Simulation of Urban Train Systems with Regulation L. Hélouët, K. Kecir, E. Fabre

INRIA Rennes, SUMO Team – ALSTOM

lation

SIMSTORS^[3,4]

T-Plan

Metro operators are committed to quality of service: punctuallity (w.r.t. fixed schedules), regularity of trains, nb. users transported....

Incidents cause **delays** in trains operation. Small to medium delays can be recovered by application of **regulation** techniques:

increase trains speed,

A simulator for regulated train systems. The heart of the software is a variant of **Stochastic Time Petri nets**^[2]

with ad-hoc semantics, and

random distributions over trip times, dwell times, and incidents

P(d < t)

Adaptation of bus **bunching avoidance**^[1] techniques to urban train systems.

Regulation seen as event based control

Simplified problem: ring topologies

reduce dwell times...

Objectives

Regulation is largely automated: several algorithms can be used

But:

- Metro architecture influences performance
- Regulation is part of the design of a line
- QOS objectives differ for each project
- No a priori clue to choose a regulation algorithm or set its parameters

Results

- A formal design framework
- A fully operational simulator : SIMSTORS
 - case study: Santiago Line 1 with early recovery regulation algorithm
 - Fast **symbolic** simulation:
 - 4 hours of operation/50 trains/24 stations in 19s.
 - Ongoing transfer at ALSTOM
- Success story for a concurrent stochastic timed

<u>Objective</u>: equalize headways above a threshold h_{min}

Optimal command \equiv **optimal speeds**

Need for evaluation & early decision tools

Contribution of SUMO

Use of formal methods and concurrency to evaluate models and compare performance of regulation algorithms

bunching avoidance Optimal control in feedback loops

Development of simulation tools

Industrial Context

Joint research lab between **INRIA** and **ALSTOM**

Project P22

Regulation Policies in Urban Rail Systems

08:50

08:40

08:20

08:10

08:00

07:50

Headway equalization on ring topologies

Future Directions

Complex topologies: forks, shuffled lines, insertion, extraction...

Toward higher-level control, directed by objectives (rescheduling of missions, partial line closures, fast train extraction...)

MQ UC: TB GO Train trajectories obtained with SIMSTORS (Santiago L1, space-time diagram)

HM

LD

Future Directions

CIFRE Grant (2015-2018)

Ongoing transfer of results to **ALSTOM**

- Validation of the model with complex scenarios, multiple regulation algorithms
- Finer simulation of train interactions in interstation zones
- From performance evaluation to advice on best strategy to apply
- Optimal control w.r.t. quality criteria
- Application for planning

References

- [1] C.F. Daganzo, Y. Xuan, J. Argote, Dynamic bus holding strategies for schedule reliability: optimal linear control and performance analysis. Transportation Research Part B: Methodological, 45(10):1831–1845, 2011.
- [2] A. Horváth, M. Paolieri, L. Ridi, E. Vicario, Transient analysis of non-markovian models using stochastic state classes. Perform. Eval., 69(7-8):315-335, 2012.
- [3] K. Kecir, Contrôle optimal d'un système ferroviaire complet, Mémoire de master, Univ. Toulouse III-Paul Sabatier, 2014.
- [4] L. Hélouët, K. Kecir, Realizability of Schedules by Stochastic *Time Petri Nets with Blocking Semantics*, (submitted), 2016.

P22 : Regulation Policies for Urban Train Systems – ALSTOM & INRIA, SUMO