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Abstract

In this paper recursive subspace identification algorithms are applied to track the modal parameters of air-
planes on-line during test flights. The ability to track changes in the damping ratios and the influence of the
forgetting factor are studied through simulations.

1 Introduction

The development of new aircraft requires a careful exploration of the dynamical behavior of the structure
subject to vibration and aero-elastic forces. This is achieved via a combination of ground and in-flight tests.
The objective of the in-flight tests is to determine the structural dynamic state for selected flight configura-
tions (constant speed and attitude) and to validate the aero-elastic model in flight.

Linear system identification is an important tool in this experimental modal analysis. A linear model for the
airplane is estimated based on the available observations. From the model, modal characteristics as resonance
frequencies, damping ratios and mode shapes are extracted. Subspace identification algorithms allow for a
fast and robust identification of multi-input multi-output (MIMO) systems by using projections of subspaces
spanned by the rows of block Hankel matrices containing input and output measurements.

Because test flights are expensive, a fast analysis of the test data is very important. Until now, off-line
processing of the data is performed. A batch of data samples is collected and used to estimate the model
parameters. While processing the data, the pilot has to wait for instructions. On-line and in-flight exploita-
tion of the data would allow a more direct exploration of the flight domain, with improved confidence and
reduced costs.

In this paper, recently proposed recursive subspace identification algorithms [12-14] are applied for on-line
tracking of the modal parameters of the airplane. At every time instant, the estimates of the parameters are
updated. Besides the faster processing of the data, a recursive algorithm also reduces the constraints on the
amount of data that can be processed so that more sensors can be used. Moreover, it can be used to detect
changes in the dynamics of the linear model, e.g. the on-set of flutter, which happens when the damping of
some mode becomes too small. It is also able to cope with time varying characteristics resulting from flight
test conditions.

Several types of data sets are available from flight tests. Some consist only of output data, when only the
excitations by e.g. wind and turbulence, which are not measured, are used. For these, the recursive stochastic
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subspace identification algorithm in [5] can be applied. In other data sets, known excitations (e.g. from the
fly-by-wire control system) and unknown excitations are present. In this paper, we deal with the latter kind
of data. The recently proposed recursive subspace identification methods by Mercere et al. [12—14], which
are suited for these data types, are applied to data from test flights and the results are shown. The ability
to track changes in the damping (slowly varying damping coefficients as well as abrupt changes) and the
influence of the forgetting factor are studied on simulated data.

The remainder of this paper is organized as follows. In Section 2 the identification problem is formulated.
In Section 3 subspace identification algorithms are briefly described. Recursive versions of subspace identi-
fication are discussed in Section 4. Section 5 contains simulation examples and Section 6 applications of the
methods to data from flight tests. Section 7 gives conclusions and describes our future work.

2 Problem formulation

In this paper, discrete time, linear time-invariant models with the following state space representation are
considered

Trr1 = Axp+ Bugp +wyg, . Wy r | _ (@ S >
{ yr = Cuzp+ Dug + v, WlthE|:<vp (wq vq) ~\SsT R O 20,

where 1, € R™ and y;, € R' are the observations at time instant & of respectively the m inputs and [ outputs
of the process, E denotes the expected value operator and ¢, the Kronecker delta. The vector x;, € R" is the
state vector of the process at discrete time instant k and contains the numerical values of n states. v, € R!
and w, € R" are unobserved vector signals, usually called the measurement, respectively process noise.
It is assumed that they are zero mean, stationary, white noise vector sequences. The matrix pair {A, C'} is
assumed to be observable, which implies that all modes in the system can be observed in the output y; and
can thus be identified. The matrix pair {A,[ B Q'/? ]} is assumed to be controllable, which in its turn
implies that all modes of the system can be excited by either the deterministic input uy and/or the stochastic
input wg.

