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Abstract:
Flutter flight tests is a crucial and feared phase of the flight test program of a
new aircraft. The specific operational context of flutter surveillance implies the
development of automatic and reliable tools operating in real-time. At ONERA,
we recently developed a toolbox dedicated to data processing for flutter tests. It
was used for the latest Airbus aircraft from the A340-600 up to the A380.
In this article, we present the main procedure of the toolbox : the identification
routine together with the graphical interfaces that were designed to help the
operator to get a rapid knowledge of the identification results.
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1. INTRODUCTION

Because of their size, their architecture and their
light structure, the most recent aircraft of the
Airbus company exhibit a high structural flexibil-
ity. This tendency is also accompanied by a much
greater density of the aeroelastic modes, especially
for four-engine configurations. The modal analysis
therefore becomes increasingly complex because
the proximity of the modes and their greater num-
ber.

Up until the launch of the Airbus A340-600, the
flutter surveillance was based on the tools that
were developed at ONERA in 1987 for the tests
of the Airbus A320. These tools relied on a mono-
transfer modal analysis, i.e. performed indepen-
dently on each measurement. The modal synthe-
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sis, i.e. the pairing of the modes identified for each
sensor was carried out by the human operator. He
was later helped by an expert system.

As the Airbus A340-600 was expected to present
a much higher modal density, these tools were
judged unsuitable for this aircraft. A research
program named MEFAS (Méthodes et Exploita-
tion des essais de Flottement de l’Avion Souple)
was then launched as a cooperation between Air-
bus and ONERA in the years 1999- 2001. These
studies resulted in the development of a set of
new tools dedicated to flutter testing. They were
implemented in the telemetry center of Airbus
and used for the flight tests of several Airbus
aircraft : A340-600 (April 2001), A318 (January
2002), A340-500 (February 2002), A380 (April
2005). This article is devoted to the presentation
of the main tool of MEFAS : the modal identifi-
cation.



Historically at Airbus, the flutter tests consisted
in exciting the aircraft structure with sine-sweep
excitations. The transfers associated with the
measurements were computed using a classical
method due to P. Welch (Welch, 1967). But the
economical urge for shorter flight tests leads more
and more to the use of pulse excitations. The test
duration is then reduced from 2 minutes to about
10 seconds. In this case, the signal length is too
short to perform a spectrum estimation.

Therefore, the new identification procedure had to
be able to process as input data both estimated
transfers and raw frequential measurements. As it
is designed to operate in real-time, it must also be
entirely automatic and rapid. Finally, to meet the
requirements about the greater modal density, we
opted for a multi-sensor approach in order to get
the maximum advantage of the modal information
in the measurements.

The frequency domain is particularly appropriate
to the test conditions since we can focus on the
sole frequency band of interest. The amount of
data to be processed is also greatly reduced result-
ing in improved computation times. Finally the
people at Airbus were familiar with a frequency
approach and several tools were already available.

The orientation towards a parametric approach
was decided by a preliminary analysis of the
available identification techniques. Subspace ap-
proaches were discarded based on several consid-
erations: their lack of maturity, the generation of
numerous spurious modes, few methods available
in the frequency domain, the difficulty to autom-
atize them. As shown in the article, a parametric
approach proves quite adequate to the specifica-
tions of flutter surveillance. It also constitutes a
graceful extension of the procedure in operation
until then at Airbus.

This paper is organized as followed. The first
section is devoted to the presentation of the new
identification algorithm. In the second section, we
discuss how the parametrisation of the model can
be optimized for the best numerical performance.
In the third section, we describe the tools devel-
oped to monitor the identification process on two
aspects : the determination of the order of the
identified model, the analysis of its characteristics.

2. THE IDENTIFICATION PROCEDURE

2.1 Description of the problem

The goal of identification is to find the best fit
between, on the one hand, a parametric model
and, on the other hand, either estimated transfers
or frequential measurements. As we opted for
an approach in the frequency domain, we will
only consider, in this article, the data at specific

frequencies of interest f within a frequency set
denoted F .

