck_
if _a_woodchuck_could_chuck_wood?

Offline algorithms

e Maximal Length (ML): take longest repeat, replace all
occurrences with new symbol, iterate.

S — how_much_wood_would_a_woodchuck_chuck_
if_a_woodchuck_could_chuck_wood?
I
S — how_much_wood_would/N;huck_if Nyould _chuck_wood?
Ni — _a_woodchuck_c

Offline algorithms

e Maximal Length (ML): take longest repeat, replace all
occurrences with new symbol, iterate.

S — how_much_wood_would_a_woodchuck_chuck_
if_a_woodchuck_could_chuck_wood?
I
S — how_much_wood_would/N;huck_if Nyould _chuck_wood?
Ni — _a_woodchuck_c

Offline algorithms

e Maximal Length (ML): take longest repeat, replace all
occurrences with new symbol, iterate.

S — how_much_wood_would_a_woodchuck_chuck_
if_a_woodchuck_could_chuck_wood?

J
S — how_much_wood_would/N;huck_if Nyould _chuck_wood?
Ni — _a_woodchuck_c

U
S — how_much_wood_would N;huck_if_N;ould_Nowood?
Ny — _a_woodN>c
N> — chuck_

Offline algorithms

e Maximal Length (ML): take longest repeat, replace all
occurrences with new symbol, iterate.
Bentley & Mcllroy “Data compression using long common strings”. DCC. 1999.
Nakamura, et.al. “Linear-Time Text Compression by Longest-First Substitution”. MDPI Algorithms. 1999
e Most Frequent (MF): take most frequent repeat, replace all
occurrences with new symbol, iterate
Larsson & Moffat. “Offline Dictionary-Based Compression”. DCC. 1999
e Most Compressive (MC): take repeat that compress the best,
replace with new symbol, iterate

Apostolico & Lonardi. “Off-line compression by greedy textual substitution” Proceedings of IEEE. 2000

A General Framework: IRR

IRR (Iterative Repeat Replacement) framework
Input: a sequence s, a score function f
1. Initialize Grammar by § — s
2. take repeat w that maximizes f over G
3. if replacing w would yield a bigger grammar than G
then
3.1 return G
else
3.1 replace all (non-overlapping) occurrences of w in G by new
symbol N

32 add rule N - w to G
3.3 goto 2

Complexity: O(n3)

Results on Canterbury Corpus

sequence Sequitur IRR-ML IRR-MF IRR-MC
alice29.txt 19.9% 37.1% 8.9% 41000
asyoulik.txt | 17.7% 37.8% 8.0% 37474
cp.html 22.2% 21.6% 10.4% 8048
fields.c 20.3% 18.6% 16.1% 3416
grammar.lsp | 20.2% 20.7% 15.1% 1473
kennedy.xls | 4.6% 7.7% 0.3% 166924
lcet10.txt 24.5% 45.0% 8.0% 90099
plrabn12.txt | 14.9% 452% 5.8% 124198
ptth 23.4% 26.1% 6.4% 45135
sum 25.6% 15.6% 11.9% 12207
xargs.1 16.1% 16.2% 11.8% 2006
average 19.0% 26.5% 9.3%

Extends and confirms results of Nevil-Manning & Witten “On-Line and Off-Line Heuristics

for Inferring Hierarchies of Repetitions in Sequences”. Proc. of the IEEE. vol 80 no 11. November 2000

A General Framework: IRR

IRR (Iterative Repeat Replacement) framework
Input: a sequence s, a score function f
1. Initialize Grammar by S — s
2. take repeat w that maximizes f over G
3. if replacing w would yield a bigger grammar than G
then
3.1 return G
else
3.1 replace all (non-overlapping) occurrences of w in G by new
symbol N

32 add rule N - w to G
3.3 goto 2

Complexity: O(n3)

Split the Problem

Choice of Constituents
Smallest Grammar Problem

Choice of Occurrences

A General Framework: IRR

IRR (Iterative Repeat Replacement) framework
Input: a sequence s, a score function f
1. Initialize Grammar by S — s
2. take repeat w that maximizes f over G
3. if replacing w would yield a bigger grammar than G
then
3.1 return G
else
3.1 replace all (non-overlapping) occurrences of w in G by new
symbol N

32 add rule N - w to G
3.3 goto 2

Complexity: O(n3)

A General Framework: IRRCOO

IRRCOO (Iterative Repeat Replacement with Choice of Occurrence
Optimization) framework
Input: a sequence s, a score function f
1. Initialize Grammar by S — s
2. take repeat w that maximizes f over G
3. if replacing w would yield a bigger grammar than G
then
3.1 return G
else

3.1 G« mgp(cons(G) U cons(w))
3.2 goto 2

Choice of Occurrences

Minimal Grammar Parsing (MGP) Problem

Given sequences Q = {s = wp, w1, ..., Wn}, find a context-free
grammar of minimal size that has non-terminals
{§ = No, Ni,...Np} such that cons(N;) = w;.