In modal analysis applications, the modal parameters are extracted from the state space model. First, an
eigenvalue decomposition is applied to the dynamical system matrix A: A = WAU~!, where ¥ € C™*" is
the eigenvector matrix and A € C™*" is the diagonal eigenvalue matrix (assuming A to be diagonalizable).
The matrix A contains the n discrete-time eigenvalues u;, of which the complex conjugated pairs contribute
to the vibration modes. They are related to the continuous-time eigenvalues \; as j; = e’s where T} is the
sampling time (sampling frequency fs; = Tis). The resonance frequencies f; and damping ratios (; can then

be found from A\;, \f = —Ci fi £54/(1 — ¢3?) fi.

In this paper the resonance frequencies f; and damping ratios (; are tracked on-line, given the input and
output measurements ug and yr. A subspace identification algorithm is used to obtain an initial model,
which is then updated every time a new input-output measurement is made.

3 Subspace identification for modal analysis

Subspace identification algorithms have gained increasing attention in the modal analysis community over
the last few years, see for instance [1, 3,8, 17]. This is due to their inherent numerical robustness and their
ability to deal with large numbers of inputs and outputs. In contrast to classical predictor error methods,
where a costly, often nonlinear optimization has to be performed, subspace identification techniques derive
models for linear systems solely by applying well-conditioned operations like LQ and singular value decom-
positions on block Hankel data matrices.

Block Hankel matrices with input and output data are the basic starting blocks for subspace identification



algorithms. Input block Hankel matrices are defined as follows
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where the number of block rows ¢ in U, and Uy is a user-defined index, which is large enough, i.e. il > n,
the number of columns j is typically equal to s — 27 4+ 1, where s is the number of available data samples.
The subscript ‘p’ stands for ‘past’ and the subscript ‘f for ‘future’. The output block Hankel matrices Y,
Y, Y are defined in a similar way.

The MOESP algorithms [21, 23-25], on which most recursive subspace identification methods are based,
start from the so called past and future data equations [26]

Y, = I;X, + HiU, + N,
Yf :Fin+HiUf+Nf,

where I'; = (CT (CA)T - (C’Ai_l)T)T € R is the extended observability matrix, X,, (respec-
tively Xr) is a past (respectively future) state sequence, H; is the block Toeplitz matrix of the (unknown)
impulse response from u to y and N, (respectively Ny) a particular combination of the past (respectively fu-
ture) block Hankel matrices of the perturbations v and w. For simultaneously removing the term H;U from
Y and decorrelating the noise, it is proposed to consider the following quantity: YfHUfL Ep, where =), is an

instrumental variable composed by past input (and output) data and where! HUﬁ_ =1 - UfT(U fU}’)TUf.
Indeed, it can be proved that, under particular rank and excitation conditions [21]

.1 - .1 -
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with s the number of data points. This data compression can be efficiently computed by means of the
following LQ decomposition?

Uy Ly 0 0 QT
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since lim o0 2span.y {Ls2} = span, {I';}. The estimation of the observability matrix is then realized by
considering the following SVD

Lsy = (U1 Us) (5(;1 5(32) ("1 Vz)T )

where U; € R¥*" S, € R™™ and V; € R7*™. An estimate for the matrices A and C, up to a similarity
transformation, can then be obtained as follows: C'is equal to the first  rows of Uy and A is equal to Uy T,
with Uy and Uy shorthand notations for Uy with its last, respectively first [ lines removed. This MOESP

scheme is named PI MOESP when =, = U,, and PO MOESP when =, = (Ug Y]'DT)T [21].

lef denotes the Moore-Penrose pseudo-inverse of the matrix e.
>The LQ decomposition of a matrix A is the transpose of the QR decomposition of AT



4 Recursive subspace identification

As introduced previously, one of the reasons for the success of subspace model identification (SMI) tech-
niques lies in the direct correspondence between geometric operations on matrices constructed from input-
output data and their implementation in terms of well known, stable and reliable algorithms from the field of
numerical linear algebra. However, most of the available batch SMI techniques are based on tools such as
the SVD which are not suitable for online implementation due to their computational complexity. Several re-
cursive subspace identification algorithms have been proposed during the last years [2,5,7,10,12, 14, 16,22]
to avoid the use of such burdensome tools. More precisely, most recent recursive algorithms circumvent
this problem by considering the similarities between recursive subspace identification and adaptive signal
processing techniques for direction of arrival estimation [9], such as the projection approximation subspace
tracking technique [27] and the propagator method [15].

