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Abstract 
At the end of the development cycle, a new aircraft is certified by means of in-flight flutter tests. These 

tests consist of flying the aircraft at different airspeeds and measuring the accelerations at a limited 

number of locations on the aircraft structure. The scope is to open the flight domain by verifying that the 

aircraft does not suffer from aero-elastic instabilities such as flutter. 

In this paper, some modern frequency-domain modal parameter estimation methods are applied to in-flight 

data of a large aircraft. Traditional sine sweep excitation was applied at the control surfaces. However, 

during the test the aircraft passed through a turbulent zone. The sweep excitation was immediately 

stopped, but the on-board data acquisition system continued to record the aircraft vibration response. After 

quitting the turbulent zone, the sweep test was reinitiated. The present data thus allows for a comparison 

between artificial and natural excitation. More specifically, aspects such as data pre-processing, easiness 

of the parameter extraction process and the accuracy of the results are investigated. 

 

 

1 Introduction 
 

The development cycle of a new aircraft consists of several modelling and testing stages: structural finite 

element (FE) modelling, ground vibration testing (GVT), computational fluid dynamics (CFD) modelling, 

wind tunnel testing, and in-flight tests. These flight (vibration) tests allow the validation of the analytical 

models under various real flight conditions and, more important, allow to assess the aero-elastic 

interaction, as a function of airspeed and altitude, between the structure and the aerodynamic forces as 

they may lead to a sudden unstable behaviour known as flutter. Flutter shows up in the vibration signals as 

apparent negative damping and corresponding sudden increase of the vibration amplitudes. For economic 

and safety reasons (i.e. to avoid a loss of the aircraft), it is evidently avoided that an aircraft goes into 

flutter during an in-flight test, but it has to be certified that it has sufficient flutter margin when flying at 

the different points of the flight envelope where it is designed for. To determine this margin, typically, the 

trends of eigenfrequencies and damping ratios of the critical modes as a function of airspeed are carefully 

studied. This explains the need to perform a modal analysis during the flight. More background 

information on flight flutter testing can be found in [1][2]. 

When exciting the aircraft artificially during the flight, a reference signal representative for the force input 

is typically recorded, Frequency Response Functions (FRFs) can be estimated and classical modal analysis 

can be applied. Exciting the aircraft during flight is possible e.g. by installing rotating vanes at the wing 

tips or by adding a broadband signal to the control surface signal. Recently, there was an increased interest 
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in using natural turbulences as excitation. It is practically impossible to measure this ambient excitation 

and, by consequence, the outputs (i.e. aircraft responses) are the only information that can be passed to the 

system identification algorithms. In this case one speaks of Operational Modal Analysis. 

The paper is organized as follows. In Section 2, a short overview of poly-reference frequency-domain 

modal parameter estimation methods is given. Section 3 introduces the in-flight aircraft vibration data that 

will be used to illustrate the concepts of this paper. The data combines natural turbulence and artificial 

sine sweep excitation at the same flight conditions. Section 4 is the main part of the paper and discusses 

the application of classical modal analysis, the influence of sweep data pre-processing on the estimation 

results, and the application of Operational Modal Analysis. Also the classical and Operational Modal 

Analysis results will be compared. 

 

2 Frequency-domain modal parameter estimation 
 

The “poly-reference” frequency-domain system identification methods [3] considered in this paper 

identify following so-called right matrix-fraction model: 
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where ml
H

×∈ω C)(  is the Frequency Response Function (FRF) matrix that is estimated in a non-

parametric way from the measured vibration data (see also Section 4.1.2); [ ] ml
r

×∈β R  are the numerator 

matrix polynomial coefficients; [ ] mm
r

×∈α R  are the denominator matrix polynomial coefficients; l  is the 

number of outputs; m  is the number of inputs; p  is the model order. Note that a so-called z -domain 

model (i.e. a frequency-domain model that is derived from a discrete-time model) is used in (1), with 

)exp( tjz ∆ω=  and t∆  being the sampling time. 

