Project-Team CASA

Disruption-Tolerant Networking and Computing

Vannes

Activity Report
2013
1 Team

Head of the team
Frédéric Guidic, Associate Professor (HDR), UBS

Permanent staff
Yves Mahéo, Associate Professor (HDR), UBS
Nicolas Le Sommer, Assistant Professor, UBS
Pascale Launay, Assistant Professor, UBS
Frédéric Raimbault, Assistant Professor, UBS

PhD students
Djamel Benferhat, Région Bretagne grant, from October 2009 to October 2013
Abdulkader Benchi, Syrian Government grant, since October 2010
Ali Makke, Région Bretagne / C.G. Morbihan grant, since October 2010
Armel Esnault, CDE UBS grant, since October 2012
Maël Auzias, CDE UBS grant, since October 2013

2 Overall Objectives

2.1 Overview

Keywords: ambient, pervasive, ubiquitous, computing, delay-tolerant, disruption-tolerant, opportunistic, networking.

The research activity of team CASA aims at supporting communication and service provision in challenged environments, and most notably in partially or intermittently connected networks. A network can become disconnected when, for example, the nodes that compose this network are not always up and running, or when transmission links between these nodes are not always available. The whole network can then appear as a non-connected dynamic graph, whose topology changes continuously as nodes and links get up and down. Communication between nodes that belong to a connected fragment (a.k.a. an “island”) of the network is possible, but no temporaneous end-to-end communication is possible between nodes that reside on distinct islands.

Delay/Disruption-Tolerant Networking (DTN) is an approach that can help in such conditions [Fal04]. With this approach a message can be stored temporarily on a node, in order to be forwarded later by this node when circumstances permit. This store-and-forward mechanism is actually the foundation of DTN.

In team CASA we mostly focus on mobile ad hoc networks (MANETs), and investigate how the DTN approach can help support communication and services when such networks are disconnected. Indeed, in a disconnected mobile network, mobility can be considered as an advantage as it makes

1UBS: Université de Bretagne-Sud

it possible for messages to propagate network-wide, using mobile nodes as carriers that can move between remote fragments of the network. In the literature the term *Opportunistic Networking* is often used to denote solutions that apply this *store-carry-and-forward* principle in disconnected MANETs (or D-MANETs), for radio contacts between mobile nodes are often non-predictable and must thus be exploited opportunistically [PPC06b].

Part of our activity in team CASA consists in designing opportunistic routing protocols for D-MANETs, and implementing these protocols in communication middleware so they can be tested in real conditions. We also investigate how distributed applications can be designed and implemented for networks whose characteristics keep changing spontaneously and unpredictably. Indeed, designing distributed applications that require network-wide communication and coordination in a D-MANET is quite a challenge, when communication and coordination depend on unpredicted pairwise contacts between neighbor nodes. The term *Opportunistic Computing* has been introduced recently in the literature in order to refer to a new computing paradigm that relies exclusively on such pairwise contacts [CGMP10,CK10]. Team CASA strives to contribute to the development of this computing paradigm by designing methods, models, and middleware tools that make it easier for programmers to tackle the challenges presented by D-MANETs.

3 Scientific Foundations

3.1 Challenges According to FET-Proactive Initiatives

The work conducted in team CASA addresses some of the challenges identified by several FET Proactive initiatives, including:

- **FP7-5 Self-Awareness in Autonomic Systems (AWARENESS):** the challenge is to create computing and communication systems that are able to optimise overall performance and resource usage in response to changing conditions, adapting to both context (such as user behaviour) and internal changes (such as topology).

- **FP7-1 Pervasive Adaptation (PERADA):** the challenge is to design massive-scale pervasive information and communication systems, capable of autonomously adapting to highly dynamic and open technological and user contexts.

- **FP6 Situated and Autonomic Communications (SAC):** the challenge is to design communication/networking systems that can be characterised as situated (i.e. reacting locally on environment and context changes), autonomously controlled, self-organising, radically distributed, technology independent and scale-free.

3.2 Opportunistic Communication in Disconnected Mobile Ad hoc Networks

A Mobile Ad hoc NETwork (or MANET for short) is a network that is composed of a number of mobile digital devices featuring interfaces for short-range wireless transmissions (such as Wi-Fi, Bluetooth, or ZigBee interfaces). Each device can communicate directly with other devices, provided these devices are within its transmission range.