Since the aircraft is excited by a unique signal,
it can be modeled by a single input system.
We adopted the following parametrisation for the
system transfer function:

H(s, θ) =
N(s, θ)

d(s, θ)
(1)

where

• the denominator d(s, θ) is a polynomial of
degree nd

• the numerator N(s, θ) is a polynomial vector
of size ny × 1 and of degree nd

• s is the Laplace transform variable
• θ is the vector of dimension (ny + 1) (nd + 1)

which gathers the coefficients of the numer-
ator and denominator. It can be subdivided
into:

θ =





θ1

...
θny

θd




(2)

where θl are the coefficients of the lth row in
the numerator and θd those of the denomina-
tor.

At this stage, we suppose the system order nd

fixed. The determination of nd will be addressed
later in section 4.1. In order to define a non-
degenerated problem, the degree zero coefficient
of the denominator is set to the value 1. In the
rest of the article, we only consider the values of
H(s, θ) for the frequencies f in the set F . We then
denote by Hf (θ) , H(2 π f j , θ).

The identification procedure should be designed
to process two types of data:

• estimated transfer Hf

• signals in the frequency domain for the test
excitation uf and the measurements Yf .

We can show that these two alternatives can be
expressed in a single formalism as follows :

Find the values θ which minimize:

J(θ) =
∑

f ∈ F

‖Hf − Hf(θ)‖2

Wf

(3)

Depending on the type of data processed, the
variable Hf and the diagonal weighting matrix
Wf = diag(wl,f ) take the following values :

• Identification on estimated transfer:

Hf = Hf wl,f = cl χl,f (4)

where cl is a scaling factor and χl,f is a
quality indicator for the lth component of the
estimated transfer.

• Identification on measurements:



Hf =
Yf

uf

wl,f = cl |uf | (5)

where again cl is a scaling factor

Into order to avoid any confusion, in the remain-
der of this article we use the term ”transfer”
instead of ”measurement” to designate the data
being processed.

2.2 Minimisation techniques

The criterion 3 is non linear in the parameters
θ. Two main methods are available for this mini-
mization problem.

2.2.1. Iterative least squares (ILS) (Sanathanan
and Koerner, 1963)

This method consists in adopting for the denom-
inator of Hf (θ) responsible for the non-linearity

the values d̃f computed at the preceding iteration.
The problem can then be recast in a conventional
least squares form

Ji(θ) =
∑

f ∈ F

‖df (θ) Hf − Nf (θ)‖2
Wf

|̃df |

(6)

The great advantage for this method is that it
offers an elegant way to initialize the minimisation
simply by taking d̃f = 1 at the first iteration.

2.2.2. Gauss-Newton algorithm (GN) (Whitfield,
1987)

The Gauss-Newton approach consists in lineariz-
ing the function Hf (θ) about the previous value θ̃
of the parameters. In the case considered here, the
equations simplify to

Ji(θ) =
∑

f ∈ F

∥∥∥∥∥∆H −

(
Nf(θ)

d̃f

−
Ñf

d̃2

f

df (θ)

)∥∥∥∥∥

2

Wf

(7)
where ∆H = Hf − H̃f .

These method provides a more accurate conver-
gence but it requires relatively precise initial val-
ues for Ñf and d̃f . A nice way to deal with this
difficulty is to use both algorithms in combination
starting by a few iterations of ILS followed by an
optimization refinement performed with the GN
technique.

3. COMPUTING THE LEAST SQUARES
SOLUTION

In this section, we describe how to compute ef-
ficiently the real solution of the complex least
squares problems of equations 6 and 7. We first

use a conventional polynomial basis. Then, as the
numerical sensitivity reveals to be a critical issue,
we adopt more appropriate bases.

3.1 Conventional polynomials

Both ILS and GN techniques can be recast in solv-
ing, in the least squares sense, an overdetermined
system of the form:

M θ =





N1 0 · · · 0

0 N2

. . .
...

...
. . . 0

0 · · · 0 Nny︸ ︷︷ ︸
N

D1

D2

...
Dny





︸ ︷︷ ︸
D





θ1

...
θny

θd




≈

L.S.