Because we are concerned with the recursive estimation of the resonance frequencies and the damping ratios,
we will concentrate on the estimation of the matrices A and C' and will not deal with the estimation of B and
D. Therefore, only the extended observability matrix I'; needs to estimated recursively from the updates of
the input-output data v and y. To this purpose, consider the block Hankel matrices Uy, Uy, Y), and Y; and
assume that, at time s 4+ 1, new data samples y,41 and usy1 are acquired. Then, each of the block Hankel
matrices is modified by the addition of a column

_ (T 7 \T mix1 _ (T T \T lix1
Up,s+1 = (“j+1 ui+j) eR Yps+1 = (yj+1 yi+j) eR

_ (. T T \T mix1 _ (T T \T lix1
Ufs+1 = (“¢+j+1 u2i+j) eR Yfs+1 = (yi+j+1 y2i+j) eR .

Then, it is easy to show that

Yp,s+1 = Fixj—i-l + Hz'up,s+1 +np st
Vis+1 = Diwipjp1 + Hiug o1 +0p 641,

where the past and future stacked noise vectors are defined in the same way as, e.g. up 51 and uy 44 1.
Recursive subspace identification algorithms consist, as their batch counterparts, of two steps. First, the data
compression phase is updated. This can be done by updating the LQ decomposition (1) by means of Givens
rotations [6], as described in [10, 12]. Second, the column space of I'; is updated. This is usually done by
solving a minimization problem [5,7,10, 12, 16] in order to avoid an SVD.

Two recursive subspace identification methods are considered in more detail in the following. The first
method, named RPM2, is described in Section 4.1. The second one, called EIVPM [13], is given in Sec-
tion 4.2.

4.1 RPM2

The first idea in this algorithm is to update the LQ factorization (see Equation (1)) of the PI/PO schemes by
means of Givens rotations. For that purpose, assume that, at time s+ 1, a new set of input-output data vectors
becomes available. Then, a new column is added to the data matrices and the decomposition must be written
as

0
Ur ugsep L1 0 0 Uf st1 g;s 0
Zp &pst1 | = | Lors Loogs 0 Ep,st1 ngs ol
Yi yrstt L31s L32s L33s Yfst+1 O’S 1

T . .
where £, ;11 = Up 541 for PIMOESP and &, 511 = (ug;sﬂ ygsﬂ) for PO MOESP. Givens rotations are
then used twice to update this factorization. They are first applied in order to zero out the elements of vector
Uy s41, bringing the L factor to the form

Litsy1 O 0 0
Lot sy1 Laas 0 Zpeta
L31sy1 L32s L33s Zpst1



Subsequently, the elements of Z,, ;1 are zeroed in a similar way, to give

L1541 0 0 0
Lot s+1 Lasst1 O 0
L31sv1 L3zsy1 L3zs Zpst1

Then it is easy to show that the “square” of block L3z 11 can be written as [10, 12]

T _ T = =T = =T
L32,s+1L32,s+1 = L32,sL32,s T Zfs412f 541 — Zfs41%f 541 -

Thus, in this case, the subspace estimate at time s + 1 is related to the one at time s via the combination
of an update and a downdate. Furthermore, by denoting R,, = E {Z f75+1irﬁ sp1 — Z f75+153:75 1 }, it holds
that [11]

T T T

The second step of this recursive subspace method consists in the online update of the observability matrix.
In this paper, the focus will be on algorithms based on the propagator concept [15]. More precisely, under
the assumption that the pair { A, C'} is observable, since I'; € R*™ with li > n, the extended observability
matrix has n linearly independent rows, which can be gathered in a submatrix I';,. Then, the complement
I';,, i.e. the matrix consisting of the rows of I'; that are not in I'; , can be expressed as a linear combination
of the n rows in I';,. So, there is a unique linear operator P € R™*(=n) ‘named propagator [15], such that