In modal parameter estimation applications of frequency-domain system identification, the right matrix 

fraction model (1) is, after identification, converted to a modal model: 
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where n  is the number of modes (it relates to the right matrix-fraction model order p  as pmn =2 ); *•  is 

the complex conjugate of a matrix; { } l
iv C∈  are the mode shapes; mT

il C>∈<  are the so-called 

participation factors and iλ  are the poles, which are occurring in complex-conjugated pairs and are 

related to the eigenfrequencies iω  and damping ratios iξ  as follows: 

 iiiiii j ωξ−±ωξ−=λλ 2* 1,  (3) 

 

Different procedures exist to identify a right matrix fraction model from measured FRFs. Equation (1) can 

be written down for all values ω  of the frequency axis of the FRFs. Basically, the unknown model 

coefficients [ ] [ ]rr βα ,  can be found as the Least-Squares (LS) solution of these equations after 

linearization. The PolyMAX algorithm is such a LS implementation which has been memory and time 

optimized and uses a particular parameter constraint. More details about the PolyMAX method can be 

found in [4][5]. Mainly due its user-friendliness (the method yields extremely clear stabilization 

diagrams), PolyMAX is considered as an important breakthrough in modal parameter estimation. 

Instead of solving a LS problem with a particular parameter constraint, it is also possible to constrain the 

Frobenius norm of the coefficients to the identity matrix. This leads to the poly-reference Total Least 

Squares (TLS) approach. 

Theoretically, deterministic methods are less suited for highly noisy data such as flutter test 

measurements. Therefore, stochastic poly-reference frequency-domain estimators were recently derived 

[6]. If noise information is available, an important improvement in efficiency can be obtained [7] by using 

the covariance matrix of the measured FRFs. 



The Generalized Total Least Squares (GTLS) estimator right multiplies the TLS cost function with the 

square root of the covariance matrix and then calculates a generalized eigenvalue decomposition. 

A further improvement can be obtained by weighing iteratively with an estimate of the “optimal” 

Maximum Likelihood (ML) weighting. The weighting term involves, next to noise information, the 

denominator coefficients [ ]rα  estimated in the previous iteration step. The enhanced parameter estimates 

are then used to calculate a new weighting, resulting in new estimates, and so on. This weighting applied 

to a (T)LS estimator is called the Iterative Quadratic Maximum Likelihood (IQML) estimator, if applied to 

a GTLS estimator it is referred to as the Bootstrapped Total Least Squares (BTLS) estimator [8]. As 

shown in [7], two iterations (i.e. one initial estimate and one update with the weighting calculated using 

the denominator coefficients derived in the initial estimate) generally suffice to realize a significant 

improvement. It is important to note that the IQML-estimator can be formulated in a Least-Squares and 

Total-Least-Squares sense. 

More details about the methods can be found in [6][7][9]. All these deterministic and stochastic estimators 

will be applied to in-flight aircraft data in Section 4.1 and Section 4.2. 

 

3 In-flight vibration data: an interesting experiment 
 

In this paper, some real in-flight vibration data is used to verify the effectiveness of the proposed 

algorithms. A large aircraft was excited by injecting a sine sweep signal in the outer aileron control 

signals. However, during the test the aircraft passed through a turbulent zone. The sweep excitation was 

immediately stopped, but the on-board data acquisition system continued to record the aircraft vibration 

response. After quitting the turbulent zone, the sweep test was reinitiated. The present data thus allows for 

a comparison between artificial and natural excitation. As inputs, either the sine sweep generator signal or 

the angles at the control surfaces can be taken, the outputs are acceleration response measurements at 

various locations at the airplane: fuselage, engines, wings, tail plane, fin … Upon indication by the aircraft 

manufacturer, data from 19 accelerometers were analysed. Some time histories are represented in Figure 

1. For confidentiality reasons, no absolute quantities are given in this paper. The aircraft response due to 

turbulences has the same order of magnitude as the responses due to control surface excitation. At the tail, 

the turbulence response is even larger as, during the control surface excitation test, the wing input does not 

seem to excite the tail very well. This is confirmed when looking at the FRFs and coherences in Figure 2. 