T

(8)
where the blocks Nl and Dl further decompose
into

Nl =

[
N e

l 0
0 N o

l

]
and Dl =

[
Dee

l Deo

l

Doe

l Doo

l

]

(9)
corresponding to a subdivision of the coefficients
θl and θd into the coefficients relative to the even
and the odd powers of the polynomials. The sub-
blocks of the numerator are equal to

N e

l = Wn, l Ωe

N o

l = Wn, l Ωo
Wn, l = diag

f

(
wl,f/ |d̃f |

)

(10)
while, for the denominator, we have

Dee

l = −Re(Wd, l) Ωe Doe

l = −Im(Wd, l) Ωe

Doo

l = −Re(Wd, l) Ωo Deo

l = Im(Wd, l) Ωo

Wd, l =






diag
f

(
wl,f Hl,f/ |d̃f |

)
ILS

diag
f

(
wl,f Ñl,f/ |d̃2

f |
)

GN
(11)

The expression of the matrices Ωe and Ωo depends
on the powers of the pulsations ω corresponding
to the frequencies in the set F (ω = 2 π f).

Ωe =





...
...

...

1 −ω2 · · · (−1)kω2 k · · ·
...

...
...



 (12)

Ωo =





...
...

...

ω −ω3 · · · (−1)k−1ω2 k−1 · · ·
...

...
...



 (13)

These matrices Ωe and Ωo are the causes of nu-
merical problems. A simple glance at equations 12
and 13, shows that, as the power value k increases,
the dispersion of the matrix components increases
tremendously leading to unfavourable condition-
ing. In order to identify high order systems, it is
necessary to consider other polynomial bases that
are numerically less sensitive.



3.2 Optimal polynomial bases

Each polynomial of the model transfer function
H(s, θ) can be expressed in a specific polynomial
basis according to

d(s) =

nd∑

k=0

pd,k(s) θd,k (14)

Nl(s) =

nd∑

k=0

pl,k(s) θl,k (15)

where (pl,k(s), k = 1, . . . , nd) are polynomial
series of increasing degree k.

We shall consider only the bases that respect
parity, i.e. the polynomials pl,k(s) are even when
the degree k is even and odd when k is odd. In that
case, the formulation of the least squares problem
is quite similar the one described above except the
matrices Ωe and Ωo (equations 12 and 13). For
these matrices, it suffices to replace the powers
ωk by pl,k(ω).

Inspired by the pioneer work of G. Forsythe (For-
sythe, 1957), it is possible to build polynomial
bases (Rolain et al., 1995) respecting parity and
particularly appropriate for this problem since
they make orthonormal the blocks Nl and the
last nd columns D in equation 8. This can be
accomplished by defining pl,k(s) according to the
following recursion

p̃l,k(s) = s pl,k−1(s) + Zk−1 pl,k−2(s)

Zk =

√∑

f

|w l,f p̃l,k(2 π f j)|2

pl,k(s) =
p̃l,k(s)

Zk

(16)

where w l,f are the components of Wn, l (equa-
tion 10). A similar recursion can be written for
the basis of the denominator.

The favourable impact on numerical robustness
induced by these polynomial bases is quantified by
the condition number of the least square matrix
M (equation 8). Since the main blocks N and D

are then orthonormal, it can be shown that the
condition number of M only depends on the min-
imum angle αmin between the subspaces spanned
by the columns of N and D. It is equal to

κ (M) = cot(αmin/2) (17)

The subspaces spanned of N and D are indepen-
dent of the polynomial bases. They are inherent to
the definition of the least squares problem at each
iteration. Hence the polynomial bases defined by
the recursion 16 allow to reach the value 17 which
is geometrically defined and by such constitutes a
minimum value.

At this stage, it must be emphasized that the use
of these polynomial bases was only made possible

by the specific formulation of the minimization al-
gorithms into the form of a least squares problem
(equation 6 and 7). Moreover, a careful implemen-
tation taking full advantage of the block structure
of the matrix M and of the orthonormality of its
blocks produces an algorithm particularly efficient
and extremely resistant from a numerical point of
view.

4. MONITORING THE IDENTIFICATION

4.1 Automatic order determination

4.1.1. The approach adopted Based on the ex-
perience accumulated by processing numerous
flight tests, we develop an heuristic approach for
computing the best value for the system order nd.

We begin by carrying out a first identification ab
nihile with an overestimated guess for nd. At this
stage, we use the ILS technique to compute the
first identified model.

Based on this model, a systematic analysis is then
started in order to discard undesirable or mean-
ingless modes. The modes are scanned to check
whether one or more comply with the following
criteria:

• unstable
• real mode or over-damped mode
• weak contribution on the optimisation crite-

rion
• in the close neighbourhood of another mode

If so, an optimisation phase is launched initialized
with a model where the suspected mode has been
removed.