During the last two decades the mainstream research activity on mobile ad hoc networking has mostly aimed at achieving dynamic routing between mobile devices [BKP02, RT99]. Most of the proposals designed along this line rely on the assumption that communication between two devices in a network is possible only if a temporaneous end-to-end transmission route can be established (using multi-hop forwarding if necessary) between them whenever needed. Yet it is now widely admitted that this hypothesis about continuous end-to-end connectivity in a MANET is somewhat contrived. Many real MANETs are actually either partially or intermittently connected, and routing protocols that assume continuous connectivity cannot perform satisfactorily in such conditions [NG09, PPC06a]. Specific protocols must thus be designed for disconnected MANETs (a.k.a. D-MANETs), and these protocols must opportunistically exploit transient unpredicted contacts between mobile nodes.

Team CASA has thus designed and tested several opportunistic protocols over the last years, exploring different kinds of forwarding algorithms in these protocols (content-based epidemic forwarding, location-based routing, service-oriented routing, etc.). The last results obtained by the team are presented in Section 6.1.

3.3 Opportunistic Computing in Disconnected Mobile Ad hoc Networks

Opportunistic computing is an emerging paradigm that builds on the results of several research areas (including autonomic computing and social networking), moving forward from simple communication to develop a framework to enable collaborative computing tasks in networking environments where long disconnections and network partitions are the rule [CGMP10].

Service-oriented applications seem well suited for ambient computing environments in general, and for MANETs—and especially disconnected MANETs—in particular. Building applications based on software services is now well mastered and supported by many techniques and tools, among which the most popular Web Services. Moreover this approach fosters decoupling between interacting applicative entities. It should therefore accommodate well with the connectivity constraints of disconnected MANETs. Indeed, a significant amount of research work has been produced in recent years on middleware solutions for service provision in MANETs. Nevertheless, most of them consider only connected MANETs and focus on the performance of service discovery. Providing support for service-oriented applications poses specific problems in disconnected MANETs. The main challenge is to cope with the absence of end-to-end connectivity guaranty brought upon by the continuous fragmentation.

of the network into several communication islands, which impacts not only on service discovery but also on service invocation.

Beside service-oriented computing, other computing paradigms have long proved useful for designing distributed applications. Group communication, publish-subscribe systems, message queues, tuple spaces, are thus abstractions or systems for which efficient implementations are available in software development kits. Yet most of these implementations have been realized for traditional, connected environments. They cannot operate satisfactorily in partially or intermittently connected environments, and must be completely revised in order to tolerate network partitions, transmission disruptions, or long transmission delays.

4 Application Domains

4.1 Overview

The research work carried out in team CASA is focused on the design and the implementation of middleware support for applications targeting challenged networking environments. We are particularly interested in providing support for mobility and continuity of service, even in the absence of any stable communication infrastructure. This applies to multiple environments where adaptive and cooperative applications are required, but where cost or technical constraints preclude the deployment of stable computing and communication resources. Possible application domains are:

- Collaborative computing in crisis operation fields;
- Sensor and actuator networks;
- Automotive computing (especially inter-vehicle applications);
- Home automation (pervasive multimedia and general purpose applications);
- Nomadic computing;
- Personal communication systems;
- Mobile health (mHealth).

5 Software

5.1 DoDWAN

Keywords: opportunistic, content-based, epidemic, networking, middleware.

DoDWAN3 is a flexible Java-based middleware platform that has been developed in team CASA in order to support content-based, delay-tolerant communication in disconnected MANETs. It is distributed under the GNU General Public License (GPL4).

3DoDWAN stands for “Document Dissemination in Wireless Ad hoc Networks”.
4http://www.irisa.fr/casa/dodwan
In content-based networking, information flows towards interested receivers rather than towards specifically set destinations. This approach notably fits the needs of applications and services dedicated to information sharing or event distribution. It can also be used for destination-driven message forwarding, though, considering that destination-driven forwarding is simply a particular case of content-driven forwarding where the only significant parameter for message processing is the identifier of the destination host (or user).

