
Activity Report 2022

Team DIVERSE

Diversity-centric Software Engineering

Joint team with Centre Inria de l’Université de Rennes

D4 – Language and Software Engineering

Team DIVERSE IRISA Activity Report 2022

ii

Contents

Project-Team DIVERSE 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3

3 Research program 4

3.1 Context . 4
3.2 Scientific background . 5

3.2.1 Model-Driven Engineering . 5
3.2.2 Variability modeling . 6
3.2.3 Component-based software development . 7
3.2.4 Validation and verification . 8
3.2.5 Empirical software engineering . 9

3.3 Research axis . 9
3.3.1 Axis #1: Software Language Engineering . 10
3.3.2 Axis #2: Spatio-temporal Variability in Software and Systems 11
3.3.3 Axis #3: DevSecOps and Resilience Engineering for Software and Systems 12

4 Application domains 13

5 Highlights of the year 14

5.1 Impact . 14
5.2 Awards . 14
5.3 New permanent positions within the team . 14

6 New software and platforms 14

6.1 New software . 14
6.1.1 FAMILIAR . 14
6.1.2 GEMOC Studio . 15
6.1.3 Interacto . 15
6.1.4 ALE . 16
6.1.5 Melange . 16

7 New results 17

7.1 Results for Axis #1: Software Language Engineering . 17
7.1.1 Foundations of Software Language Engineering . 17
7.1.2 DSL for Scientific Computing . 17
7.1.3 Digital Twins . 18
7.1.4 Reasoning over Time into Models . 18

7.2 Results for Axis #2: Spatio-temporal Variability in Software and Systems 18
7.2.1 Learning at scale . 18
7.2.2 Smart build . 19
7.2.3 Variability and debloating . 19
7.2.4 Scaling temporal analysis . 20
7.2.5 Deep variability . 21

7.3 Results for Axis #3: DevSecOps and Resilience Engineering for Software and Systems 21
7.3.1 Side-channels and source-code vulnerabilities . 21
7.3.2 Malware analysis and classification . 22
7.3.3 Open-source software supply chain security . 23
7.3.4 A Context-Driven Modelling Framework for Dynamic Authentication Decisions . . . 23

8 Bilateral contracts and grants with industry 24

8.1 Bilateral contracts with industry . 24

IRISA Activity Report 2022

9 Partnerships and cooperations 25

9.1 International initiatives . 25
9.1.1 Associate Teams in the framework of an Inria International Lab or in the framework

of an Inria International Program . 25
9.1.2 Inria associate team not involved in an IIL or an international program 26
9.1.3 Inria International Partners . 27

9.2 International research visitors . 27
9.2.1 Visits of international scientists . 27

9.3 European initiatives . 27
9.3.1 Horizon Europe . 27

9.4 National initiatives . 28
9.4.1 ANR . 28
9.4.2 DGA . 29
9.4.3 DGAC . 29

9.5 Regional initiatives . 30

10 Dissemination 30

10.1 Promoting scientific activities . 30
10.1.1 Scientific events: organisation . 30
10.1.2 Scientific events: selection . 31
10.1.3 Journal . 32
10.1.4 Invited talks . 32
10.1.5 Leadership within the scientific community . 33
10.1.6 Scientific expertise . 33
10.1.7 Research administration . 34

10.2 Teaching - Supervision - Juries . 34
10.2.1 Teaching . 34
10.2.2 Supervision . 34
10.2.3 Juries . 35

10.3 Popularization . 35
10.3.1 Articles and contents . 35
10.3.2 Interventions . 35

11 Scientific production 36

11.1 Major publications . 36
11.2 Publications of the year . 37
11.3 Other . 41
11.4 Cited publications . 41

IRISA Activity Report 2022

Project DIVERSE 1

Project-Team DIVERSE

Creation of the Project-Team: 2014 July 01

Keywords

Computer sciences and digital sciences

A1.2.1. – Dynamic reconfiguration

A1.3.1. – Web

A1.3.5. – Cloud

A1.3.6. – Fog, Edge

A2.1.3. – Object-oriented programming

A2.1.10. – Domain-specific languages

A2.5. – Software engineering

A2.5.1. – Software Architecture & Design

A2.5.2. – Component-based Design

A2.5.3. – Empirical Software Engineering

A2.5.4. – Software Maintenance & Evolution

A2.5.5. – Software testing

A2.6.4. – Ressource management

A4.1.1. – Malware analysis

A4.4. – Security of equipment and software

A4.6. – Authentication

A4.7. – Access control

A4.8. – Privacy-enhancing technologies

Other research topics and application domains

B3.1. – Sustainable development

B3.1.1. – Resource management

B6.1. – Software industry

B6.1.1. – Software engineering

B6.1.2. – Software evolution, maintenance

B6.4. – Internet of things

B6.5. – Information systems

B6.6. – Embedded systems

B8.1.2. – Sensor networks for smart buildings

B9.5.1. – Computer science

B9.10. – Privacy

IRISA Activity Report 2022

2 Inria Annual Report 2022

1 Team members, visitors, external collaborators

Research Scientists

• Djamel Khelladi [CNRS, Researcher]

• Gunter Mussbacher [UNIV MCGILL, Advanced Research Position, until Aug 2022]

• Olivier Zendra [INRIA, Researcher]

Faculty Members

• Olivier Barais [Team leader, UNIV RENNES I, Professor, HDR]

• Mathieu Acher [INSA Rennes, Professor, from Sep 2022, IUF, HDR]

• Arnaud Blouin [INSA RENNES, Associate Professor, HDR]

• Johann Bourcier [UNIV RENNES I, Associate Professor, HDR]

• Stéphanie Challita [UNIV RENNES I, Associate Professor]

• Benoît Combemale [UNIV RENNES I, Professor, HDR]

• Jean-Marc Jézéquel [UNIV RENNES I, Professor, HDR]

• Noël Plouzeau [UNIV RENNES I, Associate Professor]

• Walter Rudametkin Ivey [UNIV RENNES I, Associate Professor, from Sep 2022, HDR]

• Paul Temple [UNIV RENNES I, Associate Professor, from Sep 2022]

Post-Doctoral Fellow

• Xhevahire Ternava [UNIV RENNES I]

PhD Students

• Anne Bumiller [ORANGE]

• Cassius De Oliveira Puodzius [INRIA, until Jan 2022]

• Theo Giraudet [UNIV RENNES I, CIFRE, from Sep 2022]

• Gwendal Jouneaux [UNIV RENNES I]

• Zohra Kebaili [CNRS]

• Piergiorgio Ladisa [SAP]

• Leo Laugier [UNIV RENNES I, from Oct 2022]

• Quentin Le Dilavrec [UNIV RENNES I]

• Luc Lesoil [UNIV RENNES I]

• Georges Aaron Randrianaina [UNIV RENNES I]

IRISA Activity Report 2022

Project DIVERSE 3

Technical Staff

• Florian Badie [INRIA, Engineer]

• Romain Belafia [UNIV RENNES I, Engineer]

• Emmanuel Chebbi [INRIA, Engineer]

• Guy De Spiegeleer [UNIV RENNES I, Engineer, from Feb 2022]

• Theo Giraudet [UNIV RENNES I, Engineer, until Feb 2022]

• Pierre Jeanjean [INRIA, Engineer]

• Romain Lefeuvre [INRIA, Engineer]

• Dorian Leroy [INRIA, Engineer]

• Didier Vojtisek [INRIA, Engineer]

Interns and Apprentices

• Benjamin Ramone [UNIV RENNES I, from May 2022]

Administrative Assistant

• Sophie Maupile [CNRS]

Visiting Scientists

• Jessie Galasso-Carbonnel [UNIV MONTREAL, from Nov 2022]

• Mark Van Den Brand [UNIV EINDHOVEN, from Apr 2022 until Apr 2022]

External Collaborator

• Gurvan Le Guernic [DGA, until Nov 2022]

2 Overall objectives

DIVERSE’s research agenda targets core values of software engineering. In this fundamental domain we
focus on and develop models, methodologies and theories to address major challenges raised by the
emergence of several forms of diversity in the design, deployment and evolution of software-intensive
systems. Software diversity has emerged as an essential phenomenon in all application domains borne by
our industrial partners. These application domains range from complex systems brought by systems of
systems (addressed in collaboration with Thales, Safran, CEA and DGA) and Instrumentation and Control
(addressed with EDF) to pervasive combinations of Internet of Things and Internet of Services (addressed
with TellU and Orange) and tactical information systems (addressed in collaboration with civil security
services). Today these systems seem to be all radically different, but we envision a strong convergence
of the scientific principles that underpin their construction and validation, bringing forwards sane and
reliable methods for the design of flexible and open yet dependable systems. Flexibility and openness
are both critical and challenging software layer properties that must deal with the following four dimen-
sions of diversity: diversity of languages, used by the stakeholders involved in the construction of these
systems; diversity of features, required by the different customers; diversity of runtime environments,
where software has to run and adapted; diversity of implementations, which are necessary for resilience
by redundancy.

In this context, the central software engineering challenge consists in handling diversity from vari-
ability in requirements and design to heterogeneous and dynamic execution environments. In particular,

IRISA Activity Report 2022

4 Inria Annual Report 2022

this requires considering that the software system must adapt, in unpredictable yet valid ways, to changes
in the requirements as well as in its environment. Conversely, explicitly handling diversity is a great
opportunity to allow software to spontaneously explore alternative design solutions, and to mitigate
security risks.

Concretely, we want to provide software engineers with the following abilities:

• to characterize an “envelope” of possible variations;

• to compose envelopes (to discover new macro correctness envelopes in an opportunistic manner);

• to dynamically synthesize software inside a given envelope.

The major scientific objective that we must achieve to provide such mechanisms for software engi-
neering is summarized below:

Scientific objective for DIVERSE: To automatically compose and synthesize software diversity from
design to runtime to address unpredictable evolution of software-intensive systems

Software product lines and associated variability modeling formalisms represent an essential aspect
of software diversity, which we already explored in the past, and this aspect stands as a major foundation
of DIVERSE’s research agenda. However, DIVERSE also exploits other foundations to handle new forms
of diversity: type theory and models of computation for the composition of languages; distributed
algorithms and pervasive computation to handle the diversity of execution platforms; functional and
qualitative randomized transformations to synthesize diversity for robust systems.

3 Research program

3.1 Context

Applications are becoming more complex and the demand for faster development is increasing. In order
to better adapt to the unbridled evolution of requirements in markets where software plays an essential
role, companies are changing the way they design, develop, secure and deploy applications, by relying on:

• A massive use of reusable libraries from a rich but fragmented eco-system;

• An increasing configurability of most of the produced software;

• A strongly increase in evolution frequency;

• Cloud-native architectures based on containers, naturally leading to a diversity of programming
languages used, and to the emergence of infrastructure, dependency, project and deployment
descriptors (models);

• Implementations of fully automated software supply chains;

• The use of lowcode/nocode platforms;

• The use of ever richer integrated development environments (IDEs), more and more deployed in
SaaS mode;

• The massive use of data and artificial intelligence techniques in software production chains.

These trends are set to continue, all the while with a strong concern about the security properties of the
produced and distributed software.
The numbers in the examples below help to understand why this evolution of modern software engineer-
ing brings a change of dimension:

• When designing a simple kitchen sink (hello world) with the angular framework, more than 1600
dependencies of JavaScript libraries are pulled.

• The numbers revealed by Google in 2018 showed that over 500 million tests are run per day inside
Google’s systems, leading to over 4 millions daily builds.

IRISA Activity Report 2022

Project DIVERSE 5

• Also at Google, they reported 86 TB of data, including two billion lines of code in nine million
source files [111]. Their software also rapidly evolves both in terms of frequency and in terms of
size. Again, at Google, 25,000 developers typically commit 16,000 changes to the codebase on a
single workday. This is also the case for most of software code, including open source software.

• x264, a highly popular and configurable video encoder, provides 100+ options that can take boolean,
integer or string values. There are different ways of compiling x264, and it is well-known that the
compiler options (e.g., -O1 –O2 –O3 of gcc) can influence the performance of a software; the widely
used gcc compiler, for example, offers more than 200 options. The x264 encoder can be executed
on different configurations of the Linux operating system, whose options may in turn influence
x264 execution time; in recent versions (> 5), there are 16000+ options to the Linux kernel. Last
but not least, x264 should be able to encode many different videos, in different formats and with
different visual properties, implying a huge variability of the input space. Overall, the variability
space is enormous, and ideally x264 should be run and tested in all these settings. But a rough
estimation shows that the number of possible configurations, resulting from the combination of
the different variability layers, is 106000.

The DIVERSE research project is working and evolving in the context of this acceleration. We are
active at all stages of the software supply chain. Software supply chain covers all the activities and all the
stakeholders that relate to software production and delivery. All these activities and stakeholders have to
be smartly managed together as part of an overall strategy. The goal of supply chain management (SCM)
is to meet customer demands with the most efficient use of resources possible.

In this context, DIVERSE is particularly interested in the following research questions:

• How to engineer tool-based abstractions for a given set of experts in order to foster their socio-
technical collaboration;

• How to generate and exploit useful data for the optimization of this supply chain, in particular for
the control of variability and the management of the co-evolution of the various software artifacts;

• How to increase the confidence in the produced software, by working on the resilience and security
of the artifacts produced throughout this supply chain.

3.2 Scientific background

3.2.1 Model-Driven Engineering

Model-Driven Engineering (MDE) aims at reducing the accidental complexity associated with developing
complex software-intensive systems (e.g., use of abstractions of the problem space rather than abstrac-
tions of the solution space) [115]. It provides DIVERSE with solid foundations to specify, analyze and
reason about the different forms of diversity that occur throughout the development life cycle. A primary
source of accidental complexity is the wide gap between the concepts used by domain experts and the
low-level abstractions provided by general-purpose programming languages [86]. MDE approaches
address this problem through modeling techniques that support separation of concerns and automated
generation of major system artifacts from models (e.g., test cases, implementations, deployment and
configuration scripts). In MDE, a model describes an aspect of a system and is typically created or derived
for specific development purposes [70]. Separation of concerns is supported through the use of different
modeling languages, each providing constructs based on abstractions that are specific to an aspect of
a system. MDE technologies also provide support for manipulating models, for example, support for
querying, slicing, transforming, merging, and analyzing (including executing) models. Modeling lan-
guages are thus at the core of MDE, which participates in the development of a sound Software Language

Engineering, including a unified typing theory that integrates models as first class entities [117].
Incorporating domain-specific concepts and a high-quality development experience into MDE tech-

nologies can significantly improve developer productivity and system quality. Since the late nineties, this
realization has led to work on MDE language workbenches that support the development of domain-
specific modeling languages (DSMLs) and associated tools (e.g., model editors and code generators).
A DSML provides a bridge between the field in which domain experts work and the implementation

IRISA Activity Report 2022

6 Inria Annual Report 2022

(programming) field. Domains in which DSMLs have been developed and used include, among others,
automotive, avionics, and cyber-physical systems. A study performed by Hutchinson et al. [91] indicates
that DSMLs can pave the way for wider industrial adoption of MDE.

More recently, the emergence of new classes of systems that are complex and operate in heteroge-
neous and rapidly changing environments raises new challenges for the software engineering community.
These systems must be adaptable, flexible, reconfigurable and, increasingly, self-managing. Such char-
acteristics make systems more prone to failure when running and thus the development and study of
appropriate mechanisms for continuous design and runtime validation and monitoring are needed. In
the MDE community, research is focused primarily on using models at the design, implementation, and
deployment stages of development. This work has been highly productive, with several techniques now
entering a commercialization phase. As software systems are becoming more and more dynamic, the use
of model-driven techniques for validating and monitoring runtime behavior is extremely promising [101].

3.2.2 Variability modeling

While the basic vision underlying Software Product Lines (SPL) can probably be traced back to David
Parnas’ seminal article [108] on the Design and Development of Program Families, it is only quite recently
that SPLs have started emerging as a paradigm shift towards modeling and developing software system
families rather than individual systems [105]. SPL engineering embraces the ideas of mass customization
and software reuse. It focuses on the means of efficiently producing and maintaining multiple related
software products, exploiting what they have in common and managing what varies among them.

Several definitions of the software product line concept can be found in the research literature.
Clements et al. define it as a set of software-intensive systems sharing a common, managed set of features

that satisfy the specific needs of a particular market segment or mission and are developed from a common

set of core assets in a prescribed way [106]. Bosch provides a different definition [76]: A SPL consists of a

product line architecture and a set of reusable components designed for incorporation into the product

line architecture. In addition, the PL consists of the software products developed using the mentioned

reusable assets. In spite of the similarities, these definitions provide different perspectives of the concept:
market-driven, as seen by Clements et al., and technology-oriented for Bosch.