To confirm the suppression of this mode, two types
of criteria are evaluated on the new model : a
global relative criterion defined by 18 and local
criteria for each transfer (relation 19).

Γ =

√√√√√√

∑
f

∥∥∥∆Ĥf

∥∥∥
2

Wf∑
f ‖Hf‖

2

Wf

(18)

γl =

√√√√√
∑

f

∣∣∣ wl,f ∆Ĥl,f

∣∣∣
2

∑
f | wl,f Hl,f |2

(19)

where ∆Ĥf = Hf − Hf (θ̂) and θ̂ is the optimum
value of the parameters. The criteria γl proved
to be useful to prevent undue elimination of local
modes which are only visible on a few transfers.

If the optimization with the reduced model does
not result in a significant increase (specified by
a threshold) of any of the above criteria, the
suppression of the mode is confirmed and this
elimination process is continued with the new
model. Otherwise the suspected mode is retained.



This process is continued until no more candidate
for elimination is found.

4.1.2. Checking the process We developed a
graphic tool dubbed PtiRonds (figure 1) to check
the validity of the above process for order determi-
nation. On the left part, the position of the iden-
tified modes are plotted in a damping ratio versus
frequency system of axes. The upper graphic is
full-scaled while the lower is a zoomed view on
the zone of interest. They provide information
about the stability of the modes as the order of the
identified system nd is reduced in the procedure.

The table on the right hand side contains the
characteristics of the modes as well as an indi-
cation of the modes cancelled at each stage of
the procedure. The corresponding evolution of the
global criterion (equation 18) is depicted above
this table.

4.2 Analysis of the identified model

We developed a graphical interface named Pave-

Bleu for the analysis of several properties of the
identified model.

4.2.1. Modal contributions The central and
main part of the display is related to the contribu-
tion of the modes on each transfer. The identified
modes appear on the horizontal axis. They are
ordered according to their frequency on a loga-
rithmic scale. The transfers are referenced by a
ten digit number. Their contribution are depicted
by the size of the cyan rectangles. Their width
is related to the frequency spread of each mode
about its resonance which is equal to 2 ζ fn (fn

is the natural frequency, ζ its damping ratio).
For each transfer, the heights of the rectangles
are equal to the square root of the proportion of
energy due to each mode relative to the energy of
the whole system on this transfer.

As the modes get closer, they might be some se-
vere overlapping between the rectangles. In order
to clarify the user’s analysis, the interface incor-
porate a few interactive mechanisms : rescaling of
the frequency axis, buttons for masking contribu-
tions, width reduction for the contribution of over-
damped modes (in red on the graphic), minimal
threshold for contribution visibility.

4.2.2. Modal relevance The lower part of the
graphic represents with green rectangles the rele-
vance of each mode. It is defined by the increase on
the global criterion 18 that would result from the
suppression of the mode in the identified model.
For comparison purpose, the relative size of the
global criterion appears on the left of this diagram
(the red rectangle).

4.2.3. Quality of transfer fitting The blue rect-
angles on the left depicted how much of the energy
on each transfer originates from the identified
model. Their height is then given by 1− γl (equa-
tion 19).

4.2.4. Averaged transfer weighting The yellow
rectangles on the left correspond to the means
over the frequencies f of the quality factor in the
weighting wl,fk (equation 4 and 5). They reveal
how much each transfer is accounted for in the
identification.

5. CONCLUSION

In this article, we first presented the identification
technique that we developed. We showed that,
at each iteration, it can be recast in the form
of a least squares problem. This formulation is
essential because we can then compute optimal
polynomial bases for defining the model. These
bases evolve at each iteration of the optimisation
in a self-adapting process hence ensuring the best
numerical conditions throughout the procedure of
identification. Hence, at each loop of this method,
two updates are performed simultaneously: one on
the polynomial bases, the other on the identified
parameters.

The last part of this article is relative to the
embedding of the identification routines that were
necessary to integrate them into the operational
environment of flight tests. Adequate and friendly
interfaces proved to be essential for the acceptance
of these new tools and for an efficient exploitation
of the results.
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Fig. 1. Interface PtiRonds: validation of order determination
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