DoDWAN implements a selective version of the epidemic routing model proposed in [VB00]. It provides application services with a publish/subscribe API. When a message is published on a host, it is simply put in the local cache maintained on this host. Afterwards each radio contact with another host is an opportunity for the DoDWAN system to transfer a copy of the message to that host. In order to receive messages an application service must subscribe with DoDWAN and provide a selection pattern that characterizes the kind of messages it would like to receive. The selection patterns specified by all local application services running on the same host define this host’s interest profile. DoDWAN uses this profile to determine which messages should be exchanged whenever a radio contact is established between two hosts. As a general rule, a mobile host that defines a specific interest profile is expected to serve as a mobile carrier for all messages that match this profile. Yet a host can also be configured so as to serve as an altruistic carrier for messages that present no interest to the application services it runs locally. This behavior is optional, though, and it must be enabled explicitly by setting DoDWAN’s configuration parameters accordingly. Details about this interaction scheme and about how it performs in real conditions can be found in [9].

A suite of applications suitable for disconnected MANETs has been developed on top of the DoDWAN middleware system. This suite is called DoDWAN-Apps, and it is available for laptops and netbooks running Linux or Windows, as well as for Android smartphones. DoDWAN-Apps is meant to be a fully-functional demonstrator of the concept of opportunistic ad hoc networking. With a mobile device running DoDWAN-Apps a user can for example locate other users in the neighborhood and exchange text messages, voice messages, or files with any other user or group of users.

DoDWAN and DoDWAN-Apps have been tested and demonstrated several times during the past years. They have notably been used in a military tactical network, using VHF battlefield radios with built-in modems, and proved very robust and reliable in such harsh conditions [8]. More recently, a field experiment has been conducted during the 4th Extreme Conference on Communication (ExtremeCom 2012 - The Alpine Expedition) [7, 11]. During this experiment volunteers were equipped with Android smartphones running DoDWAN-Apps, which allowed them to communicate together during outdoor activities (such as igloo building, snowshoe hikes, etc.). Again DoDWAN and DoDWAN-Apps proved quite effective in these conditions, while GSM/UMTS services were unavailable most of the time.

5.2 JOMS

Keywords: opportunistic, computing, message, service, middleware.

http://www.extremecom.org
JOMS (Java Opportunistic Message Service) is an opportunistic message-oriented middleware system that has been designed in order to operate in partially or intermittently connected ad hoc networks [1,2]. JOMS is actually a provider for the standard Java Message Service (JMS), so distributed applications using JMS message queues and topics can be deployed and executed in challenged networking environments. An opportunistic, content-driven communication model (based on DoDWAN) is used to enable message forwarding in such networks, using mobile hosts as carriers that allow messages to propagate network-wide.

JOMS is distributed under the terms of the GNU General Public License.

5.3 JION

Keywords: opportunistic, computing, tuple-space, JavaSpace, middleware.

The concept of tuple space is interesting for both communication and coordination in distributed applications, and the JavaSpaces technology provides a functional implementation of this concept for Java applications. Yet most current JavaSpaces implementations are server-based systems. Since no host in a D-MANET can be considered as stable and accessible enough to play the role of a server for all other hosts, a server-less implementation of the JavaSpaces specification is required for applications targeting D-MANETs.

JION (JavaSpaces Implementation for Opportunistic Networks) has been designed and implemented along that line. It provides a fully-distributed, peer-to-peer JavaSpaces implementation, while tolerating transmission disruptions and delays [3,2]. It is distributed under the terms of the GNU General Public License[4].

5.4 FelixDroid

Keywords: service-oriented, computing, OSGi, Android.

FelixDroid is an Android-embedded version of Felix OSGi Felix Apache framework an open-source implementation of the OSGi specification. FelixDroid is also a framework dedicated to the development and the execution of OSGi graphical applications in Android. It provides graphical tools in order to manage the OSGi Felix framework (management of the bundle repositories, deployment and management of bundles, etc.). FelixDroid is distributed under the terms of the CeCiLL licence[8]. It is currently used by several companies (Bull, Orange Business Services, SOGETI High Tech, Proxym-it, DEV1.0...) and academic teams (Université de Valenciennes, École des Mines d’Ales, Carnegie Mellon University, ETH Zürich, TU-Berlin...).