SPL engineering is a process focusing on capturing the commonalities (assumptions true for each
family member) and variability (assumptions about how individual family members differ) between
several software products [82]. Instead of describing a single software system, a SPL model describes a
set of products in the same domain. This is accomplished by distinguishing between elements common
to all SPL members, and those that may vary from one product to another. Reuse of core assets, which
form the basis of the product line, is key to productivity and quality gains. These core assets extend
beyond simple code reuse and may include the architecture, software components, domain models,
requirements statements, documentation, test plans or test cases.

The SPL engineering process consists of two major steps:

1. Domain Engineering, or development for reuse, focuses on core assets development.

2. Application Engineering, or development with reuse, addresses the development of the final prod-
ucts using core assets and following customer requirements.

Central to both processes is the management of variability across the product line [88]. In common
language use, the term variability refers to the ability or the tendency to change. Variability management
is thus seen as the key feature that distinguishes SPL engineering from other software development
approaches [77]. Variability management is thus increasingly seen as the cornerstone of SPL development,
covering the entire development life cycle, from requirements elicitation [119] to product derivation [123]
to product testing [104, 103].

Halmans et al. [88] distinguish between essential and technical variability, especially at the require-
ments level. Essential variability corresponds to the customer’s viewpoint, defining what to implement,
while technical variability relates to product family engineering, defining how to implement it. A clas-
sification based on the dimensions of variability is proposed by Pohl et al. [110]: beyond variability

in time (existence of different versions of an artifact that are valid at different times) and variability

in space (existence of an artifact in different shapes at the same time) Pohl et al. claim that variability

IRISA Activity Report 2022

Project DIVERSE 7

is important to different stakeholders and thus has different levels of visibility: external variability is
visible to the customers while internal variability, that of domain artifacts, is hidden from them. Other
classification proposals come from Meekel et al. [98] (feature, hardware platform, performance and
attributes variability) or Bass et al. [68] who discusses about variability at the architectural level.

Central to the modeling of variability is the notion of feature, originally defined by Kang et al. as: a

prominent or distinctive user-visible aspect, quality or characteristic of a software system or systems [93].
Based on this notion of feature, they proposed to use a feature model to model the variability in a SPL. A
feature model consists of a feature diagram and other associated information: constraints and dependency

rules. Feature diagrams provide a graphical tree-like notation depicting the hierarchical organization

of high level product functionalities represented as features. The root of the tree refers to the complete
system and is progressively decomposed into more refined features (tree nodes). Relations between nodes
(features) are materialized by decomposition edges and textual constraints. Variability can be expressed in
several ways. Presence or absence of a feature from a product is modeled using mandatory or optional

features. Features are graphically represented as rectangles while some graphical elements (e.g., unfilled
circle) are used to describe the variability (e.g., a feature may be optional).

Features can be organized into feature groups. Boolean operators exclusive alternative (XOR), inclusive

alternative (OR) or inclusive (AND) are used to select one, several or all the features from a feature group.
Dependencies between features can be modeled using textual constraints: requires (presence of a feature
requires the presence of another), mutex (presence of a feature automatically excludes another). Feature
attributes can be also used for modeling quantitative (e.g., numerical) information. Constraints over
attributes and features can be specified as well.

Modeling variability allows an organization to capture and select which version of which variant of
any particular aspect is wanted in the system [77]. To implement it cheaply, quickly and safely, redoing by
hand the tedious weaving of every aspect is not an option: some form of automation is needed to leverage
the modeling of variability [72]. Model Driven Engineering (MDE) makes it possible to automate this
weaving process [92]. This requires that models are no longer informal, and that the weaving process is
itself described as a program (which is as a matter of fact an executable meta-model [102]) manipulating
these models to produce for instance a detailed design that can ultimately be transformed to code, or to
test suites [109], or other software artifacts.

3.2.3 Component-based software development

Component-based software development [118] aims at providing reliable software architectures with a
low cost of design. Components are now used routinely in many domains of software system designs: dis-
tributed systems, user interaction, product lines, embedded systems, etc. With respect to more traditional
software artifacts (e.g., object oriented architectures), modern component models have the following
distinctive features [83]: description of requirements on services required from the other components;
indirect connections between components thanks to ports and connectors constructs [96]; hierarchical
definition of components (assemblies of components can define new component types); connectors
supporting various communication semantics [80]; quantitative properties on the services [75].

In recent years component-based architectures have evolved from static designs to dynamic, adaptive
designs (e.g., SOFA [80], Palladio [73], Frascati [99]). Processes for building a system using a statically
designed architecture are made of the following sequential lifecycle stages: requirements, modeling,
implementation, packaging, deployment, system launch, system execution, system shutdown and system
removal. If for any reason after design time architectural changes are needed after system launch
(e.g., because requirements changed, or the implementation platform has evolved, etc) then the design
process must be reexecuted from scratch (unless the changes are limited to parameter adjustment in the
components deployed).

Dynamic designs allow for on the fly redesign of a component based system. A process for dynamic
adaptation is able to reapply the design phases while the system is up and running, without stopping
it (this is different from a stop/redeploy/start process). Dynamic adaptation processes support chosen

adaptation, when changes are planned and realized to maintain a good fit between the needs that
the system must support and the way it supports them [94]. Dynamic component-based designs rely
on a component meta-model that supports complex life cycles for components, connectors, service
specification, etc. Advanced dynamic designs can also take platform changes into account at runtime,

IRISA Activity Report 2022

8 Inria Annual Report 2022

without human intervention, by adapting themselves [81, 121]. Platform changes and more generally
environmental changes trigger imposed adaptation, when the system can no longer use its design to
provide the services it must support. In order to support an eternal system [74], dynamic component
based systems must separate architectural design and platform compatibility. This requires support for
heterogeneity, since platform evolution can be partial.

The Models@runtime paradigm denotes a model-driven approach aiming at taming the complexity
of dynamic software systems. It basically pushes the idea of reflection one step further by considering the
reflection layer as a real model “something simpler, safer or cheaper than reality to avoid the complexity,
danger and irreversibility of reality [113]”. In practice, component-based (and/or service-based) plat-
forms offer reflection APIs that make it possible to introspect the system (to determine which components
and bindings are currently in place in the system) and dynamic adaptation (by applying CRUD opera-
tions on these components and bindings). While some of these platforms offer rollback mechanisms to
recover after an erroneous adaptation, the idea of Models@runtime is to prevent the system from actually
enacting an erroneous adaptation. In other words, the “model at run-time” is a reflection model that can
be uncoupled (for reasoning, validation, simulation purposes) and automatically resynchronized.

Heterogeneity is a key challenge for modern component based systems. Until recently, component
based techniques were designed to address a specific domain, such as embedded software for command
and control, or distributed Web based service oriented architectures. The emergence of the Internet of
Things paradigm calls for a unified approach in component based design techniques. By implementing
an efficient separation of concern between platform independent architecture management and platform
dependent implementations, Models@runtime is now established as a key technique to support dynamic
component based designs. It provides DIVERSE with an essential foundation to explore an adaptation
envelope at run-time. The goal is to automatically explore a set of alternatives and assess their relevance
with respect to the considered problem. These techniques have been applied to craft software architecture
exhibiting high quality of services properties [87]. Multi Objectives Search based techniques [84] deal
with optimization problem containing several (possibly conflicting) dimensions to optimize. These
techniques provide DIVERSE with the scientific foundations for reasoning and efficiently exploring an
envelope of software configurations at run-time.

3.2.4 Validation and verification

Validation and verification (V&V) theories and techniques provide the means to assess the validity of a
software system with respect to a specific correctness envelope. As such, they form an essential element
of DIVERSE’s scientific background. In particular, we focus on model-based V&V in order to leverage the
different models that specify the envelope at different moments of the software development lifecycle.

Model-based testing consists in analyzing a formal model of a system (e.g., activity diagrams, which
capture high-level requirements about the system, statecharts, which capture the expected behavior of
a software module, or a feature model, which describes all possible variants of the system) in order to
generate test cases that will be executed against the system. Model-based testing [120] mainly relies
on model analysis, constraint solving [85] and search-based reasoning [97]. DIVERSE leverages in
particular the applications of model-based testing in the context of highly-configurable systems and [122]
interactive systems [100] as well as recent advances based on diversity for test cases selection [90].

Nowadays, it is possible to simulate various kinds of models. Existing tools range from industrial tools
such as Simulink, Rhapsody or Telelogic to academic approaches like Omega [107], or Xholon. All these
simulation environments operate on homogeneous environment models. However, to handle diversity in
software systems, we also leverage recent advances in heterogeneous simulation. Ptolemy [79] proposes
a common abstract syntax, which represents the description of the model structure. These elements can
be decorated using different directors that reflect the application of a specific model of computation on
the model element. Metropolis [69] provides modeling elements amenable to semantically equivalent
mathematical models. Metropolis offers a precise semantics flexible enough to support different models
of computation. ModHel’X [89] studies the composition of multi-paradigm models relying on different
models of computation.

Model-based testing and simulation are complemented by runtime fault-tolerance through the
automatic generation of software variants that can run in parallel, to tackle the open nature of software-
intensive systems. The foundations in this case are the seminal work about N-version programming [67],

IRISA Activity Report 2022

Project DIVERSE 9

recovery blocks [112] and code randomization [71], which demonstrated the central role of diversity in
software to ensure runtime resilience of complex systems. Such techniques rely on truly diverse software
solutions in order to provide systems with the ability to react to events, which could not be predicted at
design time and checked through testing or simulation.

3.2.5 Empirical software engineering

The rigorous, scientific evaluation of DIVERSE’s contributions is an essential aspect of our research
methodology. In addition to theoretical validation through formal analysis or complexity estimation, we
also aim at applying state-of-the-art methodologies and principles of empirical software engineering.
This approach encompasses a set of techniques for the sound validation contributions in the field of
software engineering, ranging from statistically sound comparisons of techniques and large-scale data
analysis to interviews and systematic literature reviews [116, 114]. Such methods have been used for
example to understand the impact of new software development paradigms [78]. Experimental design
and statistical tests represent another major aspect of empirical software engineering. Addressing large-
scale software engineering problems often requires the application of heuristics, and it is important to
understand their effects through sound statistical analyses [66].

3.3 Research axis

DIVERSE explore Software Diversity. Leveraging our strong background on Model-Driven Engineering,
and our large expertise on several related fields (programming languages, distributed systems, GUI,
machine learning, security...), we explore tools and methods to embrace the inherent diversity in software

engineering, from the stakeholders and underlying tool-supported languages involved in the software
system life cycle, to the configuration and evolution space of the modern software systems, and the
heterogeneity of the targeted execution platforms. Hence, we organize our research directions according
to three axes (cf. Fig. 1):

• Axis #1: Software Language Engineering. We explore the future engineering and scientific envi-
ronments to support the socio-technical coordination among the various stakeholders involved
across modern software system life cycles.

• Axis #2: Spatio-temporal Variability in Software and Systems. We explore systematic and auto-
matic approaches to cope with software variability, both in space (software variants) and time
(software maintenance and evolution).

• Axis #3: DevSecOps and Resilience Engineering for Software and Systems. We explore smart
continuous integration and deployment pipelines to ensure the delivery of secure and resilient
software systems on heterogeneous execution platforms (cloud, IoT. . .).

Figure 1: The three research axes of DIVERSE, relying on model driven engineering scientific background
and leveraging several related fields

IRISA Activity Report 2022

10 Inria Annual Report 2022

3.3.1 Axis #1: Software Language Engineering

Overall objective. The disruptive design of new, complex systems requires a high degree of flexibility
in the communication between many stakeholders, often limited by the silo-like structure of the orga-
nization itself (cf. Conway’s law). To overcome this constraint, modern engineering environments aim
to: (i) better manage the necessary exchanges between the different stakeholders; (ii) provide a unique
and usable place for information sharing; and (iii) ensure the consistency of the many points of view.
Software languages are the key pivot between the diverse stakeholders involved, and the software systems
they have to implement. Domain-Specific (Modeling) Languages enable stakeholders to address the
diverse concerns through specific points of view, and their coordinated use is essential to support the
socio-technical coordination across the overall software system life cycle.

Our perspectives on Software Language Engineering over the next period is presented in Figure 2 and
detailed in the following paragraphs.

Figure 2: Perspectives on Software Language Engineering (axis #1)

DSL Executability. Providing rich and adequate environments is key to the adoption of domain-specific
languages. In particular, we focus on tools that support model and program execution. We explore
the foundations to define the required concerns in language specification, and systematic approaches
to derive environments (e.g., IDE, notebook, design labs) including debuggers, animators, simulators,
loggers, monitors, trade-off analysis, etc.

Modular & Distributed IDE. IDEs are indispensable companions to software languages. They are
increasingly turning towards Web-based platforms, heavily relying on cloud infrastructures and forges.
Since all language services require different computing capacities and response times (to guarantee a
user-friendly experience within the IDE) and use shared resources (e.g., the program), we explore new
architectures for their modularization and systematic approaches for their individual deployment and
dynamic adaptation within an IDE. To cope with the ever-growing number of programming languages,
manufacturers of Integrated Development Environments (IDE) have recently defined protocols as a way
to use and share multiple language services in language-agnostic environments. These protocols rely on
a proper specification of the services that are commonly found in the tool support of general-purpose
languages, and define a fixed set of capabilities to offer in the IDE. However, new languages regularly
appear offering unique constructs (e.g., DSLs), and which are supported by dedicated services to be
offered as new capabilities in IDEs. This trend leads to the multiplication of new protocols, hard to
combine and possibly incompatible (e.g., overlap, different technological stacks). Beyond the proposition
of specific protocols, we will explore an original approach to be able to specify language protocols and
to offer IDEs to be configured with such protocol specifications. IDEs went from directly supporting
languages to protocols, and we envision the next step: IDE as code, where language protocols are created
or inferred on demand and serve as support of an adaptation loop taking in charge of the (re)configuration
of the IDE.

IRISA Activity Report 2022

Project DIVERSE 11

Design Lab. Web-based and cloud-native IDEs open new opportunities to bridge the gap between the
IDE and collaborative platforms, e.g., forges. In the complex world of software systems, we explore new
approaches to reduce the distance between the various stakeholders (e.g., systems engineers and all those
involved in specialty engineering) and to improve the interactions between them through an adapted tool
chain. We aim to improve the usability of development cycles with efficiency, affordance and satisfaction.
We also explore new approaches to explore and interact with the design space or other concerns such
as human values or security, and provide facilities for trade-off analysis and decision making in the the
context of software and system designs.

Live & Polyglot Development. As of today, polyglot development is massively popular and virtually all
software systems put multiple languages to use, which not only complexifies their development, but
also their evolution and maintenance. Moreover, as software are more used in new application domains
(e.g., data analytics, health or scientific computing), it is crucial to ease the participation of scientists,
decision-makers, and more generally non-software experts. Live programming makes it possible to
change a program while it is running, by propagating changes on a program code to its run-time state.
This effectively bridges the gulf of evaluation between program writing and program execution: the effects
a change has on the running system are immediately visible, and the developer can take immediate
action. The challenges at the intersection of polyglot and live programming have received little attention
so far, and we envision a language design and implementation approach to specify domain-specific
languages and their coordination, and automatically provide interactive domain-specific environments
for live and polyglot programming.

Self-Adaptable Language. Over recent years, self-adaptation has become a concern for many software
systems that operate in complex and changing environments. At the core of self-adaptation lies a feedback
loop and its associated trade-off reasoning, to decide on the best course of action. However, existing
software languages do not abstract the development and execution of such feedback loops for self-
adaptable systems. Developers have to fall back to ad-hoc solutions to implement self-adaptable systems,
often with wide-ranging design implications (e.g., explicit MAPE-K loop). Furthermore, existing software
languages do not capitalize on monitored usage data of a language and its modeling environment. This
hinders the continuous and automatic evolution of a software language based on feedback loops from
the modeling environment and runtime software system. To address the aforementioned issues, we will
explore the concept of Self-Adaptable Language (SAL) to abstract the feedback loops at both system and
language levels.

3.3.2 Axis #2: Spatio-temporal Variability in Software and Systems

Overall objective. Leveraging our longstanding activity on variability management for software product
lines and configurable systems covering diverse scenarios of use, we will investigate over the next period
the impact of such a variability across the diverse layers, incl. source code, input/output data, compi-
lation chain, operating systems and underlying execution platforms. We envision a better support and
assistance for the configuration and optimisation (e.g., non-functional properties) of software systems
according to this deep variability. Moreover, as software systems involve diverse artefacts (e.g., APIs, tests,
models, scripts, data, cloud services, documentation, deployment descriptors...), we will investigate
their continuous co-evolution during the overall lifecycle, including maintenance and evolution. Our
perspectives on spatio-temporal variability over the next period is presented in Figure 3 and is detailed in
the following paragraphs.

