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Smallest Grammar Problem

Problem Definition
Given a sequence s, find a context-free grammar G (s) of minimal
size that generates exactly this and only this sequence.

Example

s =“how much wood would a woodchuck chuck if a
woodchuck could chuck wood?”, a possible G (s) (not
necessarily minimal) is

S → how much N2 wN3 N4 N1 if N4 cN3 N1 N2 ?
N1 → chuck
N2 → wood
N3 → ould
N4 → a N2N1
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Figure 1.1 Hierarchies for Genesis 1:1in (a) English, (b) French, and (c) German

particular class of grammars, and attempt to provide guarantees about identifying
the source grammar from its output.

The hierarchy of phrases provides a concise representation of the sequence, and
conciseness can be an end in itself. When the hierarchy is appropriately encoded,
the technique provides compression. Data compression is concerned with making
efficient use of limited bandwidth and storage by removing redundancy. Most
compression schemes work by taking advantage of the repetitive nature of
sequences, either by creating structures or by accumulating statistics. Building a
hierarchy, however, allows not only the sequence, but also the repeated phrases, to
be encoded efficiently. This success underscores the close relationship between
learning and data compression.

1.3 Some examples
This section previews several results from the thesis. SEQUITUR produces a
hierarchy of repetitions from a sequence. For example, Figure 1.1 shows parts of
three hierarchies inferred from the text of the Bible in English, French, and
German. The hierarchies are formed without any knowledge of the preferred
structure of words and phrases, but nevertheless capture many meaningful
regularities. In Figure 1.1a, the word beginning is split into begin and ning—a root
word and a suffix. Many words and word groups appear as distinct parts in the
hierarchy (spaces have been made explicit by replacing them with bullets). The
same algorithm produces the French version in Figure 1.1b, where commencement is

c©Nevill-Manning 1997
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Smallest Grammar Problem

Problem Definition
Given a sequence s, find a context-free grammar G (s) of minimal
size that generates exactly this and only this sequence.

Remark
Not only S , but any non-terminal of the grammar generates only
one sequence of terminal symbols: cons :: N → Σ∗

S → how much N2 wN3 N4 N1 if N4 cN3 N1 N2 ?
N1 → chuck
N2 → wood
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⇒
cons(S) = s
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Problem Definition
Given a sequence s, find a context-free grammar G (s) of minimal
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S → how much N2 wN3 N4 N1 if N4 cN3 N1 N2 ?
N1 → chuck
N2 → wood
N3 → ould
N4 → a N2N1

⇓
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2



Previous Approaches

1. Practical algorithms: Sequitur (and offline friends). 1996
“Compression and Explanation Using Hierarchical Grammars”. Nevill-Manning & Witten. The Computer

Journal. 1997

2. Compression theoretical framework: Grammar Based Code.
2000
“Grammar-based codes: a new class of universal lossless source codes”. Kieffer & Yang. IEEE T on

Information Theory. 2000

3. Approximation ratio to the size of a Smallest Grammar in the
worst case. 2002
“The Smallest Grammar Problem”, Charikar et.al. IEEE T on Information Theory. 2005

3



Previous Approaches

1. Practical algorithms: Sequitur (and offline friends). 1996
“Compression and Explanation Using Hierarchical Grammars”. Nevill-Manning & Witten. The Computer

Journal. 1997

2. Compression theoretical framework: Grammar Based Code.
2000
“Grammar-based codes: a new class of universal lossless source codes”. Kieffer & Yang. IEEE T on

Information Theory. 2000

3. Approximation ratio to the size of a Smallest Grammar in the
worst case. 2002
“The Smallest Grammar Problem”, Charikar et.al. IEEE T on Information Theory. 2005

3



Offline algorithms

• Maximal Length (ML): take longest repeat, replace all
occurrences with new symbol, iterate.
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Offline algorithms

• Maximal Length (ML): take longest repeat, replace all
occurrences with new symbol, iterate.
Bentley & McIlroy “Data compression using long common strings”. DCC. 1999.