These are computed by using only data from the 2
nd

 sweep (after passing the turbulent zone). The 

generator signal was considered as reference signal. At tail plane and especially the fin, the coherence is 

very low at a large part of the frequency band of interest. 

Also represented in Figure 2 are the transfer functions between the generator signal and the control surface 

angles. The amplitude is very flat in the frequency range of interest, providing the motivation to use the 

generator signal as reference. Both transfer functions have opposite phase, indicating that an anti-

symmetric sweep was applied (i.e. excitation at both wings in opposite phase). Note that, in principle, only 

the anti-symmetric wing bending modes will be present in the estimated FRFs. It is easy to show that these 

FRFs referencing to a single generator signal which was sent in opposite phase to both wing control 

surfaces equals: 

 21 wingwing HHH −=  (4) 

where XwingH  represents the FRFs referencing to wing “X” excitation. 

Figure 3 compares the spectra estimated during the turbulent zone with the FRFs at the 2
nd

 sweep. 

Roughly the same dynamics (e.g. location of resonances) are observed when comparing power and cross 

spectra with the FRFs. This provides an intuitive justification for the application of Operational Modal 

Analysis (Section 4.2). 
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Figure 1: In-flight vibration data. (Top) input reference signals (angles at control surface); (Bottom) 

typical responses due to control surface and turbulence excitation; (Bottom-Left) wing tip response; 

(Bottom-Right) tail plane and fin response. 
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Figure 2: FRFs (full – red) and coherences (dashed – green): wing tip – tail plane – fin. The 4
th

 

picture represents the two transfer functions between sweep generator signals and actually 

measured control surface angles. 
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Figure 3: FRF (full – red) versus spectra (dashed – green): fuselage – wing tip – tail plane response. 

 

 

4 Modal parameter estimation 
 

In this section, the in-flight airplane modal parameters are estimated from the data introduced in Section 3. 

Section 4.1 applies FRF-based modal parameter estimation to the sweep excitation part of the data; 

Section 4.2 applies cross-spectra based modal parameter estimation to the turbulence part of the data; and, 

finally, both results are compared in Section 4.3. 

 

4.1 Classical modal analysis applied to sweep FRF data 
 

4.1.1 PolyMAX 
 

As starting point for assessing the stochastic frequency-domain estimators, the PolyMAX method is 

applied to 19 aircraft FRFs. The non-parametric FRFs are computed as the well-known H1-estimate based 

on cross and power spectra obtained using Welch's averaged periodogram method with block size N/2 (see 

also Section 4.1.2 for a comparison with other block sizes), an overlap of 80% and applying a Hanning 

window. 

The PolyMAX stabilization diagram is shown in Figure 4, clearly revealing the main feature of PolyMAX: 

the diagram is extremely clear, making it very easy to select the physical poles. Evidently, this is very 

relevant for the time-critical process of parameter estimation during flight. The six clearest modes that can 

be found in Figure 4 are considered as reference modes throughout this paper. Figure 5 confronts the 

measured FRFs with the FRFs synthesized from the estimated modal parameters; i.e. left hand side of (2) 

versus right-hand side of (2). The good correspondence indicates that the major dynamic characteristics 

have been extracted from the data. 



 

Figure 4: Stabilization diagram obtained by applying PolyMAX to in-flight aircraft data pre-

processed to FRFs. 
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Figure 5: Measured (full – red) versus synthesized FRFs (dashed – green): right wing tip – left wing 

tip – tail plane. 