Deep Software Variability. Software systems can be configured to reach specific functional goals and
non-functional performance, either statically at compile time or through the choice of command line
options at runtime. We observed that considering the software layer only might be a naive approach to
tune the performance of the system or to test its functional correctness. In fact, many layers (hardware,
operating system, input data, etc.), which are themselves subject to variability, can alter the performance
or functionalities of software configurations. We call deep software variability the interaction of all
variability layers that could modify the behavior or non-functional properties of a software. Deep software

IRISA Activity Report 2022

12 Inria Annual Report 2022

Figure 3: Perspectives on Spatio-temporal Variability in Software and Systems (axis #2)

variability calls to investigate how to systematically handle cross-layer configuration. The diversification
of the different layers is also an opportunity to test the robustness and resilience of the software layer in
multiple environments. Another interesting challenge is to tune the software for one specific executing
environment. In essence, deep software variability questions the generalization of the configuration
knowledge.

Continuous Software Evolution. Nowadays, software development has become more and more com-
plex, involving various artefacts, such as APIs, tests, models, scripts, data, cloud services, documentation,
etc., and embedding millions of lines of code (LOC). Recent evidence highlights continuous software
evolution based on thousands of commits, hundreds of releases, all done by thousands of developers.
We focus on the following essential backbone dimensions in software engineering: languages, models,
APIs, tests and deployment descriptors, all revolving around software code implementation. We will
explore the foundations of a multidimensional and polyglot co-evolution platform, and will provide a
better understanding with new empirical evidence and knowledge.

3.3.3 Axis #3: DevSecOps and Resilience Engineering for Software and Systems

Overall objective. The production and delivery of modern software systems involves the integration of
diverse dependencies and continuous deployment on diverse execution platforms in the form of large
distributed socio-technical systems. This leads to new software architectures and programming models,
as well as complex supply chains for final delivery to system users. In order to boost cybersecurity, we
want to provide strong support to software engineers and IT teams in the development and delivery
of secure and resilient software systems, ie. systems able to resist or recover from cyberattacks. Our
perspectives on DevSecOps and Resilience Engineering over the next period are presented in Figure 4
and detailed in the following paragraphs.

Secure & Resilient Architecture. Continuous integration and deployment pipelines are processes im-
plementing complex software supply chains. We envision an explicit and early consideration of security
properties in such pipelines to help in detecting vulnerabilities. In particular, we integrate the security
concern in Model-Based System Analysis (MBSA) approaches, and explore guidelines, tools and methods
to drive the definition of secure and resilient architectures. We also investigate resilience at runtime
through frameworks for autonomic computing and data-centric applications, both for the software
systems and the associated deployment descriptors.

Smart CI/CD. Dependencies management, Infrastructure as Code (IaC) and DevOps practices open
opportunities to analyze complex supply chains. We aim at providing relevant metrics to evaluate and
ensure the security of such supply chains, advanced assistants to help in specifying corresponding

IRISA Activity Report 2022

Project DIVERSE 13

Figure 4: Perspectives on DevSecOps and Resilience Eng. for Software and Systems (axis #3)

pipelines, and new approaches to optimize them (e.g., software debloating, scalability. . .). We study
how supply chains can actively leverage software variability and diversity to increase cybersecurity and
resilience.

Secure Supply Chain. In order to produce secure and resilient software systems, we explore new
secure-by-design foundations that integrate security concerns as first class entities through a seam-
less continuum from the design to the continuous integration and deployment. We explore new models,
architectures, inter-relations, and static and dynamic analyses that rely on explicitly expressed security
concerns to ensure a secure and resilient supply chain. We lead research on automatic vulnerability
and malware detection in modern supply chains, considering the various artefacts either as white boxes
enabling source code analysis (to avoid accidental vulnerabilities or intentional ones or code poisoning),
or as black boxes requiring binary analysis (to find malware or vulnerabilities). We also conduct research
activities in dependencies and deployment descriptors security analysis.

4 Application domains

Information technology affects all areas of society. The need to develop software systems is therefore
present in a huge number of application domains. One of the goals of software engineering is to apply a

systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software

whatever the application domain.
As a result, the team covers a wide range of application domains and never refrains from exploring

a particular field of application. Our primary expertise is in complex, heterogeneous and distributed
systems. While we historically collaborated with partners in the field of systems engineering, it should be
noted that for several years now, we have investigated several new areas in depth:

• the field of web applications, with the associated design principles and architectures, for applica-
tions ranging from cloud-native applications to the design of modern web front-ends.

• the field of scientific computing in connection with the CEA DAM, Safran and scientists from other
disciplines such as the ecologists of the University of Rennes. In this field where the writing of
complex software is common, we explore how we could help scientists to use software engineering
approach, in particular, the use of SLE and approximate computing techniques.

• the field of large software systems such as the Linux kernel or other open-source projects. In this
field, we explore, in particular, the variability management, the support of co-evolution and the use
of polyglot approaches.

IRISA Activity Report 2022

14 Inria Annual Report 2022

5 Highlights of the year

5.1 Impact

• The work on Risk explorer for exploring open-source software supply chain security has been
accepted to SnP confenrence in 2023 [95]. This work and the associated tooling got some impact in
the field in 2022 [44]:

– Cited as guidance resource in Microsoft’s OSS SSC Framework.

– Cited in Adam Shostack’s Application Security Roundup of September ‘22.

– Risk Explorer used internally at SAP and at Citigroup Inc. for threat modelling and develop-
ment of best-practices. Submission to RSA Conference in forecast.

– Ongoing discussion to transfer the taxonomy under OpenSSF.

5.2 Awards

• Our paper "HyperAST: Enabling Efficient Analysis of Software Histories at Scale. Quentin Le
Dilavrec, Djamel Eddine Khelladi, Arnaud Blouin, Jean-Marc Jézéquel. ASE 2022 - 37th IEEE/ACM
International Conference on Automated Software Engineering", received an ACM sigsoft distin-
guished paper award at ASE 2022.

• Our paper "Scratching the Surface of ./configure: Learning the Effects of Compile-Time Options on
Binary Size and Gadgets. Xhevahire Tërnava, Mathieu Acher, Luc Lesoil, Arnaud Blouin, Jean-Marc
Jézéquel. ICSR 2022 - 20th International Conference on Software and Systems Reuse", received the
best paper award at ICSR 2022.

5.3 New permanent positions within the team

• Mathieu Acher has been promoted as Professor at INSA Rennes.

• Walter Rudametkin has joined the team as Full Professor at University of Rennes 1. He also was
awarded an IUF junior position at the same time.

• Paul Temple has joined the team as Associate Professor at University of Rennes 1.

6 New software and platforms

6.1 New software

6.1.1 FAMILIAR

Keywords: Software line product, Configators, Customisation

Scientific Description: FAMILIAR (for FeAture Model scrIpt Language for manIpulation and Automatic
Reasoning) is a language for importing, exporting, composing, decomposing, editing, configuring,
computing "diffs", refactoring, reverse engineering, testing, and reasoning about (multiple) feature
models. All these operations can be combined to realize complex variability management tasks. A
comprehensive environment is proposed as well as integration facilities with the Java ecosystem.

Functional Description: Familiar is an environment for large-scale product customisation. From a
model of product features (options, parameters, etc.), Familiar can automatically generate several
million variants. These variants can take many forms: software, a graphical interface, a video
sequence or even a manufactured product (3D printing). Familiar is particularly well suited for
developing web configurators (for ordering customised products online), for providing online
comparison tools and also for engineering any family of embedded or software-based products.

IRISA Activity Report 2022

Project DIVERSE 15

URL: http://familiar-project.github.com

Contact: Mathieu Acher

Participants: Aymeric Hervieu, Benoit Baudry, Didier Vojtisek, Edward Mauricio Alferez Salinas, Guil-
laume Bécan, Joao Bosco Ferreira-Filho, Julien Richard-Foy, Mathieu Acher, Olivier Barais, Sana
Ben Nasr

6.1.2 GEMOC Studio

Name: GEMOC Studio

Keywords: DSL, Language workbench, Model debugging

Scientific Description: The language workbench put together the following tools seamlessly integrated
to the Eclipse Modeling Framework (EMF):

* Melange, a tool-supported meta-language to modularly define executable modeling languages
with execution functions and data, and to extend (EMF-based) existing modeling languages. *
MoCCML, a tool-supported meta-language dedicated to the specification of a Model of Concur-
rency and Communication (MoCC) and its mapping to a specific abstract syntax and associated
execution functions of a modeling language. * GEL, a tool-supported meta-language dedicated
to the specification of the protocol between the execution functions and the MoCC to support
the feedback of the data as well as the callback of other expected execution functions. * BCOoL, a
tool-supported meta-language dedicated to the specification of language coordination patterns
to automatically coordinates the execution of, possibly heterogeneous, models. * Monilog, an
extension for monitoring and logging executable domain-specific models * Sirius Animator, an
extension to the model editor designer Sirius to create graphical animators for executable modeling
languages.

Functional Description: The GEMOC Studio is an Eclipse package that contains components supporting
the GEMOC methodology for building and composing executable Domain-Specific Modeling
Languages (DSMLs). It includes two workbenches: The GEMOC Language Workbench: intended to
be used by language designers (aka domain experts), it allows to build and compose new executable
DSMLs. The GEMOC Modeling Workbench: intended to be used by domain designers to create,
execute and coordinate models conforming to executable DSMLs. The different concerns of a
DSML, as defined with the tools of the language workbench, are automatically deployed into the
modeling workbench. They parametrize a generic execution framework that provides various
generic services such as graphical animation, debugging tools, trace and event managers, timeline.

URL: http://gemoc.org/studio.html

Publications: hal-00850770, hal-01355391, hal-01609576, hal-01651801, hal-01152342, hal-03374955,
hal-01614561, hal-01616154

Contact: Benoît Combemale

Participants: Didier Vojtisek, Dorian Leroy, Erwan Bousse, Fabien Coulon, Julien DeAntoni

Partners: IRIT, ENSTA, I3S, OBEO, Thales TRT

6.1.3 Interacto

Keywords: GUI (Graphical User Interface), User Interfaces, HCI, Software engineering

Functional Description: Interacto is a framework for developing user interfaces and user interactions.
It complements other general graphical framework by providing a fluent API specifically designed
to process user interface event and develop complex user interactions. Interacto is currently
developped in Java and TypeScript to target both Java desktop applications (JavaFX) and Web
applications (Angular).

IRISA Activity Report 2022

16 Inria Annual Report 2022

URL: https://interacto.github.io

Publications: hal-03231669, tel-02354530, inria-00590891, inria-00477627

Contact: Arnaud Blouin

Participants: Arnaud Blouin, Olivier Beaudoux

6.1.4 ALE

Name: Action Language for Ecore

Keywords: Meta-modeling, Executable DSML

Functional Description: Main features of ALE include:

• Executable metamodeling: Re-open existing EClasses to insert new methods with their imple-
mentations

• Metamodel extension: The very same mechanism can be used to extend existing Ecore
metamodels and insert new features (eg. attributes) in a non-intrusive way

• Interpreted: No need to deploy Eclipse plugins, just run the behavior on a model directly in
your modeling environment

• Extensible: If ALE doesn’t fit your needs, register Java classes as services and invoke them
inside your implementations of EOperations.

URL: http://gemoc.org/ale-lang/

Contact: Benoît Combemale

Partner: OBEO

6.1.5 Melange

Name: Melange

Keywords: Modeling language, Meta-modelisation, Language workbench, Dedicated langage, Model-
driven software engineering, DSL, MDE, Meta model, Model-driven engineering, Meta-modeling

Scientific Description: Melange is a follow-up of the executable metamodeling language Kermeta, which
provides a tool-supported dedicated meta-language to safely assemble language modules, cus-
tomize them and produce new DSMLs. Melange provides specific constructs to assemble together
various abstract syntax and operational semantics artifacts into a DSML. DSMLs can then be used
as first class entities to be reused, extended, restricted or adapted into other DSMLs. Melange
relies on a particular model-oriented type system that provides model polymorphism and language
substitutability, i.e. the possibility to manipulate a model through different interfaces and to define
generic transformations that can be invoked on models written using different DSLs. Newly pro-
duced DSMLs are correct by construction, ready for production (i.e., the result can be deployed
and used as-is), and reusable in a new assembly.

Melange is tightly integrated with the Eclipse Modeling Framework ecosystem and relies on the
meta-language Ecore for the definition of the abstract syntax of DSLs. Executable meta-modeling is
supported by weaving operational semantics defined with Xtend. Designers can thus easily design
an interpreter for their DSL in a non-intrusive way. Melange is bundled as a set of Eclipse plug-ins.

Functional Description: Melange is a language workbench which helps language engineers to mashup
their various language concerns as language design choices, to manage their variability, and
support their reuse. It provides a modular and reusable approach for customizing, assembling and
integrating DSMLs specifications and implementations.

IRISA Activity Report 2022

Project DIVERSE 17

URL: http://melange-lang.org

Contact: Benoît Combemale

Participants: Arnaud Blouin, Benoît Combemale, David Mendez Acuna, Didier Vojtisek, Dorian Leroy,
Erwan Bousse, Fabien Coulon, Jean-Marc Jezequel, Olivier Barais, Thomas Degueule

7 New results

7.1 Results for Axis #1: Software Language Engineering

Participants: Olivier Barais, Johann Bourcier, Benoît Combemale, Jean-
Marc Jézéquel, Gurvan Leguernic, Gunter Mussbacher, Noël Plouzeau,
Didier Vojtisek.

7.1.1 Foundations of Software Language Engineering

Exploratory programming is a software development style in which code is a medium for prototyping
ideas and solutions, and in which even the end-goal can evolve over time. Exploratory programming is
valuable in various contexts, such as programming education, data science, and end-user programming.
However, there is a lack of appropriate tooling and language design principles to support exploratory
programming. In [37], we present a host language- and object language-independent protocol for
exploratory programming akin to the Language Server Protocol. The protocol serves as a basis to develop
novel programming environments (or to extend existing ones) for exploratory programming, such as
computational notebooks and command-line REPLs. An architecture is exposed, on top of which
prototype environments can be developed with relative ease, because existing (language) components
can be reused. Our prototypes demonstrate that the proposed protocol is sufficiently expressive to
support exploratory programming scenarios as encountered in literature of the software engineering,
human-computer interaction and data science domains.

Recent results in language engineering simplify the development of tool-supported executable
domain-specific modelling languages (xDSMLs), including editing (e.g., completion and error checking)
and execution analysis tools (e.g., debugging, monitoring and live modelling). However, such frameworks
are currently limited to sequential execution traces, and cannot handle execution traces resulting from
an execution semantics with a concurrency model supporting parallelism or interleaving. This prevents
the development of concurrency analysis tools, like debuggers supporting the exploration of model
executions resulting from different interleavings. In [34], we present a generic framework to integrate
execution semantics with either implicit or explicit concurrency models, to explore the possible execution
traces of conforming models, and to define strategies to help in the exploration of the possible executions.
This framework is complemented with a protocol to interact with the resulting executions and hence to
build advanced concurrency analysis tools. The approach has been implemented within the GEMOC
Studio. We demonstrate how to integrate two representative concurrent meta-programming approaches
(MoCCML/Java and Henshin), which use different paradigms and underlying foundations to define
an xDSML’s concurrency model. We also demonstrate the ability to define an advanced concurrent
omniscient debugger with the proposed protocol. Our work, thus, contributes key abstractions and an
associated protocol for integrating concurrent meta-programming approaches in a language workbench,
and dynamically exploring the possible executions of a model in the modelling workbench.

7.1.2 DSL for Scientific Computing

Scientific software are complex software systems. Their engineering involves various stakeholders using
specific computer languages for defining artifacts at different abstraction levels and for different purposes.
In [28], we review the overall process leading to the development of scientific software, and discuss the
role of computer languages in the definition of the different artifacts. We then provide guidelines to make

IRISA Activity Report 2022

18 Inria Annual Report 2022

informed decisions when the time comes to choose the computer languages to use when developing
scientific software.