Nakamura, et.al. “Linear-Time Text Compression by Longest-First Substitution”. MDPI Algorithms. 1999

• Most Frequent (MF): take most frequent repeat, replace all
occurrences with new symbol, iterate
Larsson & Moffat. “Offline Dictionary-Based Compression”. DCC. 1999

• Most Compressive (MC): take repeat that compress the best,
replace with new symbol, iterate
Apostolico & Lonardi. “Off-line compression by greedy textual substitution” Proceedings of IEEE. 2000
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A General Framework: IRR

IRR (Iterative Repeat Replacement) framework
Input: a sequence s, a score function f

1. Initialize Grammar by S → s

2. take repeat ω that maximizes f over G

3. if replacing ω would yield a bigger grammar than G
then
3.1 return G

else
3.1 replace all (non-overlapping) occurrences of ω in G by new

symbol N
3.2 add rule N → ω to G
3.3 goto 2

Complexity: O(n3)
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Results on Canterbury Corpus

sequence Sequitur IRR-ML IRR-MF IRR-MC

alice29.txt 19.9% 37.1% 8.9% 41000
asyoulik.txt 17.7% 37.8% 8.0% 37474
cp.html 22.2% 21.6% 10.4% 8048
fields.c 20.3% 18.6% 16.1% 3416
grammar.lsp 20.2% 20.7% 15.1% 1473
kennedy.xls 4.6% 7.7% 0.3% 166924
lcet10.txt 24.5% 45.0% 8.0% 90099
plrabn12.txt 14.9% 45.2% 5.8% 124198
ptt5 23.4% 26.1% 6.4% 45135
sum 25.6% 15.6% 11.9% 12207
xargs.1 16.1% 16.2% 11.8% 2006

average 19.0% 26.5% 9.3%
Extends and confirms results of Nevill-Manning & Witten “On-Line and Off-Line Heuristics

for Inferring Hierarchies of Repetitions in Sequences”. Proc. of the IEEE. vol 80 no 11. November 2000
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Split the Problem

Choice of Constituents

Smallest Grammar Problem

Choice of Occurrences
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A General Framework: IRRCOO

IRRCOO (Iterative Repeat Replacement with Choice of Occurrence
Optimization) framework
Input: a sequence s, a score function f

1. Initialize Grammar by S → s

2. take repeat ω that maximizes f over G

3. if replacing ω would yield a bigger grammar than G
then
3.1 return G

else
3.1 G ← mgp(cons(G ) ∪ cons(ω))
3.2 goto 2
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Choice of Occurrences

Minimal Grammar Parsing (MGP) Problem

Given sequences Ω = {s = w0,w1, . . . ,wm}, find a context-free
grammar of minimal size that has non-terminals
{S = N0,N1, . . .Nm} such that cons(Ni ) = wi .
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Choice of Occurrences: an Example

Given sequences Ω = {ababbababbabaabbabaa, abbaba, bab}

N0

N1

N2
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Choice of Occurrences: an Example

Given sequences Ω = {ababbababbabaabbabaa, abbaba, bab}

N0

N1

N2

A minimal grammar for Ω is
N0 → aN2N2N1N1a
N1 → abN2a
N2 → bab
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Choice of Occurrences: an Example

Given sequences Ω = {ababbababbabaabbabaa, abbaba, bab}

N0

N1

N2

mgp can be computed in O(n3)
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Split the Problem

Choice of Constituents

Smallest Grammar Problem

Choice of Occurrences
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A Search Space for the SGP

Given s, take the lattice 〈R(s),⊆〉 and associate a score to each
node η: the size of the grammar mgp(η ∪ {s}). A smallest
grammar will have associated a node with minimal score.
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A Search Space for the SGP

Lattice is a good search space

For every sequence s, there is a node η in 〈R(s),⊆〉 such that
mgp(η ∪ {s}) is a smallest grammar.

Not the case for IRR search space

But, there exists a sequence s such that for any score function f ,
IRR(s, f ) does not return a smallest grammar Proof
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The ZZ Algorithm

bottom-up phase: given node η, compute scores of nodes η ∪ {wi}
and take node with smallest score.