L > I';,. Thus, since rank {I';, } = n,

I, = PTI‘,-1. Furthermore, it is easy to verify that I'; = ( PnT

I,
span.q) {1} = span;; { ( PT> } : ()

Equation (2) implies that it is possible to estimate the observability matrix (in a particular basis) by estimating
the propagator. For that purpose, consider the following partitions:

_ Zf) s+1 = Zf) 541
Zfstl = <f1 s+ > and 7 s41 = <f1 s+ > :
Zfa,5+1 Zfa,s5+1
where Zp, o411 € R™*! (respectively Zf s+1) and Zg, o411 € RE=m)X1 (respectively Zf, s+1) are the com-

ponents of Zs .1 (respectively Zy ;1) corresponding to I';; and I';,. Then, it is straightforward to show
that?

PT = (Rapyay, = Rapsy, ) (Ray, = R )71
Zfa%fy Zfa2f1 Zf1 Zfq :

This estimated matrix corresponds to the optimum of the following cost function
_ T_ 2 - T= 2
J(P) :EHZfQ -p Zfl” _EHZfz -P Zle )

the minimization of which is given by the following recursive algorithm*

- ST
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3The following notation is used for covariance matrices: E {abT} = Rap, with Rqq = R,.
4\ is a forgetting factor introduced to weight the past information.



4.2 EIVPM

In order to improve the computational complexity of the previous method (see Subsection 6.3 for a case
study and [11] for a theoretical analysis), it is proposed hereafter to introduce another recursive subspace
algorithm. Although also based on the propagator approach, the developed method rests on the recursive
update of the LQ factorization of an other MOESP scheme: ordinary MOESP [24]. On the contrary to the
PI/PO MOESP schemes, the ordinary MOESP identification method only uses the following data equation

Yf :Fin+HiUf+Nf,

but leads to consistent estimates of the observability matrix if w = 0 and v is a white Gaussian noise [24].
Even if this assumption seems to be too restrictive in the practical framework considered in this paper, the
update of the ordinary MOESP LQ factorization will decrease the global computational load of the recursive
algorithm and, as proved in [14], the noise treatment can be considered in the propagator estimation step by
introducing instrumental variables.

Thus, consider the following classical LQ decomposition of the Ordinary MOESP [24]

(Uf> _ <L11,s 0 ) <Q1,s>
Y Lois Loas) \Qas) "

When a new input-output couple is acquired, this decomposition can be updated as

0
(Uf uf7s+1> _ (Lll,s 0 uf,s—i-l) g;,s 0
Yr yist1 Lors Loos Vyst1 O’S 1

A sequence of Givens rotations [6] can then be used to annihilate the stacked input vector uy ;.1 and bring
back the L factor to the following block lower triangular form

(L11,5+1 0 0 >

Lotsr1 Lossy1 Zfsr1)

Then, it is possible to prove that [12] zf ;11 = (Tixipjt1 + nf7s+1) T, where T' is a square non-singular
matrix.

Once the vector zy 1 is estimated, under the assumption that the system is observable, the estimation of
the extended observability matrix can be realized, as in subsection 4.1, by estimating the propagator. Indeed,
after an initial reorganization such that the first » rows of I'; are linearly independent, the following partition
of the observation vector zs 1 can be introduced

nx1
Zfs+1 = <£7’}1> Diwipji1 +0pe41 = (22::1) { 2 i(li—n)xl

where zf, 11 and zj, 41 are the components of zf 1 corresponding respectively to the n rows of I';; and
li — n rows of I';, = PTT, (the same symbols are used before and after the reorganization, for the sake
of simplicity). In the ideal noise-free case, it is easy to show that zs, = PTy #1- In the presence of noise,
this relation holds no longer. An estimate of P can however be obtained by minimizing the following cost
function

V(P) = E||Zf2 - PTZf1||27 (3)

the uniqueness of P being ensured by the convexity of this criterion, which, in turn, can be guaranteed
by suitable persistency of excitation assumptions [14]. Unfortunately, the LS solution of the optimization
problem defined by (3) leads to a biased estimate, even when the residual vector is spatially and temporally
white [12]. This difficulty can be circumvented by introducing an instrumental variable & € RY*! (y > n)
in (3), assumed to be uncorrelated with the noise but sufficiently correlated with the state vector x, and by
defining the new cost function