7.1.3 Digital Twins

Digital twins are a very promising avenue to design secure and resilient architectures and systems.
In [26], we study Conceptualizing Digital Twins. Digital Twins are an emerging concept which is

gaining importance in several fields. It refers to a comprehensive software representation of an actual
system, which includes structures, properties, conditions, behaviours, history and possible futures of that
system through models and data to be continuously synchronized. Digital Twins can be built for different
purposes, such as for the design, development, analysis, simulation, and operations of non-digital
systems in order to understand, monitor, and/or optimize the actual system. To realize Digital Twins,
data and models originated from diverse engineering disciplines have to be integrated, synchronized,
and managed to leverage the benefits provided by software (digital) technologies. However, properly
arranging the different models, data sources, and their relations to engineer Digital Twins is challenging.
We therefore propose a conceptual modeling framework for Digital Twins that captures the combined
usage of heterogeneous models and their respective evolving data for the twin’s entire life cycle.

We also created EDT.Community, a programme of seminars on the engineering of digital twins hosting
digital twins experts from academia and industry. In [41], we report on the main topics of discussion
from the first year of the programme. We contribute by providing (1) a common understanding of
open challenges in research and practice of the engineering of digital twins, and (2) an entry point to
researchers who aim at closing gaps in the current state of the art.

7.1.4 Reasoning over Time into Models

Models at runtime have been initially investigated for adaptive systems. Models are used as a reflective
layer of the current state of the system to support the implementation of a feedback loop. More recently,
models at runtime have also been identified as key for supporting the development of full-fledged
digital twins. However, this use of models at runtime raises new challenges, such as the ability to
seamlessly interact with the past, present and future states of the system. In [30], we propose a framework
called DataTime to implement models at runtime that capture the state of the system according to the
dimensions of both time and space, here modeled as a directed graph where both nodes and edges bear
local states (ie. values of properties of interest). DataTime offers a unifying interface to query the past,
present and future (predicted) states of the system. This unifying interface provides i) an optimized
structure of the time series that capture the past states of the system, possibly evolving over time, ii) the
ability to get the last available value provided by the system’s sensors, and iii) a continuous micro-learning
over graph edges of a predictive model to make it possible to query future states, either locally or more
globally, thanks to a composition law. The framework has been developed and evaluated in the context of
the Intelligent Public Transportation Systems of the city of Rennes (France). This experimentation has
demonstrated how DataTime can be used for managing data from the past, the present and the future,
and facilitate the development of digital twins.

7.2 Results for Axis #2: Spatio-temporal Variability in Software and Systems

Participants: Mathieu Acher, Arnaud Blouin, Benoît Combemale, Jean-
Marc Jézéquel, Djamel Eddine Khelladi, Olivier Zendra
.

7.2.1 Learning at scale

Learning large-scale variability In [36], we apply learning techniques to the Linux kernel. With now more
than 15,000 configuration options, including more than 9,000 just for the x86 architecture, the Linux
kernel is one of the most complex configurable open-source systems ever developed. If all these options
were binary and independent, that would indeed yield 215000 possible variants of the kernel. Of course not

IRISA Activity Report 2022

Project DIVERSE 19

all options are independent (leading to fewer possible variants), but some of them have tri-states values:
yes, no, or module instead of simply boolean values (leading to more possible variants). The Linux kernel
is mentioned in numerous papers on configurable systems and machine learning, as motivating example
stating the problem and the underlying approach. However, only a few works truly explore such a huge
configuration space. In this line of work, we take up the Linux challenge either for configurations’ bug
prevention or for predicting the binary size of a configured kernel. We also design a learning technique
capable of transferring a prediction model among variants and versions of Linux [31].

Linux kernels are used in a wide variety of appliances, many of them having strong requirements on
the kernel size due to constraints such as limited memory or instant boot. With more than nine thousands
of configuration options to choose from, developers and users of Linux actually spend significant effort to
document, understand, and eventually tune (combinations of) options for meeting a kernel size. In [36],
we describe a large-scale endeavour automating this task and predicting a given Linux kernel binary size
out of unmeasured configurations. We first experiment that state-of-the-art solutions specifically made
for configurable systems such as performance-influence models cannot cope with that number of options,
suggesting that software product line techniques may need to be adapted to such huge configuration
spaces. We then show that tree-based feature selection can learn a model achieving low prediction errors
over a reduced set of options. The resulting model, trained on 95,854 kernel configurations, is quick to
compute, simple to interpret and even outperforms the accuracy of learning without feature selection.

7.2.2 Smart build

Incremental build of configurations and variants Building software is a crucial task to compile, test, and
deploy software systems while continuously ensuring quality. As software is more and more configurable,
building multiple configurations is a pressing need, yet, costly and challenging to instrument. The
common practice is to independently build (a.k.a., clean build) a software for a subset of configurations.
While incremental build has been considered for software evolution and relatively small modifications
of the source code, it has surprisingly not been considered for software configurations. In this work, we
formulate the hypothesis that incremental build can reduce the cost of exploring the configuration space
of software systems. In [49], we detail how we apply incremental build for two real-world application
scenarios and conduct a preliminary evaluation on two case studies, namely x264 and the Linux Kernel.
For x264, we found that one can incrementally build configurations in an order such that overall build
time is reduced. Nevertheless, we could not find any optimal order with the Linux Kernel, due to a high
distance between random configurations. Therefore, we show it is possible to control the process of
generating configurations: we could reuse commonality and gain up to 66% of build time compared to
only clean builds.

In the exploratory study [50], we examine the benefits and limits of building software configurations
incrementally, rather than always building them cleanly. By using five real-life configurable systems as
subjects, we explore whether incremental build works, outperforms a sequence of clean builds, is correct
w.r.t. clean build, and can be used to find an optimal ordering for building configurations. Our results
show that incremental build is feasible in 100% of the times in four subjects and in 78% of the times in
one subject. In average, 88.5% of the configurations could be built faster with incremental build while
also finding several alternatives faster incremental builds. However, only 60% of faster incremental builds
are correct. Still, when considering those correct incremental builds with clean builds, we could always
find an optimal order that is faster than just a collection of clean builds with a gain up to 11.76%.

7.2.3 Variability and debloating

Debloating variability In [54], we call for removing variability. Indeed, software variability is largely
accepted and explored in software engineering and seems to have become a norm and a must, if only
in the context of product lines. Yet, the removal of superfluous or unneeded software artefacts and
functionalities is an inevitable trend. It is frequently investigated in relation to software bloat. This work is
essentially a call to the community on software variability to devise methods and tools that will facilitate
the removal of unneeded variability from software systems. The advantages are expected to be numerous
in terms of functional and non-functional properties, such as maintainability (lower complexity), security
(smaller attack surface), reliability, and performance (smaller binaries).

IRISA Activity Report 2022

20 Inria Annual Report 2022

Feature toggling and variability Feature toggling is a technique for enabling branching-in-code. It is
increasingly used during continuous deployment to incrementally test and integrate new features before
their release. In principle, feature toggles tend to be light, that is, they are defined as simple Boolean flags
and used in conditional statements to condition the activation of some software features. However, there
is a lack of knowledge on whether and how they may interact with each other, in that case their enabling
and testing become complex. We argue that finding the interactions of feature toggles is valuable for
developers to know which of them should be enabled at the same time, which are impacted by a removed
toggle, and to avoid their misconfigurations. In [51], we mine feature toggles and their interactions in
five open-source projects. We then analyse how they are realized and whether they tend to be multiplied
over time. Our results show that 7% of feature toggles interact with each other, 33% of them interact with
another code expression, and their interactions tend to increase over time (22%, on average). Further,
their interactions are expressed by simple logical operators (i.e., and and or) and nested if statements.
We propose to model them into a Feature Toggle Model, and believe that our results are helpful towards
robust management approaches of feature toggles.

Several works have already identified the proximity of feature toggles with the notion of Feature found
in Software Product Lines. In [42], we propose to go one step further in unifying these concepts to provide
a seamless transition between design time and runtime variability resolutions. We show how it can scale
to build a configurable authentication system, where a partially resolved feature model can interface with
popular feature toggle frameworks such as Togglz.

Gadgets and variability Numerous software systems are configurable through compile-time options
and the widely used ./configure. However, the combined effects of these options on binaries’ non-
functional properties size and attack surface are often not documented, and or not well understood, even
by experts. Our goal is to provide automated support for exploring and comprehending the configuration
space a. k. a., surface of compile-time options using statistical learning techniques. In [65], we perform
an empirical study on four C-based configurable systems. Our results show that, by changing the default
configuration, the system’s binary size and gadgets vary greatly (roughly -79% to 244% and -77% to 30%,
respectively). Then, we found out that identifying the most influential options can be accurately learned
with a small training set, while their relative importance varies across size and attack surface for the same
system. Practitioners can use our approach and artifacts to explore the effects of compile-time options in
order to take informed decisions when configuring a system with ./configure. Our work received the Best
paper award at ICSR 2022.

7.2.4 Scaling temporal analysis

Temporal code analysis at scale Syntax Trees (ASTs) are widely used beyond compilers in many tools that
measure and improve code quality, such as code analysis, bug detection, mining code metrics, refactoring.
With the advent of fast software evolution and multistage releases, the temporal analysis of an AST history
is becoming useful to understand and maintain code. However, jointly analyzing thousands of versions
of ASTs independently faces scalability issues, mostly combinatorial, both in terms of memory and CPU
usage. In [46], we propose a novel type of AST, called HyperAST , that enables efficient temporal code
analysis on a given software history by: 1) leveraging code redundancy through space (between code
elements) and time (between versions); 2) reusing intermediate computation results. We show how
the HyperAST can be built incrementally on a set of commits to capture all multiple ASTs at once in an
optimized way. We evaluated the HyperAST on a curated list of large software projects. Compared to
Spoon, a state-of-the-art technique, we observed that the HyperAST outperforms it with an order-of-
magnitude difference from ×6 up to ×8076 in CPU construction time and from ×12 up to ×1159 in memory
footprint. While the HyperAST requires up to 2 h 22 min and 7.2 GB for the largest project, Spoon requires
up to 93 h 31 min and 2.2 TB. The gains in construction time varied from 83.4% to 99%.99% and the gains
in memory footprint varied from 91.8% to 99.9%. We further compared the task of finding references
of declarations with the HyperAST and Spoon. We observed on average 90% precision and 97% recall
without a significant difference in search time.

IRISA Activity Report 2022

Project DIVERSE 21

7.2.5 Deep variability

Deep software variability refers to the interaction of all external layers modifying the behavior of software.
Configuring software is a powerful means to reach functional and performance goals of a system, but
many layers of variability can make this difficult.

Variability in input, version, and software. With commits and releases, hundreds of tests are run on
varying conditions (e.g., over different hardware and workloads) that can help to understand evolution
and ensure non-regression of software performance. In [47], we hypothesize that performance is not only
sensitive to evolution of software, but also to different variability layers of its execution environment,
spanning the hardware, the operating system, the build, or the workload processed by the software.
Leveraging the MongoDB dataset, our results show that changes in hardware and workload can drastically
impact performance evolution and thus should be taken into account when reasoning about evolution.
An open problem resulting from this study is how to manage the variability layers in order to efficiently
test the performance evolution of a software.

Transferring Performance between Distinct Configurable Systems. Many research studies predict the
performance of configurable software using machine learning techniques, thus requiring large amounts
of data. Transfer learning aims at reducing the amount of data needed to train these models and has been
successfully applied on different executing environments (hardware) or software versions. In [48], we
investigate for the first time the idea of applying transfer learning between distinct configurable systems.
We design a study involving two video encoders (namely x264 and x265) coming from different code bases.
Our results are encouraging since transfer learning outperforms traditional learning for two performance
properties (out of three). We discuss the open challenges to overcome for a more general application.

Global Decision Making Over Deep Variability in Feedback-Driven Software Development To succeed
with the development of modern software, organizations must have the agility to adapt faster to constantly
evolving environments to deliver more reliable and optimized solutions that can be adapted to the needs
and environments of their stakeholders including users, customers, business, development, and IT.
However, stakeholders do not have sufficient automated support for global decision making, considering
the increasing variability of the solution space, the frequent lack of explicit representation of its associated
variability and decision points, and the uncertainty of the impact of decisions on stakeholders and the
solution space. This leads to an ad-hoc decision making process that is slow, error-prone, and often
favors local knowledge over global, organization-wide objectives. The Multi-Plane Models and Data
(MP-MODA) framework introduced in [43] explicitly represents and manages variability, impacts, and
decision points. It enables automation and tool support in aid of a multi-criteria decision making process
involving different stakeholders within a feedback-driven software development process where feedback
cycles aim to reduce uncertainty. We present the conceptual structure of the framework, discuss its
potential benefits, and enumerate key challenges related to tool supported automation and analysis
within MP-MODA.

Reproducibility We sketch a vision about reproducible science and deep software variability in [35].

7.3 Results for Axis #3: DevSecOps and Resilience Engineering for Software and

Systems

Participants: Mathieu Acher, Olivier Barais, Arnaud Blouin, Stephanie Challita,
Benoît Combemale, Jean-Marc Jézéquel, Olivier Zendra.

In this section, we present our achievements for 2022 that draw on our previous works, and that
constitute basic blocks upon which we will continue building our research and systems, for example with
the aim to extend the applicability to secure supply chains.

7.3.1 Side-channels and source-code vulnerabilities

We also worked on methods and techniques to improve the cybersecurity of code by removing cyber-
vulnerabilities from source-codes, especially the ones enabling side-channels attacks.

IRISA Activity Report 2022

22 Inria Annual Report 2022

In [38], we indeed try to address the specific type of cyber attacks known as side channel attacks,
where attackers exploit information leakage from the physical execution of a program, e.g. timing or
power leakage, to uncover secret information, such as encryption keys or other sensitive data. There have
been various attempts at addressing the problem of preventing side-channel attacks, often relying on
various measures to decrease the discernibility of several code variants or code paths. Most techniques
require a high-degree of expertise by the developer, who often employs ad hoc, hand-crafted code-
patching in an attempt to make it more secure. In this work, we take a different approach, building on the
idea of ladderisation, inspired by Montgomery Ladders. We present a semi-automatic tool-supported

technique to provide countermeasures to side-channel attacks. Our technique, aimed at the non-
specialised developer, which refactors (a class of) C programs into functionally (and even algorithmically)
equivalent counterparts with improved security properties. Our approach provides refactorings that
transform the source code into its ladderised equivalent, driven by an underlying verified rewrite system,
based on dependent types. Our rewrite system automatically finds rewritings of selected C expressions,
facilitating the production of their equivalent ladderised counterparts for a subset of C. We demonstrated
our approach on a number of representative examples from the cryptographic domain, showing increased
security.

Side-channel attacks are by definition made possible by information leaking from computing systems
through nonfunctional properties like execution time, consumed energy, power profiles, etc. These
attacks are especially difficult to protect from, since they rely on physical measurements not usually
envisioned when designing the functional properties of a program. Furthermore, countermeasures are
usually dedicated to protect a particular program against a particular attack, lacking universality. To
help fight these threats, we propose in [62] the Indiscernibility Methodology, a novel methodology to
quantify with no prior knowledge the information leaked from programs, thus providing the developer
with valuable security metrics, derived either from topology or from information theory. Our original
approach considers the code to be analyzed as a completely black box, only the public inputs and leakages
being observed. It can be applied to various types of side-channel leakages: time, energy, power, EM, etc.
In this work, we first present our Indiscernibility Methodology, including channels of information and
our threat model. We then detail the computation of our novel metrics, with strong formal foundations
based both on topological security (with distances defined between secret-dependent observations) and
on information theory (quantifying the remaining secret information after observation by the attacker).
Then we demonstrate the applicability of our approach by providing experimental results for both time
and power leakages, studying both average case, worst case, and indiscernible information metrics.

7.3.2 Malware analysis and classification

Historically, malware (MW) analysis has heavily resorted to human savvy for manual signature creation
to detect and classify malware. This procedure is very costly and time consuming, thus unable to cope
with modern cyber threat scenario. The solution is to widely automate malware analysis. Toward this
goal, malware classification allows optimizing the handling of large malware corpora by identifying
resemblances across similar instances. Consequently, malware classification figures as a key activity
related to malware analysis, which is paramount in the operation of computer security as a whole. In
this line of research work, the PhD thesis [60] addresses the problem of malware classification taking an
approach in which human intervention is spared as much as possible. There, we steer clear of subjectivity
inherent to human analysis by designing malware classification solely on data directly extracted from
malware analysis, thus taking a data-driven approach. Our objective was to improve the automation of
malware analysis and to combine it with machine learning methods that are able to autonomously spot
and reveal unwitting commonalities within data. This worked was phased in three stages. Initially we
focused on improving malware analysis and its automation, studying new ways of leveraging symbolic
execution in malware analysis and developing a distributed framework to scale up our computational
power. Then we focused on the representation of malware behavior, with painstaking attention to its
accuracy and robustness. Finally, we fixed attention on malware clustering, devising a methodology
that has no restriction in the combination of syntactical and behavioral features and remains scalable in
practice. The main contributions of this work are: revamping the use of symbolic execution for malware
analysis with special attention to the optimal use of SMT solver tactics and hyperparameter settings;
conceiving a new evaluation paradigm for malware analysis systems; formulating a compact graph

IRISA Activity Report 2022

Project DIVERSE 23

representation of behavior, along with a corresponding function for pairwise similarity computation,
which is accurate and robust; and elaborating a new malware clustering strategy based on ensemble
clustering that is flexible with respect to the combination of syntactical and behavioral features.