 

 

4.1.2 Influence of pre-processing 
 

As in in-flight modal analysis, the accuracy of the estimated eigenfrequencies and mainly the damping 

ratios is of utmost importance, it is worth investigating the influence of the data pre-processing on the 

estimated modal parameters. 

While keeping the other pre-processing parameters (overlap, window type) constant, the block size is 

varied. Four different block sizes are used to estimate the FRFs: N, N/2, N/4, N/8. Again, PolyMAX was 

applied to the 4 datasets. The results are represented in Figure 6. Whereas the frequency variations remain 

small (±2%), the damping ratios dramatically (+200%) increase with decreasing block size. This is due to 

the relatively larger impact of the Hanning window. It is well-known that such a window leads to biased 

damping estimates (damping ratios too high), but it remains interesting to observe the impact in this 

particular case. 



At first sight, a solution could be to take the block size as large as possible. However, a disadvantage of a 

large block size (e.g. N) is that not many averages can be computed and, hence, the FRFs are more 

affected by noise, which will make the mode extraction more difficult and again lead to biased estimates. 

As stated before, a disadvantage of a small blocksize is that the data will be more affected by the Hanning 

window and, hence, the estimated damping ratios will be biased. In [9], a workaround for this trade-off 

between noise and leakage effects is proposed. The idea is to first estimate the FRFs using a large block 

size, so suffering less from leakage and Hanning window bias, but suffering more from noise. The noise is 

reduced in a 2
nd

 step by converting the FRFs to Impulse Response Functions (IRFs). The noise, appearing 

mainly in the higher time samples of the IRFs, is then reduced by applying a rectangular window. So the 

higher time samples are simply ignored. A new FRF can than be obtained by applying a DFT to the first 

IRF samples. This new FRF has a less fine frequency resolution, but noise effects are suppressed. In [9], it 

is furthermore demonstrated that the use of a rectangular window leads to biased participation factors, 

while the other modal parameters remain unchanged. However, a closed-form expression exists for this 

bias so that it can be easily removed.  

The benefit of this approach is illustrated in Figure 7. The small block size FRFs (N/8) clearly suffer from 

biased damping ratios (modal peaks affected by Hanning window), the large block size FRFs (N) suffer 

from noise. The reduced resolution FRFs (after applying a rectangular window to the IRFs) overcomes 

both problems. 

Another approach to reduce the noise levels and leakage when estimating FRFs is proposed in [10]. Rather 

than applying a rectangular window to the IRFs, an exponential window is used. In this case the damping 

ratios need to be corrected (similar to the application of an exponential window in impact testing) instead 

of the participation factors. 

Another idea is to use the so-called frequency-averaging technique: a DFT of the entire time segment is 

computed and afterwards the erratic spectrum is smoothed by averaging over a number of spectral lines. 

The benefits of this frequency-averaging technique in case of flutter testing have been demonstrated in 

[11]. 

 

 

 

Figure 6: Relative eigenfrequencies and damping ratios for 6 modes identified from FRFs estimated 

with 4 different block sizes: N, N/2, N/4, N/8. All values are scaled to the values at block size N. 

 



 

Figure 7: Comparison between FRFs obtained using different non-parametric estimation 

parameters. (Full – Blue) small block size N/8. (Dotted – Red) large block size N. (Dashed – Green) 

large block sized N + rectangular window applied to IRF. 

 

 

4.1.3 Comparison between FRF-based frequency-domain estimators 
 

Using the same FRF dataset (block size N/2, overlap 80%, Hanning window) and a fixed maximum model 

size (i.e. 32), the different frequency-domain estimators introduced in Section 2 are here compared with 

each other. The stabilization diagrams of the different methods are represented in Figure 8. 

PolyMAX and PolyTLS (Poly-reference Total Least Squares) are deterministic non-iterative estimators. 