6 New Results

6.1 Routing Protocols for Opportunistic Networking

Keywords: opportunistic, delay-tolerant, disruption-tolerant, protocols.
Participants: M. Auzias (PhD student), A. Makke (PhD student), Y. Mahéo, N. Le Sommer, P. Launay, F. Guidec.

Team CASA develops opportunistic protocols for different kinds of partially and intermittently connected networks.

Besides D-MANETs that are only composed of mobile nodes, an interesting class of networks is one that combines fixed infostations and mobile nodes. In such an ICHN (Intermittently Connected Hybrid Network), infostations may be directly connected with one another, although that is not an obligation. An ICHN can actually be viewed as an extension of an already existing infrastructure network, including mobile nodes that are not always in range of an infostation but that can however benefit from services deployed on this infostation thanks to opportunistic networking techniques.

Team CASA worked on a middleware system called TAO, dedicated to service provisioning in ICHNs. This system includes protocols for service discovery and service invocation whose originality lies in the fact that their design strives to exploit the request-response pattern of communication induced by invocations, as well as the fact that an ICHN includes not only intermittently connected mobile clients but also fixed infostations that host service providers. This is achieved mainly thanks to a simple heuristic that exploits the last date of contact between a mobile device and an infostation. Simulation experiments based in particular on real mobility traces data showed that TAO is able to guarantee good performance with limited overhead [12][7].

With the Nephila middleware platform [1] the CASA team investigates communication between devices in complex and large ICHNs that can cover a wide area, such as a city. Nephila builds a decentralized unstructured peer-to-peer overlay to support communication in an ICHN. This overlay offers a homogeneous view of the ICHN by hiding the connectivity disparities between mobile and fixed devices. It creates and maintains logical links between the devices that are connected to the Internet, thus creating a backbone in the ICHN in order to support efficient message delivery. To do so, Nephila implements two distinct neighbor discovery mechanisms: one based on a beaconing process for nodes that belong to the mobile parts of the ICHN, and another one based on Cyclon [VGVS05] for nodes that belong to the backbone. Connectivity disruptions are tolerated thanks to the store-carry-and-forward principle. Nephila computes a list of so-called "trail values" (TV). A trail value computed by a node for a given destination reflects its capacity to reach this destination, either directly or through intermediate nodes. These values are propagated in the network thanks to a variant of the Exponential Decay Bloom Filter (EDBF [KXZ05]) we have defined, and that is called Trail Bloom Filters (TBFs). Finally, Nephila includes a message forwarding algorithm called BTSA (for Best Trail Section Algorithm) that uses the discovery mechanisms, trail values and the TBFs in order to forward messages towards their destination.

6.2 Middleware Support for Opportunistic Computing

Keywords: middleware, opportunistic, computing.

Participants: A. Benchi (PhD student), P. Launay, F. Guidec.

As explained in Section 5.1 designing and implementing distributed applications capable of running satisfactorily in disconnected MANETs (or D-MANETs) is quite a challenge. The peer-to-peer model should generally be preferred over the client-server model, because in many real D-MANETs no host can be considered as stable and accessible enough to play the role of a server for all other hosts. Additionally, any distributed application running in a D-MANET must obviously be able to tolerate long transmission delays, and occasional transmission failures as well.

The concept of middleware has long proved efficient in easing the development of distributed applications for traditional wired networks. It can be expected that carefully designed middleware systems might bring similar benefits for D-MANETs.

Developers need to be able to rely on well-known distributed computing abstractions when designing applications for challenged networks. Yet standard implementations for message queues, tuple spaces, etc. can hardly run satisfactorily in D-MANETs, as they have originally been designed to operate in resilient connected networks. Members of team CASA are thus revisiting these “standards” in order to provide new implementations that can tolerate network partitions, long transmission delays, and transmission failures. An opportunistic middleware system called JOMS (Java Opportunistic Message Service) has been designed in order to support message queues and topics in D-MANETs [1][2]. Likewise, JION (JavaSpaces Implementation for Opportunistic Networks) is a middleware system that implements the concept of tuple space in D-MANETs [3][2]. Both middleware systems are distributed under the GNU General Public License (see Section 5.1), and they have been tested experimentally in real mobile networks.

