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Observation tables

€ a ba
e |1 0 O
a |0 1 O
b |0 1 O
aa |1 1 1
ab| 0 0 1
ba|l 1 1
bb|1 0 O

Used in the L* algorithm (D. Angluin)
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Timed automaton: a model for timed systems
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Timed automaton: a model for timed systems

x:0.8 y:23 3

SD v

start — A
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Execution: 1.5:2;0.8:b
= Resets are unobservable

3 Alur and Dill, “A Theory of Timed Automata”, 1994.
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Event recording automata

Making resets observable

» One clock per letter in the alphabet.

» Each transition resets the clock corresponding to its letter.

4 Alur, Fix, and Henzinger, “Event-Clock Automata: A Determinizable Class of Timed Automata”,

1999.
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Active learning of ERAs
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= Refinement of the
guards.

A consistent stucture can be folded as an ERA.
> Interesting structure with good algorithms,
» Does not deal with reset guesses.
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Reset-free ERA

Making resets observable

» One clock per letter in the alphabet.

» Each transition resets the clock corresponding to its letter.
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Reset-free ERA
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Active learning of RERAs: first try

Changing the structure
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Inconsistency is detected = Separating guards
No separating guard without a reset:
0.920.8a (+) and 0.7al.1a (—)
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Active learning of RERASs: invalidity

Guessing resets

Added structure: Observation graph
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2,(0,1)

,(01) ‘(/(?2\.
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Active learning of RERAs: invalidity
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Added structure: Observation graph
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» Each guard is "minimal": a cube of size one.

» A node corresponding to both positive and negative
observations is an invalidity.

» Allows to prune the main structure.
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Active learning of RERASs

Combining the structures
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Partitions the clock values » Precise

v

v

Detects inconsistencies » Detects invalidity

v

Infers guards » Infers clock resets

v

Observations are propagated in both structures

v

Observation graph is used to prune the Decision graph
Decision graph will be folded into a RERA

v
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Conclusion

Learning of RERAs

» extend the learnable model classes;

» introduces the key notion of invalidity;

» paves the way to the learning of deterministic TAs.
It requires

» new structures to separate reset guessing and decision
making;

» new and updated parallelisable algorithms
Interesting open questions:

» reduce the space-cost using implicit structures;

» redact and analyse the generalization to deterministic TAs.
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