7.3.3 Open-source software supply chain security

Open-source software supply chain attacks aim at infecting downstream users by poisoning open-
source packages. The common way of consuming such artifacts is through package repositories and the
development of vetting strategies to detect such attacks is ongoing research. Despite its popularity, the
Java ecosystem is the less explored one in the context of supply chain attacks. In this work [45], we study
simple-yet-effective indicators of malicious behavior that can be observed statically through the analysis
of Java bytecode. Then we evaluate how such indicators and their combinations perform when detecting
malicious code injections. We do so by injecting three malicious payloads taken from real-world examples
into the Top-10 most popular Java libraries from libraries.io. We found that the analysis of strings in the
constant pool and of sensitive APIs in the bytecode instructions aids in the task of detecting malicious
Java packages by significantly reducing the information, thus, making also manual triage possible.

In this context of Supply chain attacks on open-source projects, recent work systematized the knowl-
edge about such attacks and proposed a taxonomy in the form of an attack tree [95]. We propose a
visualization tool called Risk Explorer [44] for Software Supply Chains, which allows inspecting the taxon-
omy of attack vectors, their descriptions, references to real-world incidents and other literature, as well as
information about associated safeguards. Being open-source itself, the community can easily reference
new attacks, accommodate for entirely new attack vectors or reflect the development of new safeguards.
This tool is also available online 1

7.3.4 A Context-Driven Modelling Framework for Dynamic Authentication Decisions

Nowadays, many mechanisms exist to perform authentication, such as text passwords and biometrics.
However, reasoning about their relevance (e.g., the appropriateness for security and usability) regard-
ing the contextual situation is challenging for authentication system designers. In [40], we present a
Context-driven Modelling Framework for dynamic Authentication decisions (COFRA), where the con-
text information specifies the relevance of authentication mechanisms. COFRA is based on a precise
metamodel that reveals framework abstractions and a set of constraints that specify their meaning.
Therefore, it provides a language to determine the relevant authentication mechanisms (characterized
by properties that ensure their appropriateness) in a given context. The framework supports the adap-
tive authentication system designers in the complex trade-off analysis between context information,
risks and authentication mechanisms, according to usability, deployability, security, and privacy. We
validate the proposed framework through case studies and extensive exchanges with authentication and
modelling experts. We show that model instances describing real-world use cases and authentication
approaches proposed in the literature can be instantiated validly according to our metamodel. This
validation highlights the necessity, sufficiency, and soundness of our framework.

In many situations, it is of interest for authentication systems to adapt to context (e.g., when the
user’s behavior differs from the previous behavior). Hence, during authentication events, it is common
to use contextually available features to calculate an impersonation risk score. This work proposes an
explainability model [39] that can be used for authentication decisions and, in particular, to explain
the impersonation risks that arise during suspicious authentication events (e.g., at unusual times or
locations). The model applies Shapley values to understand the context behind the risks. Through a case
study on 30,000 real world authentication events, we show that risky and non risky authentication events
can be grouped according to similar contextual features, which can explain the risk of impersonation
differently and specifically for each authentication event. Hence, explainability models can effectively
improve our understanding of impersonation risks. The risky authentication events can be classified
according to attack types. The contextual explanations of the impersonation risk can help authentication
policymakers and regulators who attempt to provide the right authentication mechanisms, to understand
the suspiciousness of an authentication event and the attack type, and hence to choose the suitable
authentication mechanism.

1Risk explorer web site

IRISA Activity Report 2022

24 Inria Annual Report 2022

8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

ADR Nokia

Participants: Olivier Barais, Johann Bourcier.

• Coordinator: Inria

• Dates: 2017-2021

• Abstract: The goal of this project is to integrate chaos engineering principles to IoT Services frame-
works to improve the robustness of the software-defined network services using this approach;
to explore the concept of equivalence for software-defined network services; and to propose an
approach to constantly evolve the attack surface of the network services.

SLIMFAST

Participants: Mathieu Acher.

• Partners: DGA

• Dates: 2021-2022

• Abstract: Debloating software variability for improving non-functional properties (e.g. security)

BCOM

Participants: Olivier Barais.

• Coordinator: UR1

• Dates: 2018-2024

• Abstract: The aim of the Falcon project is to investigate how to improve the resale of available
resources in private clouds to third parties. In this context, the collaboration with DiverSE mainly
aims at working on efficient techniques for the design of consumption models and resource
consumption forecasting models. These models are then used as a knowledge base in a classical
autonomous loop.

Debug4Science

Participants: Benoît Combemale.

• Partners: Inria/CEA DAM

• Dates: 2020-2022

• Abstract: Debug4Science aims to propose a disciplined approach to develop domain-specific
debugging facilities for Domain-Specific Languages within the context of scientific computing
and numerical analysis. Debug4Science is a bilateral collaboration (2020-2022), between the CEA
DAM/DIF and the DiverSE team at Inria.

IRISA Activity Report 2022

Project DIVERSE 25

Orange

Participants: Olivier Barais, Benoît Combemale, Stéphanie Chalita.

• Partners: UR1/Orange

• Dates: 2020-2023

• Abstract: Context aware adaptive authentification, Anne Bumiller’s PhD Cifre project.

Obeo

Participants: Benoît Combemale, Arnaud Blouin.

• Partners: UR1/Obéo

• Dates: 2022-2025

• Abstract: Low-code language workbench, Theo Giraudet’s PhD Cifre project.

SAP

Participants: Olivier Barais.

• Partners: UR1/SAP

• Dates: 2021-2024

• Abstract: Research focusing on Open-source software Supply Chain security. Piergiorgio Ladisa’s
PhD Cifre project.

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Associate Teams in the framework of an Inria International Lab or in the framework of an Inria

International Program

ALE

Participants: Benoît Combemale, Didier Vojtisek, Olivier Barais, Djamel Ed-
dine Khelladi, Gunter Mussbacher.

Title: Agile Language Engineering

Duration: 2020 ->

Coordinator: Tijs van der Storm (storm@cwi.nl)

Partners:

• CWI Amsterdam (Pays-Bas)

Inria contact: Benoît Combemale

IRISA Activity Report 2022

26 Inria Annual Report 2022

Summary: Software engineering faces new challenges with the advent of modern software-intensive
systems such as complex critical embedded systems, cyber-physical systems and the Internet
of things. Application domains range from robotics, transportation systems, defense to home
automation, smart cities, and energy management, among others. Software is more and more
pervasive, integrated into large and distributed systems, and dynamically adaptable in response
to a complex and open environment. As a major consequence, the engineering of such systems
involves multiple stakeholders, each with some form of domain-specific knowledge, and with
the increased use of software as an integration layer. Hence more and more organizations are
adopting Domain-Specific Languages (DSLs) to allow domain experts to express solutions directly
in terms of relevant domain concepts. This new trend raises new challenges about designing DSLs,
evolving a set of DSLs and coordinating the use of multiple DSLs for both DSL designers and DSL
users. ALE will contribute to the field of Software Language Engineering, aiming to provide more
agility to both language designers and language users. The main objective is twofold. First, we
aim to help language designers to leverage previous DSL implementation efforts by reusing and
combining existing language modules, while automating the deployment of distributed, elastic and
collaborative modeling environments. Second, we aim to provide more flexibility to language users
by ensuring interoperability between different DSLs, offering live feedback about how the model or
program behaves while it is being edited (aka. live programming/modeling), and combining with
interactive environments like Jupiter Notebook for literate programming.

9.1.2 Inria associate team not involved in an IIL or an international program

RESIST_EA

Participants: Mathieu Acher, Benoît Combemale, Djamel Eddine Khelladi, Di-
dier Vojtisek.

Title: Resilient Software Science

Duration: 2021 ->

Coordinator: Arnaud Gotlieb (arnaud@simula.no)

Partners:

• SIMULA (Norvège)

Inria contact: Mathieu Acher

Summary: The Science of Resilient Software (RESIST_EA) intends to create software-systems which can
resist failures without significantly degrading their functionality. For several years, creating resilient
software-systems has become extremely important in various application domains. For example,
in robotics, the deployment of advanced collaborative robots which have to cope with uncertainty
and unexpected behaviors while being able to recover from their failures has led to new research
challenges. A recent area where these challenges have become pregnant is industrial robotics
for car manufacturing where major issues faced by an “excessive automation” have surfaced. For
instance, Tesla has struggled with painting, welding, assembling industrial robots in its advanced
California car factory since 2018. Generally speaking, Autonomous Software-Systems (AS) such
as self-driving cars, autonomous ships or industrial robots require the development of resilient
software-systems as they have to manage unexpected events, such as faults or hazards. The goal
of the Associate Team “Resilient Software Science” (and the main innovation of this project) is to
explore the Science of resilient software by laying the ground to foundational work on advanced a
priori testing methods such as metamorphic testing and a posteriori continuous improvements
through digital twins.

IRISA Activity Report 2022

Project DIVERSE 27

9.1.3 Inria International Partners

Informal International Partners

• School of computer science, University of St Andrews (United Kingdom): program analysis for
security, security properties, program refactoring

• UAS - Unmanned Arial Systems Center at SDU - University of Southern Denmark (Denmark):
program analyses and transformations for security

• Institute of Embedded Systems at TUHH - Hamburg University of Technology (Germany): program
analyses and transformations for security

• University of Luxembourg (Luxembourg): program analyses and transformations for security,
information leakage

• SNE - System and Networking Engineering lab at the University of Amsterdam (The Netherlands):
task scheduling for security

• The Bristol Microelectronics Research Group, University of Bristol (United Kingdom): program
analyses and transformations for security

• UNIMORE - The University of Modena and Reggio Emilia (Italy): program analyses and transfor-
mations for security

9.2 International research visitors

9.2.1 Visits of international scientists

Inria International Chair

• Gunter Mussbacher has an Inria International Chair, and he is visiting the DiverSE team 4 months
per year.

9.3 European initiatives

9.3.1 Horizon Europe

HiPEAC

Participants: Olivier Zendra, Jean-Marc Jézéquel.

HiPEAC project on cordis.europa.eu

Title: High Performance, Edge And Cloud computing

Duration: From December 1, 2022 to May 31, 2025

Partners:

• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),
France

• ECLIPSE FOUNDATION EUROPE GMBH (EFE GMBH), Germany

• INSIDE, Netherlands

• UNIVERSITEIT GENT (UGent), Belgium

• RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN (RWTH AACHEN),
Germany

• COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (CEA), France

IRISA Activity Report 2022

28 Inria Annual Report 2022

• SINTEF AS (SINTEF), Norway

• IDC ITALIA SRL, Italy

• THALES (THALES), France

• CLOUDFERRO SP ZOO, Poland

• BARCELONA SUPERCOMPUTING CENTER CENTRO NACIONAL DE SUPERCOMPUTACION
(BSC CNS), Spain

Inria contact: Olivier Zendra

Coordinator:

Summary: The objective of HiPEAC is to stimulate and reinforce the development of the dynamic
European computing ecosystem that supports the digital transformation of Europe. It does so by
guiding the future research and innovation of key digital, enabling, and emerging technologies,
sectors, and value chains. The longer term goal is to strengthen European leadership in the global
data economy and to accelerate and steer the digital and green transitions through human-centred
technologies and innovations. This will be achieved via mobilising and connecting European
partnerships and stakeholders to be involved in the research, innovation and development of
computing and systems technologies. They will provide roadmaps supporting the creation of
next-generation computing technologies, infrastructures, and service platforms.

The key aim is to support and contribute to rapid technological development, market uptake
and digital autonomy for Europe in advanced digital technology (hardware and software) and
applications across the whole European digital value chain. HiPEAC will do this by connecting
and upscaling existing initiatives and efforts, by involving the key stakeholders, and by improving
the conditions for large-scale market deployment. The next-generation computing and systems
technologies and applications developed will increase European autonomy in the data economy.
This is required to support future hyper-distributed applications and provide new opportunities
for further disruptive digital transformation of the economy and society, new business models,
economic growth, and job creation.

The HiPEAC CSA proposal directly addresses the research, innovation, and development of next
generation computing and systems technologies and applications. The overall goal is to support
the European value chains and value networks in computing and systems technologies across the
computing continuum from cloud to edge computing to the Internet of Things (IoT).

9.4 National initiatives

9.4.1 ANR

MC-Evo2 ANR JCJC

Participants: Djamel Eddine Khelladi.

• Coordinator: Djamel E. Khelladi

• DiverSE, CNRS/IRISA Rennes

• Dates: 2021-2025

• Abstract: Software maintenance represents 40% to 80% of the total cost of developing software. On
65 projects, an IT company reported a cost of several million dollars, with a 25% higher cost on
complex projects. Nowadays, software evolves frequently with the philosophy “Release early, release
often” embraced by IT giants like the GAFAM, thus making software maintenance difficult and
costly. Developing complex software inevitably requires developers to handle multiple dimensions,
such as APIs to use, tests to write, models to reason with, etc. When software evolves, a co-
evolution is usually necessary as a follow-up, to resolve the impacts caused by the evolution

IRISA Activity Report 2022

Project DIVERSE 29

changes. For example, when APIs evolve, code must be co-evolved, or when code evolves, its
tests must be co-evolved. The goals of this project are to: 1) address these challenges from a
novel perspective, namely a multidimensional co-evolution approach, 2) investigate empirically
the multidimensional co-evolution in practice in GitHub, Maven, and Eclipse, 3) automate and
propagate the multidimensional co-evolution between the software code, APIs, tests, and models.

9.4.2 DGA

LangComponent (CYBERDEFENSE)

Participants: Benoît Combemale, Olivier Barais.

• Coordinator: DGA

• Partners: DGA MI, INRIA

• Dates: 2019-2022

• Abstract: in the context of this project, DGA-MI and the INRIA team DiverSE explore the existing
approaches to ease the development of formal specifications of domain-Specific Languages (DSLs)
dedicated to packet filtering, while guaranteeing expressiveness, precision and safety. In the long
term, this work is part of the trend to provide to DGA-MI and its partners a tooling to design and
develop formal DSLs which ease the use while ensuring a high level of reasoning.

9.4.3 DGAC

OneWay

Participants: Benoît Combemale, Didier Vojtisek, Olivier Barais, Jean-Marc Jézéquel,
Mathieu Acher.

• Coordinator: Airbus

• Partners: Airbus, Dassault Aviation, Liebherr Aerospace, Safran Electrical Power, Safran Aerotech-
nics, Thales, Altran Technologies, Cap Gemini, Sopra Steria, CIMPA, IMT Mines Ales, University of
Rennes 1, ENSTA Bretagne, and PragmaDev.

• Dates: 2021-2022

• Abstract: The ONEWAY project aims at maturing digital functional bricks for the following capac-
ities: 1) Digitalization, MBSE modeling and synthetic analysis by substitution model, of all the
information and under all the points of view necessary for the design and validation across an
extended enterprise of the complete aircraft system and at all its levels of decomposition, 2) Generic
and instantiable configuration management throughout the life cycle, on products and their sup-
port systems, in product lines or on aircraft programs, interactively in the context of an extended
enterprise, 3) Decision support for launching, then controlling and steering a Product Development
Plan interactively in the context of an extended enterprise, and 4) Helping the efficiency of IVVQ
activities: its operations, its testing and data processing resources, its ability to perform massive
testing.

MIP 4.0

Participants: Benoît Combemale, Didier Vojtisek, Olivier Barais.

IRISA Activity Report 2022

30 Inria Annual Report 2022

• Coordinator: Safran

• Partners: Safran, Akka, Inria.

• Dates: 2022-2023

• Abstract: The MIP 4.0 project aims at investigating integrated methods for efficient and shared
propulsion systems. Inria explore new techniques for collaborative modeling over the time.

9.5 Regional initiatives

IPSCo

Participants: Benoît Combemale, Didier Vojtisek, Olivier Barais.

• Coordinator: Jamespot

• Partners: Jamespot, UR1, Logpickr.