Work is now in progress to develop a middleware system capable of supporting the establishment of consensus in a D-MANET. Reaching a consensus is indeed a key requirement in many distributed applications. Yet most traditional consensus protocols implicitly assume continuous network-wide end-to-end connectivity, and the absence of crash failures. Such assumptions hardly hold in a D-MANET, and consensus establishment becomes a real challenge in such conditions.

6.3 Disruption-Tolerant Biometric Sensors for Health Monitoring

Keywords: mHealth, mobile, health, disruption-tolerant, biometric, wireless sensors.

Participants: D. Benferhat (PhD student), F. Guidec.

The concept of Wireless Biomedical Sensor Network (WBSN) opens up new opportunities for biomedical monitoring, such as the long-term, continuous monitoring of patients in a clinical environment or at home. In team CASA we investigate the possibility of using the DTN (Delay/Disruption Tolerant Networking) approach as a means to tolerate transmission disruptions between sensors worn by highly mobile people in outdoor conditions, and a remote monitoring center. We selected a scenario we consider as a most challenging one: monitoring the cardiac activity of runners during a marathon race, using a limited number of base stations deployed along the marathon route. These stations provide a sparse coverage of the route, so cardiac sensors worn by runners must record data continuously during the race, and use episodic contacts with roadside base stations to upload data to the monitoring center. A first prototype has been developed, using IEEE 802.15.4 (ZigBee) technology to support the transmissions between sensors and base stations. Field experiments conducted with this prototype...
revealed that 802.15.4 transmissions can hardly meet the stringent requirements of the marathon scenario [5]. A second prototype has then been developed, using Android smartphones as relays between sensors and roadside base stations, and IEEE 802.11 (Wi-Fi) transmissions on the smartphone-to-base-station wireless segment. Field experiments confirmed that this architecture is viable, and allows to transmit biometric data during the marathon race with no data loss [4].

The marathon scenario has deliberately been selected as a most-challenging test case, the underlying idea being that solutions designed to meet its requirements may also be reused in less constrained situations. In order to illustrate this idea we conducted field experiments in order to demonstrate that the health of non-hospitalized subjects can be monitored during their daily activity, using Wi-Fi community hotspots for opportunistic data uploading. Experiments involving a subject walking in a residential area confirm that the density of community hotspots in such an environment is sufficient to ensure regular updates of the data collected by the monitoring center. Other trials conducted in different conditions (subject at work, shopping, practising sports, etc) have led to similar conclusions [6] [3]. The system we developed was also presented during the ExtremeCom’2013 conference in Iceland [5] [6].

This work served as a guideline for Djamel Benferhat’s PhD thesis, which was defended in October 2013 [1]. Project SHERPAM (see Section 7.6), which starts in 2014, will be an opportunity for the team to continue working on biophysical data acquisition and transmission in e-Health applications.

6.4 Disruption-Tolerant Transmission of Navigation Data between Racing Sailboats

Keywords: delay-tolerant, disruption-tolerant, wireless transmission, navigation data, sailboat, ship.

Participants: F. Raimbault, N. Le Sommer, F. Guidec.

In project Ship2Ship (see Section 7.2) we investigate the possibilities offered by disruption-tolerant ad hoc networking to support the transmission of navigation data between racing sailboats during training sessions.

A prototype system has been developed by team CASA, and this system has been tested in 2013 on IMOCA Class sailboats[9]. The Ship2Ship prototype is a light embedded system that can interface with a ship’s navigation central, and with the laptop used by the skipper to display navigation data and devise tactical choices. The data stream received from the navigation central is relayed to the laptop, but it is also processed locally so parts of the data can be broadcast wirelessly to other ships. Conversely, data received from other ships are relayed to the skipper’s laptop. The skipper can thus compare the data produced by his own ship’s navigation central with similar data received from other ships.

The prototype consists of a sealed box connected to a marine Wi-Fi antenna. The box contains a Raspberry-Pi micro-PC with a Wi-Fi dongle. The marine antenna is used for ship-to-ship transmissions, and the dongle for inboard transmissions between the micro-PC and the skipper’s laptop. The micro-PC runs a program we developed, which processes data streams received from the local and remote navigation centrals, and which orchestrates data transmissions between neighbor ships. The transmission protocol is of course fully disruption-tolerant, as the distance between ships varies continuously and transmission links are highly unstable in such conditions.