The other 4 are stochastic estimators, in which the variances of the FRFs (computed from the coherences) 

are used in the estimation as well. PolyGTLS (Poly-reference Generalized Total Least Squares) is still a 

non-iterative estimator. The other 3 estimators PolyBTLS, PolyIQML-LS and PolyIQML-TLS 

complement the initial estimates of respectively PolyGTLS, PolyMAX and PolyTLS with 1 iteration. 

The difference between the LS-based and TLS-based estimators is clear. The stabilization diagrams for the 

PolyMAX and PolyIQML-LS are much easier to interpret than the TLS-based diagrams. The generalized 

eigenvalue decomposition of the PolyGTLS and PolyBTLS estimators does not seem to improve nor 

deteriorate the clarity of the stabilization diagram compared to the TLS estimator. The PolyTLS, 

PolyGTLS and PolyIQML-TLS have a lot of non-stabilizing poles. 

The performance of the PolyIQML-LS estimator is promising for modal analysis applications as it 

combines nearly consistent estimates (the solution converges to the ML estimate) with the nice 

stabilization properties of a Least-Squares estimator. 

Figure 9 represents the estimated values of the 6 reference modes identified at model order 32 of all 6 

frequency-domain estimators of which the stabilization diagram is shown in Figure 8. Also the estimation 

results provided by the aircraft manufacturer are shown as the reference values (labelled as “Ref”). These 

reference values were obtained by applying the in-house (Laplace-domain) frequency-domain method to 

similar (in terms of blocksize, window, overlap length) FRFs. The differences in frequency values 

between the different methods are within ±3%, whereas the damping ratios vary within as much as ±45 %. 



 

 PolyMAX PolyTLS 

 

 PolyGTLS PolyBTLS 
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Figure 8: Stabilization diagrams of different frequency-domain estimators. The background FRF is 

a typical synthesized FRF based on the maximum model order 32. 

 



 

Figure 9: Relative eigenfrequencies and damping ratios for 6 modes identified using 1+6 different 

methods. All values are scaled by the values provided by the aircraft manufacturer (labelled as 

“Ref” in the graphs) 

 

 

4.2 Operational modal analysis applied to turbulence response spectra 
 

In this section, the modal parameters will be extracted from spectra which are estimated based on the 

turbulence-only part of the signals (Figure 1). A leakage-free and Hanning-window free pre-processing 

method is used to estimate the power and cross spectra. The weighted correlogram approach was adopted: 

correlations with positive time lags are computed from the time data; an exponential window is applied to 

reduce leakage and the influence of the noisier higher time lag correlation samples; and finally the DFT of 

the windowed correlation samples is taken. An exponential window is compatible with the modal model 

and therefore, the pole estimates can be corrected for the application of such a window. More details about 

this pre-processing and the comparison with the more classical Welch's averaged periodogram estimate 

(involving Hanning windows) can be found in [9][12][13]. 

The spectra were estimated with the same frequency resolution as the FRFs in Section 4.1. The 

exponential window factor applied to the auto- and cross-correlation equals 1% and 3 channels were 

selected as references for the computation of the cross spectra: an acceleration at the left wing tip, the right 

wing tip and the tail plane. 

 

4.2.1 PolyMAX 
 

Again, as starting point for assessing the stochastic frequency-domain estimators, the PolyMAX method is 

applied to 19x3 turbulence response cross spectra. Also in this case the PolyMAX stabilization diagram is 

very clear (Figure 10). Figure 11 confronts the measured spectra with the spectra synthesized from the 

estimated modal parameters. The good correspondence indicates that the major dynamic characteristics 

have been extracted from the data. 

 



 

Figure 10: Stabilization diagram obtained by applying PolyMAX to in-flight aircraft data pre-

processed to power and cross spectra. 
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Figure 11: Measured (full – red) versus synthesized spectra (dashed – green): right wing tip – left 

wing tip – tail plane. 