10

Choice of Occurrences: an Example

Given sequences Q = {ababbababbabaabbabaa, abbaba, bab}

11

Choice of Occurrences: an Example

Given sequences Q = {ababbababbabaabbabaa, abbaba, bab}
No eleleelelelelele2eleele’e02020202020%0

11

Choice of Occurrences: an Example

Given sequences Q2 = {ababbababbabaabbabaa, abbaba, bab}
N N N N N

N, etelelel-elele

11

Choice of Occurrences: an Example

Given sequences Q {ababbababbabaabbabaa abbaba, bab}
NN

.—(\.-.—.

oleolel

bbb a _Dhia
Ny -0 0—0—0—-0-0

A minimal grammar for € is
No — aN2N2N1Nla

N1 — abNga

N2 — bab

N, eleiele

11

Choice of Occurrences: an Example

Given sequences 2 = {ababbababbabaabbabaa, abbaba, bab
N N N, N, No

FLr

No

mgp can be computed in O(n%)

11

Split the Problem

Choice of Constituents
Smallest Grammar Problem

Choice of Occurrences

12

A Search Space for the SGP

Given s, take the lattice (R(s), C) and associate a score to each
node 7: the size of the grammar mgp(n U {s}). A smallest
grammar will have associated a node with minimal score.

‘R

(R)

A
/ —ﬁ\\ x// /\)/ \\...\!/—\‘;
A A4 4
a <) ("‘\

13

A Search Space for the SGP

Lattice is a good search space

For every sequence s, there is a node 7 in (R(s), C) such that
mgp(n U {s}) is a smallest grammar.

Not the case for IRR search space

But, there exists a sequence s such that for any score function f,
IRR(s, f) does not return a smallest grammar

14

The ZZ Algorithm

bottom-up phase: given node 7, compute scores of nodes n U {w;}
and take node with smallest score.

B B B P

i

A 1\\\,./[\.v/’! o
------ S

< %\6 //v_/‘

e

15

The ZZ Algorithm

bottom-up phase: given node 7, compute scores of nodes n U {w;}
and take node with smallest score.

15

The ZZ Algorithm

bottom-up phase: given node 7, compute scores of nodes n U {w;}
and take node with smallest score.

@B B O s

i

4 1\\,./[\.v/’! o
______ . /;\// o .

< &\5 //»_J

—

15

The ZZ Algorithm

bottom-up phase: given node 7, compute scores of nodes n U {w;}
and take node with smallest score.

15

The ZZ Algorithm

bottom-up phase: given node 7, compute scores of nodes n U {w;}
and take node with smallest score.

/ ‘\1 f/_\ ‘, /_\\] (/'-\

4 l‘&\-\\f/} // S
''''' w W (a0

@ &\5 //v\:/‘

15

The ZZ Algorithm

bottom-up phase: given node 7, compute scores of nodes n U {w;}
and take node with smallest score.

15

The ZZ Algorithm

bottom-up phase: given node 7, compute scores of nodes n U {w;}
and take node with smallest score.

é 7\ // P / 2 / 2

\..j,/w&\&f/’ /\ 4
a O a P
4 4 4

f

15

The ZZ Algorithm

bottom-up phase: given node 7, compute scores of nodes n U {w;}
and take node with smallest score.

top-down phase: given node 7, compute scores of nodes 1\ {w;}
and take node with smallest score.

/‘\/9\\/ Y

{ Y /
\/X
AN N \

L <
‘\,/’ L A A

15

The ZZ Algorithm

bottom-up phase: given node 7, compute scores of nodes n U {w;}
and take node with smallest score.

top-down phase: given node 7, compute scores of nodes 1\ {w;}
and take node with smallest score.

v

_ 4 _ /l_,/ —
/"\/ « £\\x — N
o »

ZZ: succession of both phases. Is in O(n")

15

sequence IRRCOO-MC ZZ IRR-MC
alice29.txt -4.3% -8.0% | 41000
asyoulik.txt | -2.9% -6.6% | 37474
cp.html -1.3% -3.5% | 8048
fields.c -1.3% -3.1% | 3416
grammar.lsp | -0.1% -0.5% | 1473
kennedy.xls | -0.1% -0.1% | 166924
lcet10.txt -1.7% - 90099
plrabn12.txt | -5.5% - 124198
ptth -2.6% - 45135
sum -0.8% -1.5% | 12207
xargs.1 -0.8% -1.7% | 2006
average -2.0% -3.1%