• Dates: 2022-2023

• Abstract: The IPSCo project aims at investigating new tools and methods to bring intelligence into
processes and communities.

SAD CoEvoMP

Participants: Djamel Eddine Khelladi, Benoît Combemale, Arnaud Blouin.

• Coordinator: Djamel E. Khelladi

• Partners: CNRS, UR1.

• Dates: 12/2022-12/2024

• Abstract: The CoEvoMP project aims at investigating polyglot co-evolution in parallel of the MC-
Evo2 project.

10 Dissemination

Participants: All the team.

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

Member of the organizing committees

• Benoît Combemale:

– Journal-first chair for MODELS’22

• Jean-Marc Jézéquel:

– Chair of the Most Influencial Paper Award for Software Product Lines committee

• Olivier Barais:

– Chair of the EduSymp@MODELS 2022 (MODELS 2022 Educators Symposium) committee

IRISA Activity Report 2022

Project DIVERSE 31

10.1.2 Scientific events: selection

Member of the conference program committees

• Arnaud Blouin:

– ACM/SIGAPP Symposium on Applied Computing (SAC), software engineering track, 2022;

– International Workshop on Human Factors in Modeling at MODELS’2021(HuFaMo), 2022

• Stéphanie Challita:

– The 20th International Conference on Software and Systems Reuse (ICSR 2022)

• Olivier Barais:

– The 20th International Conference on Software and Systems Reuse (ICSR 2022)

– The SPLASH Onward! 2022 Conference

• Benoît Combemale:

– Program board member for MODELS’22

– PC member for RE’22

– PC member for ICT4S’22

– PC member for ECMFA’22

– PC member for EASE’22

– PC member for FDL’22

– PC member for QUATIC’22

• Mathieu Acher:

– PC member for 17th International Working Conference on Variability Modelling of Software-
Intensive Systems VaMoS 2023

– PC member for 5th International Workshop on Languages for Modelling Variability (MODE-
VAR)

• Olivier Zendra:

– 17th ACM International Workshop on Implementation, Compilation, Optimization of OO
Languages, Programs and Systems (ICOOOLPS 2022)

• Jean-Marc Jézéquel:

– SEAMS 2022 17th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, May 23-24, 2022, Pittsburgh, USA, co-located event with ICSE.

– SPLC 2022 The 25th International Software Product Line Conference (Industry Track), Septem-
ber 12-16, 2022, Graz, Austria

• Djamel E. Khelladi:

– MSR 22

– FSE Artifacts 22

– 5th International Workshop on Variability and Evolution of Software-intensive Systems, at
SPLC 22

– The 16th Workshop on Models and Evolution (ME), at MODELS 22

– 2nd International Workshop on Model-Driven Engineering for Digital Twins (ModDiT’22), at
MODELS 22

IRISA Activity Report 2022

32 Inria Annual Report 2022

10.1.3 Journal

Member of the editorial boards

• Benoît Combemale:

– Editor in Chief of the Springer Journal on Software and Systems Modeling (SoSyM)

– Deputy Editor in Chief of the platinum open access journal JOT on Software and language
engineering

– Member of the Editorial Board of the Springer Software Quality Journal (SQJ)

– Member of the Editorial Board of the Elsevier Journal of Computer Languages (COLA)

– Member of the Editorial Board of the Elsevier Journal on Science of Computer Programming
(SCP, Advisory Board of the Software Section)

• Jean-Marc Jézéquel:

– Associate Editor in Chief of the Springer Journal on Software and Systems Modeling (SoSyM)

– Associate Editor in Chief IEEE Computer

– Member of the Editorial Board of the Journal of Software and Systems

Reviewer - reviewing activities Team members regularly review for the main journals in the field,
namely TSE, Sosym, JSS, Jot, SPE, IEEE Software, IST, . . .

10.1.4 Invited talks

• Benoît Combemale:

– Keynote at the international workshop on AI-native Adaptive Enterprise (KAAE)

– Keynote at the international workshop on Models and Evolution (ME)

• Jean-Marc Jézéquel

– Deep variability. In Invited Lecture, University of Sevilla. Sevilla, Spain, May 2022.

– Variability management is taming uncertainty. In Workshop on Uncertainty Management,
University of Malaga. Malaga, Spain, April 2022.

– Embracing uncertainty. In Workshop on Polyglot Development and BizDevOp at the Bellairs
Research Institute of McGill University. Holetown, Barbados, April 2022.

– How deep variability challenges performance modeling. In Invited Lecture, University of
Montréal. Montréal, Canada, March 2022.

– Variability management in software engineering. In Invited Lecture, University of Ottawa.
Ottawa, Canada, March 2022. 30

– Taming variability in software engineering: Past, present and future. In Colloquia@CS, McGill
University. Montréal, Canada, February 2022

• Mathieu Acher:

– Keynote at the "Reproducible Science and Deep Software Variability" 16th International
Working Conference on Variability Modelling of Software-Intensive

– Keynote at VariVolution workshop Machine Learning and Deep Software Variability

IRISA Activity Report 2022

Project DIVERSE 33

10.1.5 Leadership within the scientific community

• Arnaud Blouin:

– Founding member and co-organiser of the French GDR-GPL research action on Software
Engineering and Human-Computer Interaction (GL-IHM).

• Benoît Combemale:

– Founding member and Steering Committee member of the EDT.Community Seminar Series.

– Co-organizer of the Dagstuhl Seminar 22362 on Model-Driven Engineering of Digital Twins.

– Co-organizer of the Bellairs workshop on Polyglot Development.

– Founding member and co-organiser of the French GDR-GPL research group on software
debugging.

– Founding member and co-organiser of the workshop series on Model-Driven Engineering of
Digital Twins (ModDiT).

– Founding member of the workshop series on Modeling Language Engineering (MLE).

• Mathieu Acher:

– steering committee of Systems and Software Product Line Conference (SPLC)

– steering committee of International Working Conference on Variability Modelling of Software-
Intensive Systems (VaMoS)

– steering committee of International Workshop on Machine Learning Techniques for Software
Quality Evolution (MaLTeSQuE)

• Olivier Zendra:

– founder and a member of the Steering Committee of ICOOOLPS (International Workshop on
Implementation, Compilation, Optimization of OO Languages, Programs and Systems).

– Member of the EU HiPEAC CSA project Steering Committee

– Member of the HiPEAC Vision Editorial Board

• Jean-Marc Jézéquel:

– Vice President of Informatics Europe.

– Member of the Executive Committee of the GDR GPL of CNRS

• Djamel E. Khelladi:

– Co-founding member and co-organiser of the French GDR-GPL research action on Software
Engineering (GT VL).

10.1.6 Scientific expertise

• Arnaud Blouin: reviewer for the ANR and CIR agencies.

• Stéphanie Challita: member of the IEEE Conference Activities Committee.

• Olivier Zendra:

– scientific CIR/JEI expert for the MESRI

– scientific reviewer for the HiPEAC collaboration Grants 2022

• Olivier Barais:

– member of the scientific board of Pole de compétitivité Image et Réseau

– scientific reviewer for FRQNT- Programme Samuel-de-Champlain (Quebec)

– external expert for the H2020 ENACT project

– scientific expertise for DGRI international program (20 proposals per year)

IRISA Activity Report 2022

34 Inria Annual Report 2022

10.1.7 Research administration

• Olivier Barais led the Associate professor committee at University of Rennes 1.

• Olivier Zendra is a Member of Inria Evaluation Committee.

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

The DIVERSE team bears the bulk of the teaching on Software Engineering at the University of Rennes 1
and at INSA Rennes, for the first year of the Master of Computer Science (Project Management, Object-
Oriented Analysis and Design with UML, Design Patterns, Component Architectures and Frameworks,
Validation & Verification, Human-Computer Interaction) and for the second year of the MSc in software
engineering (Model driven Engineering, Aspect-Oriented Software Development, Software Product Lines,
Component Based Software Development, Validation & Verification, etc.).

Each of Jean-Marc Jézéquel, Noël Plouzeau, Olivier Barais, Benoît Combemale, Johann Bourcier,
Arnaud Blouin, Stéphanie Challita and Mathieu Acher teaches about 250h in these domains for a grand
total of about 2000 hours, including several courses at ENSTB, IMT, ENS Rennes and ENSAI Rennes
engineering school.

Olivier Barais is deputy director of the electronics and computer science teaching department of the
University of Rennes 1. Olivier Barais is the head of the Master in Computer Science at the University
of Rennes 1. Johann Bourcier has been the head of the Computer Science department and member of
the management board at the ESIR engineering school in Rennes until 08/2021, and Benoît Combemale
took the responsability afterward. Arnaud Blouin is in charge of industrial relationships for the computer
science department at INSA Rennes and elected member of this CS department council.

The DIVERSE team also hosts several MSc and summer trainees every year.

10.2.2 Supervision

• Cassius DE OLIVEIRA PUODZIUS successfully defended on 19/12/2022 his PhD thesis in com-
puter science at Université Rennes 1 on “Data-Driven Malware Classification Assisted by Machine
Learning Methods”. Olivier Zendra has been co-director of this thesis.

• June Sallou successfully defended on 23/02/2022 her PhD thesis in computer science at Université
Rennes 1 on “On Scientific Integrity and Flexibility of Scientific Software in Environmental Sciences:
Towards a Systematic Approach to Support Decision-Making”. Benoît Combemale and Johann
Bourcier have been co-supervisors of this thesis.

• Pierre Jeanjean successfully defended on 29/04/2022 his PhD thesis in computer science at Uni-
versité Rennes 1 on “IDE as Code : Reifying Language Protocols as First-Class Citizens”. Benoît
Combemale and Olivier Barais have been co-supervisors of this thesis.

• Fabien Coulon successfully defended on 03/03/2022 his PhD thesis in computer science at Univer-
sité Rennes 1 on “Towards flexible Integrated Development Environment". Benoît Combemale and
Olivier Barais have been co-supervisors of this thesis.

• Dorian Leroy successfully defended on 25/03/2022 his PhD thesis in computer science at Université
Rennes 1 on “Behavioral Typing for the Dynamic Analysis of Executable DSLs". Benoît Combemale
has been director of this thesis.

• Piergiorgio Ladisa, CIFRE with SAP (defense in 2024). Olivier Barais is the supervisor of this thesis.

• Anne Bumiller, CIFRE with Orange (defense in 2023). Benoît Combemale, Stéphanie Chalita and
Olivier Barais are co-supervisors of this thesis.

• Theo Giraudet, CIFRE with Obéo (defense in 2025). Benoît Combemale and Arnaud Blouin are
co-supervisors of this thesis.

IRISA Activity Report 2022

Project DIVERSE 35

• Georges Aaron Randrianaina, (defense in 2024). Mathieu Acher, Djamel Eddine Khelladi and Olivier
Zendra are co-supervisors of this thesis.

• Quentin Le Dilavrec, (defense in 2024). Djamel Eddine Khelladi and Aranaud Blouin are co-
supervisors of this thesis.

• Gwendal Jouneaux, (defense in 2024). Benoît Combemale and Olivier Barais are co-supervisors of
this thesis.

• Luc Lesoil, (defense in 2023). Jean-Marc Jézéquel and Marhieu Acher are co-supervisors of this
thesis.

• Alif Akbar Pranata, (defense in 2023). Olivier Barais and Johann Bourcier are co-supervisors of this
thesis.

10.2.3 Juries

• Olivier Barais:

– Mohammed Chakib BELGAID (reviewer), Université de Lille

– Timothée Riom (examiner), Université du Luxembourg

– Humberto Alvarez (reviewer), Université des pays de l’Adour

– Honore Mahugnon HOUEKPETODJ (reviewer), Université de Lille

– Amina CHIKHAOUI (reviewer), Université de Brest en cotutelle avec l’Université des Sciences
et de la Technologie Houari Boumediene (Alger)

• Mathieu Acher:

– SIF committee best thesis 2022

– agrégation informatique 2022

• Djamel E. Khelladi:

– committee member for Prix Thèse GDR GPL best thesis 2022

10.3 Popularization

10.3.1 Articles and contents

In Journal du CNRS, an article about our research about variants "un logiciel des milliards de possibilités"
In Journal du CNRS, an article about our research about incremental build Accélérer l’étude des

versions d’un logiciel grâce à un assemblage incrémental
In Journal du CNRS, an article about the prize for the HyperAST research paper on scaling temporal

analysis Une équipe de l’IRISA récompensée dans une prestigieuse conférence en sciences du logiciel

10.3.2 Interventions

Olivier Barais gave an invited talk at IFRI on open-source software supply chain security.
Mathieu Acher gave an invited talk at Summer School EIT Digital (july) on Mastering Software

Variability for Innovation and Science

IRISA Activity Report 2022

36 Inria Annual Report 2022

11 Scientific production

11.1 Major publications

[1] M. Acher, R. E. Lopez-Herrejon and R. Rabiser. ‘Teaching Software Product Lines: A Snapshot of
Current Practices and Challenges’. In: ACM Transactions of Computing Education (May 2017).
URL: https://hal.inria.fr/hal-01522779.

[2] A. Blouin, V. Lelli, B. Baudry and F. Coulon. ‘User Interface Design Smell: Automatic Detection and
Refactoring of Blob Listeners’. In: Information and Software Technology 102 (May 2018), pp. 49–64.
DOI: 10.1016/j.infsof.2018.05.005. URL: https://hal.inria.fr/hal-01499106.

[3] M. Boussaa, O. Barais, G. Sunyé and B. Baudry. ‘Leveraging metamorphic testing to automatically
detect inconsistencies in code generator families’. In: Software Testing, Verification and Reliability

(Dec. 2019). DOI: 10.1002/stvr.1721. URL: https://hal.inria.fr/hal-02422437.

[4] E. Bousse, D. Leroy, B. Combemale, M. Wimmer and B. Baudry. ‘Omniscient Debugging for
Executable DSLs’. In: Journal of Systems and Software 137 (Mar. 2018), pp. 261–288. DOI: 10.1016
/j.jss.2017.11.025. URL: https://hal.inria.fr/hal-01662336.

[5] B. Combemale, J. Deantoni, B. Baudry, R. B. France, J.-M. Jézéquel and J. Gray. ‘Globalizing
Modeling Languages’. In: IEEE Computer (June 2014), pp. 10–13. URL: https://hal.inria.fr
/hal-00994551.

[6] K. Corre, O. Barais, G. Sunyé, V. Frey and J.-M. Crom. ‘Why can’t users choose their identity
providers on the web?’ In: Proceedings on Privacy Enhancing Technologies 2017.3 (Jan. 2017),
pp. 72–86. DOI: 10.1515/popets-2017-0029. URL: https://hal.archives-ouvertes.fr/h
al-01611048.

[7] J.-E. Dartois, J. Boukhobza, A. Knefati and O. Barais. ‘Investigating Machine Learning Algorithms
for Modeling SSD I/O Performance for Container-based Virtualization’. In: IEEE transactions on

cloud computing 14 (2019), pp. 1–14. DOI: 10.1109/TCC.2019.2898192. URL: https://hal.in
ria.fr/hal-02013421.

[8] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Clelang-Huang and P. Heymans. ‘Feature Model
Extraction from Large Collections of Informal Product Descriptions’. In: Proc. of the Europ. Soft-

ware Engineering Conf. and the ACM SIGSOFT Symp. on the Foundations of Software Engineering

(ESEC/FSE). Sept. 2013, pp. 290–300. DOI: 10.1145/2491411.2491455. URL: https://hal.inr
ia.fr/hal-00859475.

[9] T. Degueule, B. Combemale, A. Blouin, O. Barais and J.-M. Jézéquel. ‘Melange: A Meta-language
for Modular and Reusable Development of DSLs’. In: Proc. of the Int. Conf. on Software Language

Engineering (SLE). Oct. 2015. URL: https://hal.inria.fr/hal-01197038.

[10] J. A. Galindo Duarte, M. Alférez, M. Acher, B. Baudry and D. Benavides. ‘A Variability-Based Testing
Approach for Synthesizing Video Sequences’. In: Proc. of the Int. Symp. on Software Testing and

Analysis (ISSTA). July 2014. URL: https://hal.inria.fr/hal-01003148.

[11] I. Gonzalez-Herrera, J. Bourcier, E. Daubert, W. Rudametkin, O. Barais, F. Fouquet, J.-M. Jézéquel
and B. Baudry. ‘ScapeGoat: Spotting abnormal resource usage in component-based reconfigurable
software systems’. In: Journal of Systems and Software (2016). DOI: 10.1016/j.jss.2016.02.02
7. URL: https://hal.inria.fr/hal-01354999.