ZZ: succession of both phases. Is in O(n7)
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Results on Canterbury Corpus

sequence IRRCOO-MC ZZ IRR-MC

alice29.txt -4.3% -8.0% 41000
asyoulik.txt -2.9% -6.6% 37474
cp.html -1.3% -3.5% 8048
fields.c -1.3% -3.1% 3416
grammar.lsp -0.1% -0.5% 1473
kennedy.xls -0.1% -0.1% 166924
lcet10.txt -1.7% – 90099
plrabn12.txt -5.5% – 124198
ptt5 -2.6% – 45135
sum -0.8% -1.5% 12207
xargs.1 -0.8% -1.7% 2006

average -2.0% -3.1%
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New Results

Classi- sequence
length IRRMGP*

size im-
fication name provement

Virus P. lambda 48 Knt 13061 -4.25%
Bacterium E. coli 4.6 Mnt 741435 -8.82%
Protist T. pseudonana chrI 3 Mnt 509203 -8.15%
Fungus S. cerevisiae 12.1 Mnt 1742489 -9.68%
Alga O. tauri 12.5 Mnt 1801936 -8.78%
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Back to Structure

How similar are the structures returned by the different algorithms?

Standard measure to compare parse trees:

• Unlabeled Precision and Recall (F-measure)

• Unlabeled Non Crossing Precision and Recall (F-measure)

Dan Klein. “The Unsupervised Learning of Natural Language Structure”. Phd Thesis. U Stanford. 2005
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Similarity of Structure

sequence algorithm vs IRR-MC size gain UF UNCF

fields.c
ZZ 3.1 % 77.8 85.3
IRRCOO-MC 1.3 % 84.1 88.7

cp.html
ZZ 3.5 % 66.3 75.0
IRRCOO-MC 1.3 % 81.4 84.8

alice.txt
ZZ 8.0 % 36.6 38.6
IRRCOO-MC 4.3 % 63.9 66.0

asyoulike.txt
ZZ 6.6 % 34.6 35.8
IRRCOO-MC 2.9 % 55.1 56.9
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Conclusions and Perspectices

? Split SGP into two complementary problems: choice of
constituents and choice of occurrences

? Definition of a search space that contains a solution....

? ... and to define algorithms which find smaller grammars than
state-of-the-art.

• Promising results on DNA sequences (whole genomes)

• Focus on the structure. Meaning of (dis)similarity.
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The End

S → thDkAforBr attenC. DoAhave Dy quesCs?
A → B
B → you
C → tion
D → an
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Parse Tree Similarity Measures

UNCP(P1,P2) = |{b∈brackets(P1):b does not cross brackets(P2)|
|brackets(P1)|

UNCR(P1,P2) = |{b∈brackets(P2):b does not cross brackets(P1)|
|brackets(P2)|

UNCF (P1,P2) = 2
UNCP(P1,P2)−1+UNCR(P1,P2)−1
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Parse Tree Similarity Measures

UP(P1,P2) = |brackets(P1)∩brackets(P2)|
|brackets(P1)|

UR(P1,P2) = |brackets(P1)∩brackets(P2)|
|brackets(P2)|

UF (P1,P2) = 2
UP(P1,P2)−1+UR(P1,P2)−1
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Problems of IRR-like algorithms

Example

xaxbxcx |1xbxcxax |2xcxaxbx |3xaxcxbx |4xbxaxcx |5xcxbxax |6xax |7xbx |8xcx

A smallest grammar is:
S → AbC |1BcA|2CaB|3AcB|4BaC |5CbA|6A|7B|8C
A → xax
B → xbx
C → xcx
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Problems of IRR-like algorithms

Example

xaxbxcx |1xbxcxax |2xcxaxbx |3xaxcxbx |4xbxaxcx |5xcxbxax |6xax |7xbx |8xcx
But what IRR can do is like:
S → Abxcx |1xbxcA|2xcAbx |3Acxbx |4xbAcx |5xcxbA|6A|7xbx |8xcx
A → xax
⇓

S → Abxcx |1BcA|2xcAbx |3AcB|4xbAcx |5xcxbA|6A|7B|8xcx
A → xax
B → xbx
⇓

S → AbC |1BcA|2xcAbx |3AcB|4xbAcx |5CbA|6A|7B|8C
A → xax
B → xbx
C → xcx
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