 

 

4.2.2 Comparison between spectrum-based frequency-domain estimators 
 

In this section, the earlier introduced frequency-domain estimators are applied to the turbulence-only 

spectra. The stabilization diagrams of the different methods are represented in Figure 12. The maximum 

order of the denominator polynomial of the right matrix-fraction model is 12. As there are 3 references, 

the maximum number of poles is 36 (or 18 complex conjugated pairs), which is close to the model order 

assumed in the single-reference FRF case of Section 4.1, which was 32. 

Although less horizontal lines are available in the stabilization diagrams, similar conclusions can be drawn 

as in the FRF case: PolyMAX and PolyIQML-LS yield the clearest diagrams. PolyIQML-LS is a 

stochastic estimator that requires an additional iteration step and makes use of the noise information 

(variance of the spectrum estimates). 



 

 PolyMAX PolyTLS 

 

 PolyGTLS PolyBTLS 

 

 PolyIQML-LS PolyIQML-TLS 

Figure 12: Stabilization diagrams of different frequency-domain estimators. The background 

spectrum is a typical synthesized spectrum based on the maximum model order 18. 

 

 



4.3 Comparison between sweep and turbulence results 
 

In this section the modal analysis results of both excitation types are compared: sweep versus turbulence. 

The comparison is restricted to the PolyMAX results, but similar conclusions can be drawn using other 

estimators. Table 1 compares the eigenfrequencies and damping ratios. Again, the differences are 

computed with respect to the values provided by the aircraft manufacturer (evidently these values are also 

estimated from experimental data, so they cannot be considered as “true” values). The eigenfrequencies 

are in good agreement; also the operational frequencies compare well with the input-output frequencies. 

The damping ratio differences are larger. Also, in general, the turbulence excitation damping ratios are 

lower than the sweep data damping ratios. 

Figure 13 compares the FRF-based mode shapes with the output-only mode shapes. Except for the 5
th
 

mode, the mode shapes identified at 19 sensor locations agree very well. 

 

 

Sweep data – FRF PolyMAX Turbulence data – OMA PolyMAX 

Mode Relative frequency 

difference [%] 

Relative damping 

ratio difference [%] 

Relative frequency 

difference [%] 

Relative damping 

ratio difference [%] 

1 2 5 -2 -35 

2 0 -43 -1 -34 

3 0 27 2 5 

4 1 -21 1 -43 

5 0 0 1 -21 

6 1 -17 2 -64 

Table 1: Comparison of modal parameters identified from FRFs (sweep excitation) and spectra 

(turbulence excitation). Relative differences with respect to results provided by the aircraft 

manufacturer are considered. 

 

 

Figure 13: MAC between sweep and turbulence modes. 

 

 

 



5 Conclusions 
 

In this paper, some modern frequency-domain modal parameter estimation methods were applied to in-

flight data of a large aircraft. The data was very interesting in the sense that in a short time interval both 

traditional sine sweep excitation applied at the control surfaces and natural turbulence excitation were 

available. It was observed that the same modes could be extracted when applying Operational Modal 

Analysis to the turbulence spectra as in the case of classical modal analysis applied to the sweep FRFs. 

When comparing different frequency-domain estimators, it is observed that the new poly-reference 

stochastic frequency-domain TLS estimators have the advantage that noise information is taken into 

account but they provide stabilization diagrams that are more difficult to interpret. The Frobenius norm 

constraint prohibits the use of the sign of the damping to construct clear stabilization charts. The poly-

reference IQML Least-Squares estimator with particular parameter constraint combines a nice 

stabilization diagram and noise-corrected solutions. This estimator can be an interesting alternative for the 

PolyMAX estimator if noise information is available. 

In this paper also a non-parametric FRF estimation method was applied that overcomes the typical trade-

off between leakage and noise when processing random or single sweep data. 

A final conclusion is that, despite the fact that the damping ratios are very critical parameters for flutter 

analysis, it was observed that rather large uncertainties are associated with this modal parameter. 

Depending on the data pre-processing, parameter estimation method and the used data (sweep versus 

turbulence) relatively large differences in damping ratios were found. 
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