Results on Canterbury Corpus

16

New Results

Cllassi— sequence length IRRMGP* size im-
fication name provement
Virus P. lambda 48 Knt 13061 -4.25%
Bacterium E. coli 4.6 Mnt | 741435 -8.82%
Protist T. pseudonana chrl 3 Mnt 509203 -8.15%
Fungus S. cerevisiae 12.1 Mnt | 1742489 -9.68%
Alga O. tauri 12.5 Mnt | 1801936 -8.78%

17

Back to Structure

How similar are the structures returned by the different algorithms?

18

Back to Structure

How similar are the structures returned by the different algorithms?
Standard measure to compare parse trees:

e Unlabeled Precision and Recall (F-measure)
¢ Unlabeled Non Crossing Precision and Recall (F-measure)

Dan Klein. “The Unsupervised Learning of Natural Language Structure”. Phd Thesis. U Stanford. 2005

18

Similarity of Structure

sequence algorithm vs IRR-MC size gain Ur UNCg

e 7Z 31% 778 853
: IRRCOO-MC 13% 841 887
77 35% 663 750

cp-htm IRRCOO-MC 13% 814 848
o 77 80% 366 386
IRRCOO-MC 43% 639 66.0

77 66% 346 358

asyoulike.txt IRRCOO-MC 2.99% 55.1 56.9

10

Conclusions and Perspectices

* Split SGP into two complementary problems: choice of
constituents and choice of occurrences

* Definition of a search space that contains a solution....

% ... and to define algorithms which find smaller grammars than
state-of-the-art.

20

Conclusions and Perspectices

* Split SGP into two complementary problems: choice of
constituents and choice of occurrences

* Definition of a search space that contains a solution....

% ... and to define algorithms which find smaller grammars than
state-of-the-art.

e Promising results on DNA sequences (whole genomes)

20

Conclusions and Perspectices

%

Split SGP into two complementary problems: choice of
constituents and choice of occurrences

%

Definition of a search space that contains a solution....

>*

. and to define algorithms which find smaller grammars than
state-of-the-art.

e Promising results on DNA sequences (whole genomes)

Focus on the structure. Meaning of (dis)similarity.

20

The End

thDkAforBr_attenC._DoAhave_Dy_quesCs?
B_

_you

tion

an

OO m>»
I A

21

Parse Tree Similarity Measures

_ |{bebrackets(P;):b does not cross brackets(Ps)|
UNCP('Dl’ 'D2) - [brackets(Py)|

_ |{bebrackets(P,):b does not cross brackets(P1)|
UNCR(PI’ P2) - |brackets(P2)|

— 2
UNCE(P1, P2) = UNCp(P1,P,)~T+UNCR(Py,P,) T

29

Parse Tree Similarity Measures

|brackets(Py)Nbrackets(P>)|

UP(Pl’ P2) - [brackets(Py)]
brackets(P1)Nbrackets(P:
UR(Pla 'D2) = bt eTESaéQQs(i’Z)TtS(2)
— 2
UF(PI; P2) - UP(Pl,PQ)_l-i-UR(Pl,Pg)_l

29

Problems of IRR-like algorithms

Example

xaxbxcx|1xbxcxax|pxcxaxbx|3xaxcxbx |4 xbxaxcx |s xexbxax|exax|7xbx|gxex

23

Problems of IRR-like algorithms

Example

xaxbxcx|1xbxcxax|pxcxaxbx|3xaxcxbx |4 xbxaxcx |s xexbxax|exax|7xbx|gxex
A smallest grammar is:

AbC|1BcA|,CaBl3AcB|4BaCls CbA|gAl7BlsC

Xax

xbx

Xcx

bl

O™ >0

23

Problems of IRR-like algorithms

Example

xaxbxcx|1xbxcxax|pxcxaxbx |3 xaxcxbx|axbxaxcx |sxcxbxax |e xax|7xbx|gxex

But what IRR can do is like:
S Abxcx|1xbxcAlaxc Abx|3Acxbx|axbAcx|sxexbAlg Alzxbx|gxcx

A xax

Abxcx|1 BcA|axcAbx|3AcBlaxbAcx|sxexbA|e Al7 Blgxex
xax
xbx

W > 0

Lills=lll<=ll

AbC|1BcA|axcAbx|3AcB|axbAcx|s CbA|eAl7Bls C
xax
xbx
XCX

O™ O

24

	Appendix