Viv(P) = E|lzpe" — PTap el



Several algorithms have been developed to minimize this criterion depending on the number of instruments.
In this paper, the EIVPM algorithm is considered due to its implementation straightforwardness and its low
computational cost. This technique requires to construct an instrumental variable such that v > n. By
assuming that the input is sufficiently “rich” [14] so that R, ¢ is full rank, the asymptotic least squares
estimate of the propagator is given by

PT =R, (R . )

Zfo8 " zg &

Then, a recursive version of (4) can be obtained by adapting the overdetermined instrumental variable tech-
nique first proposed in [4]. The resulting algorithm is given by

g1 = (Rap, 6541 Zfp5t1)

_gT s A
As+1 — ( 55—}-}{5 +1 0>

Gsv1 = Ryp 68511
o1 = (gsr1 Zp,641)
Kor1 = (Agyr + 97 MU, ) 07, M,
Pl =PI+ (gep1 — PIU1) Ko
Riypy oiiéen = ARy 6o+ 215416001

T
RZf2,5+1€s+1 = /\RZfQ,sfs + 2 fp,5418541
1

MS-‘rl 22

(Ms - Ms\l’s—i-le-l—l) )

: . -1
where 0 < A < 1is a forgetting factor and M1 = (R, s+1£s+1Rsz Y, +1) .
’ 1,8 £

5 Simulation examples

In this section, some properties of the recursive algorithms are studied by use of simulations. We start from
a fourth order model with one input and one output. Its system matrices are equal to

0.67 0.67 0 0 0.6598
A _ | 067 067 0 0 B _ | 19698
a 0 0 -0.67 -0.67]" a 4.3171 |° (5)
0 0 0.67 —0.67 —2.6436
C = (-0.5749 1.0751 —0.5225 0.1830), D = —0.7139.
The measurement and process noise are respectively equal to wi = Key, and v, = Gey, where
—0.1027
0.5501 o . o . )
K= 03545 | G = 0.9706 and e, is white Gaussian noise with variance o7. (6)
—0.5133

There are two vibration modes. The first mode has eigenfrequency equal to f; = 4.0094Hz and damping
ratio (; = 6.8472%, while the second mode has eigenfrequency fo = 12.0031Hz and damping ratio (o =
2.2872%. The sampling frequency is equal to f; = 32 Hz and we simulate three minutes.

In Section 5.1 we simulate time-varying damping ratios and examine the tracking capabilities of the recursive
subspace algorithms. In Section 5.2 we look at the effects of an overestimation of the model order.
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Figure 1: The estimated dampings for Case 1: noiseless simulation (0, = 0) and estimation with forgetting factor
A = 0.999. The green dashed lines represent the correct values, the black dots the results obtained with RPM2, the
magenta plus signs show the results of EIVPM.

5.1 Tracking a time-varying damping ratio

In this section the tracking capabilities of the recursive algorithms that were discussed in Section 4.1 and
Section 4.2, are evaluated. The parameters used in the estimation are the following: the model order is n = 4

and 7 = 8. The PO MOESP scheme is used in the RPM2 algorithm and the instrumental variable in EIVPM

is chosen as &5 = (ug’S y;;r,s) . To initialize the recursive algorithms, the first 47 simulated data points (less

than two seconds) are used to identify a model with the non-recursive subspace algorithm com_stat [18].
Two types of time-varying dampings are considered: first, a linearly varying damping ({2 goes from 2.2872%
to 0.2% between 30s and 90s) and second, an abrupt drop of the damping ratio ({2 drops from 2.2872% to
0.2% at 30s). A decreasing damping is a not uncommon phenomenon during in-flight tests and usually a
reason for concern.
Four scenarios are simulated, in which the noise variance o2 and the forgetting factor \ are varied.
Case 1: 02 = 0and A = 0.999
This is the noiseless, purely deterministic case, with a forgetting factor A close to one. The frequencies
are estimated perfectly and the estimated dampings are shown in Figure 1. There is a delay in tracking
the varying damping ratios, which is due to the large forgetting factor. Indeed, the larger )\, the slower
the algorithms forget past data.