[9]IMOCA Class sailboats are 60-foot open mono-hulls used in races such as the “Vendée Globe”.
The Ship2Ship prototype has been tested in real conditions during a training session in August 2013. One system was installed aboard the MACIF ship, and another system was installed aboard a rigid-hulled inflatable boat. The goal of this experiment was primarily to check the system in marine conditions, and to measure the transmission range achievable with the Wi-Fi antennas used in the system. Results confirmed that the system is effective, and transmissions over about 1500 m. were observed during the tests.

Further tests are planned in 2014 on IMOCA Class and Figaro Class sailboats. Moreover, several options are considered for further investigation, such as supporting multi-hop transmissions in flotillas of ships, replacing Wi-Fi antennas by VHF or UHF antennas for longer-range transmissions, and using antenna diversity to improve signal reception.

7 Contracts and Grants with Industry

7.1 Note

During the year 2013, members of team CASA have contributed to the writing of several project proposals, which were then submitted to different funding agencies. Several of these proposals have been accepted. Besides project Ship2Ship, which started in 2013, four new projects will thus begin in early 2014, two of which (projects ASAWoO and C3PO) will be funded by ANR[^10], one (project TACTICS) by the EDA, and the last one (project SHERPAM) by LabEx CominLabs.

7.2 Project Ship2Ship (2013-*)

Project Ship2Ship involves the “Pôle Finistère Course au Large” (PFCL), the Adrena company, and team IRISA/CASA. The objective is to design, implement and validate a data transmission system allowing navigation data to be exchanged between racing sailboats during training sessions, so skippers can compare their tactical choices and the settings of their riggings. In 2013 a prototype has been developed by team CASA, and this prototype has been tested on IMOCA sailboats. Further tests are planned in 2014 on IMOCA and Figaro Class sailboats.

7.3 Project ASAWoO (2014-2017)

Project ASAWoO (Adaptive Supervision of Avatar/Object Links for the Web of Objects) has been accepted by ANR to be funded from 2014 to 2017 in the framework of programme INFRA 2013. Besides team CASA this project will involve team AVALON at LIP (Lyon 1), teams DRIM and SOC at LIRIS (Lyon 1), team COSY at LCIS (Univ. Pierre Mendès-France), and company Génération Robots (Lyon). This project addresses the domain of the Web of objects. The objective is to improve the integration of connected objects in the Web. A software platform shall be developed, that will facilitate the communication and control of connected objects, as well as the cooperation of several such objects. This platform will benefit from advances in complementary disciplines, such as semantic Web for knowledge processing, service-oriented architectures for interoperability and scalability.

[^10]: ANR : Agence Nationale de la Recherche (French National Research Agency).
context-aware computing for situation-driven multi-level decision making, multi-agent systems for autonomous cooperation between objects, delay/disruption-tolerant networking for communication, and cloud technology for reduced power consumption.

7.4 Project C3PO (2014-2016)

Project C3PO (Collaborative Creation of Contents and Publishing using Opportunistic networks) has been accepted by ANR to be funded from 2014 to 2016 in the framework of programme CONTINT 2013. Besides team CASA this project will involve team INRIA/DICE (Lyon), team SATIN at LT2C (Saint-Étienne), team SSG at LEMNA (Nantes), and company ChronoCourse (Vannes). The objective of this project is to support so-called “Spontaneous and Ephemeral Social Networks” (SESNs), based on a peer-to-peer distributed architecture and on mobile ad hoc networks. A SESN is meant to allow nomadic people to interact according to their affinities and centers of interest, so they can cooperate to perform specific tasks within a SESN. Several application domains are considered for SESNs, such as the collection of data and the production of digital content during cultural or sports events. The contents thus produced shall be accessible from the users’ mobile terminals, and be replicated on dedicated servers or in traditional social networks so they can also be accessed by remote users, and remain accessible beyond the lifetime of a SESN.