[12] A. Halin, A. Nuttinck, M. Acher, X. Devroey, G. Perrouin and B. Baudry. ‘Test them all, is it worth it?
Assessing configuration sampling on the JHipster Web development stack’. In: Empirical Software

Engineering (July 2018), pp. 1–44. DOI: 10.1007/s10664-018-9635-4. URL: https://hal.inr
ia.fr/hal-01829928.

[13] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus and F. Fouquet. ‘Mashup of Meta-Languages
and its Implementation in the Kermeta Language Workbench’. In: Software and Systems Modeling

14.2 (2015), pp. 905–920. URL: https://hal.inria.fr/hal-00829839.

IRISA Activity Report 2022

Project DIVERSE 37

[14] D. E. Khelladi, B. Combemale, M. Acher and O. Barais. ‘On the Power of Abstraction: a Model-
Driven Co-evolution Approach of Software Code’. In: 42nd International Conference on Software

Engineering, New Ideas and Emerging Results. Séoul, South Korea, May 2020. URL: https://hal
.inria.fr/hal-03029426.

[15] D. E. Khelladi, B. Combemale, M. Acher, O. Barais and J.-M. Jézéquel. ‘Co-Evolving Code with
Evolving Metamodels’. In: ICSE 2020 - 42nd International Conference on Software Engineering.
Séoul, South Korea, 6th July 2020, pp. 1–13. URL: https://hal.inria.fr/hal-03029429.

[16] P. Laperdrix, W. Rudametkin and B. Baudry. ‘Beauty and the Beast: Diverting modern web browsers
to build unique browser fingerprints’. In: Proc. of the Symp. on Security and Privacy (S&P). May
2016. URL: https://hal.inria.fr/hal-01285470.

[17] Q. Le Dilavrec, D. E. Khelladi, A. Blouin and J.-M. Jézéquel. ‘HyperAST: Enabling Efficient Anal-
ysis of Software Histories at Scale’. In: ASE 2022 - 37th IEEE/ACM International Conference on
Automated Software Engineering. Oakland, United States: IEEE, 10th Oct. 2022, pp. 1–12. URL:
https://hal.inria.fr/hal-03764541.

[18] M. Leduc, T. Degueule, E. Van Wyk and B. Combemale. ‘The Software Language Extension Prob-
lem’. In: Software and Systems Modeling (2019), pp. 1–4. URL: https://hal.inria.fr/hal-023
99166.

[19] H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J.-M. Jézéquel and D. E. Khelladi. ‘Transfer Learning
Across Variants and Versions: The Case of Linux Kernel Size’. In: IEEE Transactions on Software

Engineering 48.11 (1st Nov. 2022), pp. 4274–4290. DOI: 10.1109/TSE.2021.3116768. URL:
https://hal.inria.fr/hal-03358817.

[20] G. A. Randrianaina, X. Tërnava, D. E. Khelladi and M. Acher. ‘On the Benefits and Limits of Incre-
mental Build of Software Configurations: An Exploratory Study’. In: ICSE 2022 - 44th International
Conference on Software Engineering. Pittsburgh, Pennsylvania / Virtual, United States, 8th May
2022, pp. 1–12. URL: https://hal.science/hal-03547219.

[21] M. Rodriguez-Cancio, B. Combemale and B. Baudry. ‘Automatic Microbenchmark Generation to
Prevent Dead Code Elimination and Constant Folding’. In: Proc. of the Int. Conf. on Automated

Software Engineering (ASE). Sept. 2016. URL: https://hal.inria.fr/hal-01343818.

[22] P. Temple, M. Acher, J.-M. Jezequel and O. Barais. ‘Learning-Contextual Variability Models’. In:
IEEE Software 34.6 (Nov. 2017), pp. 64–70. DOI: 10.1109/MS.2017.4121211. URL: https://hal
.inria.fr/hal-01659137.

[23] P. Temple, M. Acher and J.-M. Jézéquel. ‘Empirical Assessment of Multimorphic Testing’. In: IEEE

Transactions on Software Engineering (July 2019), pp. 1–21. DOI: 10.1109/TSE.2019.2926971.
URL: https://hal.inria.fr/hal-02177158.

[24] P. Temple, G. Perrouin, M. Acher, B. Biggio, J.-M. Jézéquel and F. Roli. ‘Empirical Assessment
of Generating Adversarial Configurations for Software Product Lines’. In: Empirical Software

Engineering (Dec. 2020), pp. 1–57. URL: https://hal.inria.fr/hal-03045797.

11.2 Publications of the year

International journals

[25] M. Acher, G. Perrouin and M. Cordy. ‘BURST: Benchmarking Uniform Random Sampling Tech-
niques’. In: Science of Computer Programming (3rd Jan. 2023). URL: https://hal.inria.fr/ha
l-03897639.

[26] R. Eramo, F. Bordeleau, B. Combemale, M. van den Brand, M. Wimmer and A. Wortmann. ‘Con-
ceptualizing Digital Twins’. In: IEEE Software 39.2 (2022), pp. 39–46. DOI: 10.1109/MS.2021.313
0755. URL: https://hal.inria.fr/hal-03466396.

[27] N. Harrand, A. Benelallam, C. Soto-Valero, F. Bettega, O. Barais and B. Baudry. ‘API beauty is in the
eye of the clients: 2.2 million Maven dependencies reveal the spectrum of client–API usages’. In:
Journal of Systems and Software 184 (Feb. 2022), p. 111134. DOI: 10.1016/j.jss.2021.111134.
URL: https://hal.archives-ouvertes.fr/hal-03921298.

IRISA Activity Report 2022

38 Inria Annual Report 2022

[28] D. Leroy, J. Sallou, J. Bourcier and B. Combemale. ‘On the role of computer languages in scientific
computing’. In: Computing in Science and Engineering (2022), pp. 1–6. URL: https://hal.inri
a.fr/hal-03799289.

[29] G. Lyan, D. Gross-Amblard, J.-M. Jézéquel and S. Malinowski. ‘Impact of Data Cleansing for
Urban Bus Commercial Speed Prediction’. In: SN Computer Science 3.82 (2022), pp. 1–11. DOI:
10.1007/s42979-021-00966-1. URL: https://hal.inria.fr/hal-03220449.

[30] G. Lyan, J.-M. Jézéquel, D. Gross-Amblard, R. Lefeuvre and B. Combemale. ‘Reasoning over Time
into Models with DataTime’. In: Software and Systems Modeling (31st Dec. 2022), pp. 1–25. URL:
https://hal.inria.fr/hal-03921928.

[31] H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J.-M. Jézéquel and D. E. Khelladi. ‘Transfer Learning
Across Variants and Versions: The Case of Linux Kernel Size’. In: IEEE Transactions on Software

Engineering 48.11 (1st Nov. 2022), pp. 4274–4290. DOI: 10.1109/TSE.2021.3116768. URL:
https://hal.inria.fr/hal-03358817.

[32] X. Tërnava, J. Mortara, P. Collet and D. Le Berre. ‘Identification and visualization of variability
implementations in object-oriented variability-rich systems: a symmetry-based approach’. In:
Automated Software Engineering (24th Feb. 2022), pp. 1–52. DOI: 10.1007/s10515-022-00329-
x. URL: https://hal.archives-ouvertes.fr/hal-03593967.

[33] F. Zalila, F. Korte, J. Erbel, S. Challita, J. Grabowski and P. Merle. ‘MoDMaCAO: a model-driven
framework for the design, validation and configuration management of cloud applications based
on OCCI’. In: Software and Systems Modeling (25th Sept. 2022). URL: https://hal.archives-o
uvertes.fr/hal-03927522.

[34] S. Zschaler, E. Bousse, J. Deantoni and B. Combemale. ‘A Generic Framework for Representing
and Analysing Model Concurrency’. In: Software and Systems Modeling (2022). URL: https://ha
l.inria.fr/hal-03921704.

International peer-reviewed conferences

[35] M. Acher. ‘Reproducible Science and Deep Software Variability’. In: VaMoS 2022 - 16th Interna-
tional Working Conference on Variability Modelling of Software-Intensive Systems. Florence, Italy,
23rd Feb. 2022, pp. 1–2. URL: https://hal.inria.fr/hal-03528889.

[36] M. Acher, H. Martin, J. A. Pereira, L. Lesoil, A. Blouin, J.-M. Jézéquel, D. E. Khelladi and O. Barais.
‘Feature Subset Selection for Learning Huge Configuration Spaces: The case of Linux Kernel Size’.
In: SPLC 2022 - 26th ACM International Systems and Software Product Line Conference. Graz,
Austria, 2022, pp. 1–12. DOI: 10.1145/3546932.3546997. URL: https://hal.inria.fr/hal-
03720273.

[37] L. T. van Binsbergen, D. Frölich, M. Verano Merino, J. Lai, P. Jeanjean, T. van der Storm, B. Combe-
male and O. Barais. ‘A Language-Parametric Approach to Exploratory Programming Environ-
ments’. In: SLE ’22: 15th ACM SIGPLAN International Conference on Software Language Engineer-

ing. SLE 2022 - 15th ACM SIGPLAN International Conference on Software Language Engineering.
Auckland, New Zealand: ACM, 1st Dec. 2022, pp. 175–188. DOI: 10.1145/3567512.3567527. URL:
https://hal.inria.fr/hal-03921387.

[38] C. Brown, A. Barwell, Y. Marquer, O. Zendra, T. Richmond and C. Gu. ‘Semi-automatic ladderi-
sation: improving code security through rewriting and dependent types’. In: PEPM 2022 - ACM
SIGPLAN International Workshop on Partial Evaluation and Program Manipulation. Philadel-
phia PA, United States: ACM, 16th Jan. 2022, pp. 14–27. DOI: 10.1145/3498886.3502202. URL:
https://hal.inria.fr/hal-03805561.

[39] A. Bumiller, O. Barais, N. Aillery and G. Le Lan. ‘Towards a Better Understanding of Impersonation
Risks’. In: SINCONF 2022 - 15th IEEE International Conference on Security of Information and
Networks. Sousse, Tunisia, 2022, pp. 1–9. URL: https://hal.archives-ouvertes.fr/hal-03
789500.

IRISA Activity Report 2022

Project DIVERSE 39

[40] A. Bumiller, O. Barais, S. Challita, B. Combemale, N. Aillery and G. Le Lan. ‘A Context-Driven Mod-
elling Framework for Dynamic Authentication Decisions’. In: SEAA 2022 - Euromicro Conference
Series on Software Engineering and Advanced Applications. Maspalomas, Spain, 31st Aug. 2022,
pp. 1–8. URL: https://hal.inria.fr/hal-03729080.

[41] L. Cleophas, T. Godfrey, D. E. Khelladi, D. Lehner, B. Combemale, M. van den Brand, M. Vierhauser,
M. Wimmer and S. Zschaler. ‘A community-sourced view on engineering digital twins: A Report
from the EDT.Community’. In: MODELS ’22: Proceedings of the 25th International Conference

on Model Driven Engineering Languages and Systems: Companion Proceedings. 2nd Interna-
tional Workshop on Model-Driven Engineering of Digital Twins (ModDiT 2022) @ MODELS 2022.
WORKSHOP SESSION: 2nd International workshop on model-driven engineering for digital twins
(ModDiT 2022). Montréal, Canada: ACM, 23rd Oct. 2022, pp. 481–485. DOI: 10.1145/3550356.3
561549. URL: https://hal.inria.fr/hal-03933973.

[42] J.-M. Jézéquel, J. Kienzle and M. Acher. ‘From feature models to feature toggles in practice’.
In: SPLC 2022 - 26th ACM International Systems and Software Product Line Conference. Graz
/ Hybrid, Austria: ACM, 12th Sept. 2022, pp. 234–244. DOI: 10.1145/3546932.3547009. URL:
https://hal.inria.fr/hal-03788437.

[43] J. Kienzle, B. Combemale, G. Mussbacher, O. Alam, F. Bordeleau, L. Burgueño, G. Engels, J. Galasso,
J.-M. Jézéquel, B. Kemme, S. Mosser, H. Sahraoui, M. Schiedermeier and E. Syriani. ‘Global
Decision Making Over Deep Variability in Feedback-Driven Software Development’. In: ASE 2022 -
37th IEEE/ACM International Conference on Automated Software Engineering. Rochester, MI,
United States: IEEE, 10th Oct. 2022, pp. 1–6. DOI: 10.1145/3551349.3559551. URL: https://ha
l.inria.fr/hal-03770004.

[44] P. Ladisa, H. Plate, M. Martinez, O. Barais and S. E. Ponta. ‘Risk Explorer for Software Supply
Chains’. In: CCS 2022 - ACM SIGSAC Conference on Computer and Communications Security.
Los Angeles, United States: ACM, 8th Nov. 2022, pp. 35–36. DOI: 10.1145/3560835.3564546.
URL: https://hal.inria.fr/hal-03921373.

[45] P. Ladisa, H. Plate, M. Martinez, O. Barais and S. E. Ponta. ‘Towards the Detection of Malicious Java
Packages’. In: CCS 2022 - ACM SIGSAC Conference on Computer and Communications Security.
Los Angeles CA USA, United States: ACM, 8th Nov. 2022, pp. 63–72. DOI: 10.1145/3560835.3564
548. URL: https://hal.inria.fr/hal-03921362.

[46] Q. Le Dilavrec, D. E. Khelladi, A. Blouin and J.-M. Jézéquel. ‘HyperAST: Enabling Efficient Anal-
ysis of Software Histories at Scale’. In: ASE 2022 - 37th IEEE/ACM International Conference on
Automated Software Engineering. Oakland, United States: IEEE, 10th Oct. 2022, pp. 1–12. URL:
https://hal.inria.fr/hal-03764541.

[47] L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel. ‘Beware of the Interactions of Variability Layers
When Reasoning about Evolution of MongoDB’. In: Companion of the 2022 ACM/SPEC Inter-

national Conference on Performance Engineering. ICPE 2022 - 13th ACM/SPEC International
Conference on Performance Engineering. Beijing, China, 9th Apr. 2022, pp. 1–5. DOI: 10.1145/34
91204.3527489. URL: https://hal.archives-ouvertes.fr/hal-03624309.

[48] L. Lesoil, H. Martin, M. Acher, A. Blouin and J.-M. Jézéquel. ‘Transferring Performance between
Distinct Configurable Systems : A Case Study’. In: VaMoS 2022 - 16th International Working
Conference on Variability Modelling of Software-Intensive Systems. Florence, Italy, 23rd Feb. 2022,
pp. 1–6. DOI: 10.1145/3510466.3510486. URL: https://hal.inria.fr/hal-03514984.

[49] G. A. Randrianaina, D. E. Khelladi, O. Zendra and M. Acher. ‘Towards Incremental Build of Software
Configurations’. In: ICSE-NIER 2022 - 44th International Conference on Software Engineering
– New Ideas and Emerging Results. Pittsburgh, PA, United States, 21st May 2022, pp. 1–5. DOI:
10.1145/3510455.3512792. URL: https://hal.archives-ouvertes.fr/hal-03558479.

[50] G. A. Randrianaina, X. Tërnava, D. E. Khelladi and M. Acher. ‘On the Benefits and Limits of Incre-
mental Build of Software Configurations: An Exploratory Study’. In: ICSE 2022 - 44th International
Conference on Software Engineering. Pittsburgh, Pennsylvania / Virtual, United States, 8th May
2022, pp. 1–12. URL: https://hal.archives-ouvertes.fr/hal-03547219.

IRISA Activity Report 2022

40 Inria Annual Report 2022

[51] X. Tërnava, L. Lesoil, G. A. Randrianaina, D. E. Khelladi and M. Acher. ‘On the Interaction of Feature
Toggles’. In: VaMoS 2022 - 16th International Working Conference on Variability Modelling of
Software-Intensive Systems. Florence, Italy, 23rd Feb. 2022. DOI: 10.1145/3510466.3510485.
URL: https://hal.archives-ouvertes.fr/hal-03527250.

[52] R. Verdecchia, L. Cruz, J. Sallou, M. Lin, J. Wickenden and E. Hotellier. ‘Data-Centric Green
AI: An Exploratory Empirical Study’. In: ICT4S 2022 - 8th International Conference on ICT for
Sustainability. 2022 International Conference on ICT for Sustainability (ICT4S). Plovdiv, Bulgaria,
June 2022, pp. 1–11. DOI: 10.1109/ICT4S55073.2022.00015. URL: https://hal.archives-o
uvertes.fr/hal-03632376.