7.5 Project TACTICS (2014-2017)

Project TACTICS (TACTICal Service oriented architecture) is a project of the European Defence Agency (EDA), whose objective is to define and validate a service infrastructure to be used by armed forces for tactical communication. This infrastructure shall be efficient, safe, and tolerate connectivity disruptions. This project has been approved by EDA in the framework of the “ad hoc B” programme. It will be funded from 2014 to 2017, and it involves six countries: France (Thales Communications France and team IRISA/CASA at Université de Bretagne-Sud), Finland (Patria), Germany (Thales Defence & Security Systems and Fraunhofer FKIE), Italy (Selex ES, Thales Italia, and Università degli Studi dell’Aquila), Norway (Gjøvik University College), and Poland (ITTI Sp., Military Communication Institute, Military University of Technology).

7.6 Project SHERPAM (2014-2017)

Project SHERPAM (Sensors for HEalth Recording and Physical Activity Monitoring) has been accepted by LabEx CominLabs to be funded from 2014 to 2017. The objective is to design, implement, and validate experimentally a system based on biophysical sensors to monitor people during their daily life. Three application domains shall be considered specifically in this project: the monitoring of patients presenting risks of heart failure, the evaluation of the functional limitations of arteriopathic patients, and the recognition and quantization of physical activity for a given population. Besides team IRISA/CASA this project will involve laboratories LTSI (Rennes 1), M2S (Rennes 2, ENS Rennes), LAUREPS (Rennes 2), and the CIC-IT 804-CHU Rennes.
8 Dissemination

8.1 Involvement in the Scientific Community

- Frédéric Guidec is a member of the editorial board and/or program committee of the International Journal on Advances in Internet Technology, the International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UbiComm), the International Conference on Wireless and Mobile Communications (ICWMC), the International Symposium on Wireless Personal Multimedia Communications (WPMC), and the Military Communications and Information Systems Conferences (MCC). As such he has reviewed several papers for these journal and conferences in 2013. He also served as a reviewer for the PhD dissertation of Carlos Borrego Iglesias (“A Mobile Code-based Multi-Routing Protocol Architecture for Delay and Disruption Tolerant Networking”, Universitat Autònoma de Barcelona, March 2013), and as a reviewer and jury member for the PhD thesis of Estanislao Mercadal Melià (“Mobile Agents in Wireless Sensor Networks to Improve the Coordination of Emergency Response Teams”, Universitat Autònoma de Barcelona, Oct. 2013). He served as an ANRT expert to evaluate submissions for CIFRE grants. Since 2012 he is a member of the Scientific Committee of the “Images & Réseaux” Cluster.

- Nicolas Le Sommer is a member of the editorial board and/or program committee of the International Journal on Advances in Internet Technology, International Journal of Handheld Computing Research (IJHCR) and the International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UbiComm). As such he has reviewed several papers for these journal and conferences in 2013.

- Yves Mahéo served as deputy head of the UBS site of IRISA in 2012 and 2013. As such he represented IRISA in various local committees, notably in the Scientific Council of UBS.

8.2 Teaching

- Frédéric Guidec teaches computer networking at different levels, from Licence 3 to Master 2. He is notably in charge of course unit CSR (“Communication and Services in Auto-Organized Wireless Networks”) in the research master’s degree in computer science (MRI), and served from 2011 to 2013 as an academic director for the second year of Master WMR (Web, Multimédia, Réseaux) at UBS.

- Pascale Launay teaches object programming, computer networking and middleware at ENSIBS (École Nationale Supérieure d’Ingénieurs de Bretagne Sud). She is the academic director for the Computer Science Department of ENSIBS.

- Frédéric Raimbault teaches programming language theory and compiler construction, computer architecture, distributed systems and semantic Web at different levels, from Licence 2 to Master 2. He serves as an academic director for the first year of Master WMR (Web, Multimédia, Réseaux) at UBS.

- Nicolas Le Sommer teaches database theory, Web application programming and the programming, the supervision and the management of distributed applications at the Computer Science
Yves Mahéo teaches computer systems, distributed systems and middleware, at different levels at UBS, from Licence 1 to Master 2. He notably participates in the course unit CSR (“Communication and Services in Auto-Organized Wireless Networks”) in the research master’s degree in computer science (MRI). He also gives a course on system administration in the UBS Master WMR (Web, Multimédia, Réseaux) relocated in Morocco.

9 Bibliography

Major publications by the team in recent years

Doctoral dissertations and “Habilitation” theses

Articles in referred journals and book chapters

Publications in Conferences and Workshops