[53] S. Yalles, M. Handaoui, J.-E. Dartois, O. Barais, L. d’Orazio and J. Boukhobza. ‘RISCLESS: A Re-
inforcement Learning Strategy to Guarantee SLA on Cloud Ephemeral and Stable Resources’.
In: 2022 30th Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP). 2022 30th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). Valladolid, Spain: IEEE, 9th Mar. 2022, pp. 83–87. DOI: 10.1109
/PDP55904.2022.00021. URL: https://hal.archives-ouvertes.fr/hal-03921309.

Conferences without proceedings

[54] M. Acher, L. Lesoil, G. A. Randrianaina, X. Tërnava and O. Zendra. ‘A Call for Removing Variability’.
In: 17th International Working Conference on Variability Modelling of Software-Intensive Systems
(VaMoS 2023). Odense, Denmark, 25th Jan. 2023. URL: https://hal.archives-ouvertes.fr
/hal-03882594.

[55] G. A. Randrianaina. ‘Incremental Build of Linux Kernel Configurations’. In: EuroDW 2022 - 16th
EuroSys Doctoral Workshop. Rennes, France, 5th Apr. 2022, pp. 1–3. URL: https://hal.archive
s-ouvertes.fr/hal-03615777.

[56] X. Tërnava, M. Acher and B. Combemale. ‘Specialization of Run-time Configuration Space at
Compile-time: An Exploratory Study’. In: SAC 2023 - The 38th ACM/SIGAPP Symposium on
Applied Computing. Tallinn, Estonia, 27th Mar. 2023. URL: https://hal.archives-ouvertes
.fr/hal-03916459.

Scientific book chapters

[57] H. Martin, P. Temple, M. Acher, J. A. Pereira and J.-M. Jézéquel. ‘Machine Learning for Feature
Constraints Discovery’. In: Handbook of Re-Engineering Software Intensive Systems into Software

Product Lines. Springer International Publishing, 5th July 2023, pp. 175–196. DOI: 10.1007/978-
3-031-11686-5_7. URL: https://hal.inria.fr/hal-03921905.

Doctoral dissertations and habilitation theses

[58] F. Coulon. ‘Vers un environnement de développement intégré flexible’. Université Rennes 1,
3rd Mar. 2022. URL: https://theses.hal.science/tel-03854875.

[59] P. Jeanjean. ‘IDE as Code : reifying language protocols as first-class citizens’. Université Rennes 1,
29th Apr. 2022. URL: https://theses.hal.science/tel-03881947.

[60] C. Puodzius. ‘Data-Driven Malware Classification Assisted by Machine Learning Methods’. Inria
Rennes, 19th Dec. 2022. URL: https://hal.inria.fr/tel-03935152.

[61] J. Sallou. ‘On reliability and flexibility of scientific software in environmental science : towards
a systematic approach to support decision-making’. Université Rennes 1, 23rd Feb. 2022. URL:
https://theses.hal.science/tel-03854849.

Reports & preprints

[62] Y. Marquer, O. Zendra and A. Heuser. The Indiscernibility Methodology: quantifying information

leakage from side-channels with no prior knowledge. 30th Sept. 2022. URL: https://hal.inria
.fr/hal-03793085.

IRISA Activity Report 2022

Project DIVERSE 41

[63] S. Yalles, M. Handaoui, J.-E. Dartois, O. Barais, L. d’Orazio and J. Boukhobza. RISCLESS: A Rein-

forcement Learning Strategy to Exploit Unused Cloud Resources. ENSTA Bretagne - École nationale
supérieure de techniques avancées Bretagne, 27th Apr. 2022, pp. 1–9. URL: https://hal.archiv
es-ouvertes.fr/hal-03652738.

Other scientific publications

[64] A. Blouin and J.-M. Jézéquel. Journal First: Interacto: A Modern User Interaction Processing Model.
Pittsburgh / Virtual, United States, 8th May 2022. URL: https://hal.inria.fr/hal-03613422.

11.3 Other

Scientific popularization

[65] X. Tërnava, M. Acher, L. Lesoil, A. Blouin and J.-M. Jézéquel. ‘Scratching the Surface of ./configure:
Learning the Effects of Compile-Time Options on Binary Size and Gadgets’. In: ICSR 2022 - 20th
International Conference on Software and Systems Reuse. Montpellier, France, 15th June 2022,
pp. 1–18. URL: https://hal.archives-ouvertes.fr/hal-03627246.

11.4 Cited publications

[66] A. Arcuri and L. C. Briand. ‘A practical guide for using statistical tests to assess randomized
algorithms in software engineering’. In: ICSE. 2011, pp. 1–10.

[67] A. Avizienis. ‘The N-version approach to fault-tolerant software’. In: Software Engineering, IEEE

Transactions on 12 (1985), pp. 1491–1501.

[68] F. Bachmann and L. Bass. ‘Managing variability in software architectures’. In: SIGSOFT Softw. Eng.

Notes 26 (3 May 2001), pp. 126–132. DOI: http://doi.acm.org/10.1145/379377.375274. URL:
http://doi.acm.org/10.1145/379377.375274.

[69] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone and A. Sangiovanni-Vincentelli.
‘Metropolis: An integrated electronic system design environment’. In: Computer 36.4 (2003),
pp. 45–52.

[70] E. Baniassad and S. Clarke. ‘Theme: an approach for aspect-oriented analysis and design’. In: 26th

International Conference on Software Engineering (ICSE). 2004, pp. 158–167.

[71] E. G. Barrantes, D. H. Ackley, S. Forrest and D. Stefanović. ‘Randomized instruction set emulation’.
In: ACM Transactions on Information and System Security (TISSEC) 8.1 (2005), pp. 3–40.

[72] D. Batory, R. E. Lopez-Herrejon and J.-P. Martin. ‘Generating Product-Lines of Product-Families’.
In: ASE ’02: Automated software engineering. IEEE, 2002, pp. 81–92.

[73] S. Becker, H. Koziolek and R. Reussner. ‘The Palladio component model for model-driven perfor-
mance prediction’. In: Journal of Systems and Software 82.1 (Jan. 2009), pp. 3–22.

[74] N. Bencomo. ‘On the use of software models during software execution’. In: MISE ’09: Proceedings

of the 2009 ICSE Workshop on Modeling in Software Engineering. IEEE Computer Society, May
2009.

[75] A. Beugnard, J.-M. Jézéquel and N. Plouzeau. ‘Contract Aware Components, 10 years after’. In:
WCSI. 2010, pp. 1–11.

[76] J. Bosch. Design and use of software architectures: adopting and evolving a product-line approach.
New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000.

[77] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. H. Obbink and K. Pohl. ‘Variability Issues in
Software Product Lines’. In: PFE ’01: Revised Papers from the 4th International Workshop on

Software Product-Family Engineering. London, UK: Springer-Verlag, 2002, pp. 13–21.

[78] L. C. Briand, E. Arisholm, S. Counsell, F. Houdek and P. Thévenod–Fosse. ‘Empirical studies
of object-oriented artifacts, methods, and processes: state of the art and future directions’. In:
Empirical Software Engineering 4.4 (1999), pp. 387–404.

IRISA Activity Report 2022

42 Inria Annual Report 2022

[79] J. T. Buck, S. Ha, E. A. Lee and D. G. Messerschmitt. ‘Ptolemy: A framework for simulating and
prototyping heterogeneous systems’. In: Int. Journal of Computer Simulation (1994).

[80] T. Bures, P. Hnetynka and F. Plasil. ‘Sofa 2.0: Balancing advanced features in a hierarchical com-
ponent model’. In: Software Engineering Research, Management and Applications, 2006. Fourth

International Conference on. IEEE. 2006, pp. 40–48.

[81] B. H. C. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G.
Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A. Müller, S. Park, M. Shaw, M.
Tichy, M. Tivoli, D. Weyns and J. Whittle. Software Engineering for Self-Adaptive Systems: A Research

Roadmap. Ed. by D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.
Vardi, G. Weikum, B. H. C. Cheng, R. Lemos, H. Giese, P. Inverardi and J. Magee. Vol. 5525. Betty H.
C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009.

[82] J. Coplien, D. Hoffman and D. Weiss. ‘Commonality and Variability in Software Engineering’. In:
IEEE Software 15.6 (1998), pp. 37–45.

[83] I. Crnkovic, S. Sentilles, A. Vulgarakis and M. R. Chaudron. ‘A classification framework for software
component models’. In: Software Engineering, IEEE Transactions on 37.5 (2011), pp. 593–615.

[84] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. ‘A fast and elitist multiobjective genetic algorithm:
NSGA-II’. In: Evolutionary Computation, IEEE Transactions on 6.2 (2002), pp. 182–197.

[85] R. DeMilli and A. J. Offutt. ‘Constraint-based automatic test data generation’. In: Software Engi-

neering, IEEE Transactions on 17.9 (1991), pp. 900–910.

[86] R. B. France and B. Rumpe. ‘Model-driven Development of Complex Software: A Research
Roadmap’. In: Proceedings of the Future of Software Engineering Symposium (FOSE ’07). Ed. by
L. C. Briand and A. L. Wolf. IEEE, 2007, pp. 37–54.

[87] S. Frey, F. Fittkau and W. Hasselbring. ‘Search-based genetic optimization for deployment and
reconfiguration of software in the cloud’. In: Proceedings of the 2013 International Conference on

Software Engineering. IEEE Press. 2013, pp. 512–521.

[88] G. Halmans and K. Pohl. ‘Communicating the Variability of a Software-Product Family to Cus-
tomers’. In: Software and System Modeling 2.1 (2003), pp. 15–36.

[89] C. Hardebolle and F. Boulanger. ‘ModHel’X: A component-oriented approach to multi-formalism
modeling’. In: Models in Software Engineering. Springer, 2008, pp. 247–258.

[90] H. Hemmati, L. C. Briand, A. Arcuri and S. Ali. ‘An enhanced test case selection approach for
model-based testing: an industrial case study’. In: SIGSOFT FSE. 2010, pp. 267–276.

[91] J. Hutchinson, J. Whittle, M. Rouncefield and S. Kristoffersen. ‘Empirical assessment of MDE in
industry’. In: Proceedings of the 33rd International Conference on Software Engineering (ICSE ’11).
Ed. by R. N. Taylor, H. Gall and N. Medvidovic. ACM, 2011, pp. 471–480.

[92] J.-M. Jézéquel. ‘Model Driven Design and Aspect Weaving’. In: Journal of Software and Systems

Modeling (SoSyM) 7.2 (May 2008), pp. 209–218. URL: http://www.irisa.fr/triskell/publis
/2008/Jezequel08a.pdf.

[93] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and A. S. Peterson. Feature-Oriented Domain

Analysis (FODA) Feasibility Study. Tech. rep. Carnegie-Mellon University Software Engineering
Institute, Nov. 1990.

[94] J. Kramer and J. Magee. ‘Self-Managed Systems: an Architectural Challenge’. In: Future of Software

Engineering. IEEE, 2007, pp. 259–268.

[95] P. Ladisa, H. Plate, M. Martinez and O. Barais. Taxonomy of Attacks on Open-Source Software

Supply Chains. 2022. DOI: 10.48550/ARXIV.2204.04008. URL: https://arxiv.org/abs/220
4.04008.

[96] K.-K. Lau, P. V. Elizondo and Z. Wang. ‘Exogenous connectors for software components’. In:
Component-Based Software Engineering. Springer, 2005, pp. 90–106.

IRISA Activity Report 2022

Project DIVERSE 43

[97] P. McMinn. ‘Search-based software test data generation: a survey’. In: Software Testing, Verification

and Reliability 14.2 (2004), pp. 105–156.

[98] J. Meekel, T. B. Horton and C. Mellone. ‘Architecting for Domain Variability’. In: ESPRIT ARES

Workshop. 1998, pp. 205–213.

[99] R. Mélisson, P. Merle, D. Romero, R. Rouvoy and L. Seinturier. ‘Reconfigurable run-time support
for distributed service component architectures’. In: the IEEE/ACM international conference. New
York, New York, USA: ACM Press, 2010, p. 171.

[100] A. M. Memon. ‘An event-flow model of GUI-based applications for testing’. In: Software Testing,

Verification and Reliability 17.3 (2007), pp. 137–157.

[101] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey and A. Solberg. ‘Models at Runtime to Support
Dynamic Adaptation’. In: IEEE Computer (Oct. 2009), pp. 46–53. URL: http://www.irisa.fr/t
riskell/publis/2009/Morin09f.pdf.

[102] P.-A. Muller, F. Fleurey and J.-M. Jézéquel. ‘Weaving Executability into Object-Oriented Meta-
Languages’. In: Proc. of MODELS/UML’2005. LNCS. Jamaica: Springer, 2005.

[103] C. Nebut, Y. Le Traon and J.-M. Jézéquel. ‘System Testing of Product Families: from Requirements
to Test Cases’. In: Software Product Lines. Springer Verlag, 2006, pp. 447–478. URL: http://www.i
risa.fr/triskell/publis/2006/Nebut06b.pdf.

[104] C. Nebut, S. Pickin, Y. Le Traon and J.-M. Jézéquel. ‘Automated Requirements-based Generation of
Test Cases for Product Families’. In: Proc. of the 18th IEEE International Conference on Automated

Software Engineering (ASE’03). 2003. URL: http://www.irisa.fr/triskell/publis/2003/ne
but03b.pdf.

[105] L. M. Northrop. ‘A Framework for Software Product Line Practice’. In: Proceedings of the Workshop

on Object-Oriented Technology. London, UK: Springer-Verlag, 1999, pp. 365–366.

[106] L. M. Northrop. ‘SEI’s Software Product Line Tenets’. In: IEEE Softw. 19.4 (2002), pp. 32–40.

[107] I. Ober, S. Graf and I. Ober. ‘Validating timed UML models by simulation and verification’. In:
International Journal on Software Tools for Technology Transfer 8.2 (2006), pp. 128–145.

[108] D. L. Parnas. ‘On the Design and Development of Program Families’. In: IEEE Trans. Softw. Eng.

2.1 (1976), pp. 1–9.

[109] S. Pickin, C. Jard, T. Jéron, J.-M. Jézéquel and Y. Le Traon. ‘Test Synthesis from UML Models of
Distributed Software’. In: IEEE Transactions on Software Engineering 33.4 (Apr. 2007), pp. 252–268.

[110] K. Pohl, G. Böckle and F. J. van der Linden. Software Product Line Engineering: Foundations,

Principles and Techniques. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[111] R. Potvin and J. Levenberg. ‘Why Google stores billions of lines of code in a single repository’. In:
Communications of the ACM 59.7 (2016), pp. 78–87.

[112] B. Randell. ‘System structure for software fault tolerance’. In: Software Engineering, IEEE Transac-

tions on 2 (1975), pp. 220–232.

[113] J. Rothenberg, L. E. Widman, K. A. Loparo and N. R. Nielsen. ‘The Nature of Modeling’. In: in

Artificial Intelligence, Simulation and Modeling. John Wiley & Sons, 1989, pp. 75–92.

[114] P. Runeson and M. Höst. ‘Guidelines for conducting and reporting case study research in software
engineering’. In: Empirical Software Engineering 14.2 (2009), pp. 131–164.

[115] D. Schmidt. ‘Guest Editor’s Introduction: Model-Driven Engineering’. In: IEEE Computer 39.2
(2006), pp. 25–31.

[116] F. Shull, J. Singer and D. I. Sjberg. Guide to advanced empirical software engineering. Springer,
2008.

[117] J. Steel and J.-M. Jézéquel. ‘On Model Typing’. In: Journal of Software and Systems Modeling

(SoSyM) 6.4 (Dec. 2007), pp. 401–414. URL: http://www.irisa.fr/triskell/publis/2007
/Steel07a.pdf.

IRISA Activity Report 2022

44 Inria Annual Report 2022

[118] C. Szyperski, D. Gruntz and S. Murer. Component software: beyond object-oriented programming.
Addison-Wesley, 2002.

[119] J.-C. Trigaux and P. Heymans. Modelling variability requirements in Software Product Lines: a

comparative survey. Tech. rep. FUNDP Namur, 2003.

[120] M. Utting and B. Legeard. Practical model-based testing: a tools approach. Morgan Kaufmann,
2010.

[121] P. Vromant, D. Weyns, S. Malek and J. Andersson. ‘On interacting control loops in self-adaptive
systems’. In: SEAMS 2011. ACM, 2011, pp. 202–207.

[122] C. Yilmaz, M. B. Cohen and A. A. Porter. ‘Covering arrays for efficient fault characterization in
complex configuration spaces’. In: Software Engineering, IEEE Transactions on 32.1 (2006), pp. 20–
34.

[123] T. Ziadi and J.-M. Jézéquel. ‘Product Line Engineering with the UML: Deriving Products’. In:
Springer Verlag, 2006, pp. 557–586.

IRISA Activity Report 2022