Case2: 02 =0and A = 0.9
The forgetting factor in the identification algorithms is decreased to 0.9. This means that the past data
become less important compared to Case 1. Consequently, the algorithms are much more able to track
the changes. This can be seen in Figure 2.

Case3: 02 =10and A\ = 0.9
The process and measurement noise sources wy = Keg and vy, = Gey, are introduced, where ey, has
variance 02 = 10. Using the ‘small’ forgetting factor A\ = 0.9, leads to very bad estimates for the
damping ratios, as is shown in Figure 3.

Case4: 02 =10and \ = 0.999
Increasing the forgetting factor to A = 0.999, gives much better damping estimates when o2 = 10,
which can be seen Figure 4. Note that estimating the constant damping ratio {; has become more
difficult than in the noiseless case. The frequencies, on the other hand, are estimated very well.

It is clear from this example that there is a trade-off in the choice of the estimation parameters. Decreasing
the forgetting factor makes the recursive algorithms react faster, but also makes them more sensitive to noise,
which influences the damping ratio estimates very much.
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Figure 2: The estimated dampings for Case 2: noiseless simulation (o, = 0) and estimation with forgetting factor
A = 0.9. The green dashed lines represent the correct values, the black dots the results obtained with RPM2, the
magenta plus signs show the results of EIVPM.
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Figure 3: The estimated frequencies and dampings for Case 3: noisy simulation (o, = 10) and estimation with
forgetting factor A = 0.9. The left column shows the results for a linearly varying damping (o, the right column for
an abrupt change of (5. On top, the frequencies are given, the bottom figures show the damping ratios. The green
dashed lines represent the correct values, the black dots the results obtained with RPM2, the magenta plus signs show
the results of EIVPM.

5.2 Overestimation of the model order

In the previous section, we assumed that the order of the system was known. In practice, however, this is
often not the case. For the in-flight data, we have to choose an order which is large enough to incorporate all
important vibration modes. Therefore, the influence of overestimating the model order is studied.

The same fourth order system as in Section 5.1 is simulated, but without time-varying damping. The system
matrices are given in (5) and (6) and we simulate with ag = 10. The estimation parameters are chosen
as follows: n = 6, ¢ = 12 and the first 71 data points are used for the initialization. Since there is no
time-variance in the simulated system, we take the forgetting factor A = 1. The estimated frequencies and
damping ratios are shown in Figure 5. By choosing n = 6, we are able to identify three modes. However,
only frequencies and dampings are computed from poles of the identified discrete-time system that appear
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Figure 4: The estimated frequencies and dampings for Case 4: noisy simulation (o, = 10) and estimation with
forgetting factor A = 0.999. The left column shows the results for a linearly varying damping (2, the right column
for an abrupt change of (5. On top, the frequencies are given, the bottom figures show the damping ratios. The green
dashed lines represent the correct values, the black dots the results obtained with RPM2, the magenta plus signs show
the results of EIVPM.

as complex conjugate pairs within the unit circle. That explains why at many time points, less than three
frequencies and dampings per identification method can be seen.

The true ‘physical’ frequencies and damping ratios are estimated very well by both methods. As observed
in [11], the variance of the ‘non-physical’ estimated poles is larger than that of the ‘physical’ poles. This will
be used to introduce a new kind of stabilization diagram in Section 6.

6 Applying recursive algorithms to in-flight data

In this section, the recursive algorithms of Section 4 are applied to measurements on airplanes during flight
tests. In Section 6.1 the data are described, in Section 6.2 the identification results are given and in Section 6.3
we discuss the computational speed of the applied identification algorithms.

6.1 Description of the data

The FIiTE consortium (see Acknowledgments) provided a dataset of in-flight tests executed an a real aircraft.
Data were acquired at five different flight conditions (#1, #2, #3, #4, #5). The excitation signal, applied by
the pilot, was a narrow band 0—60Hz white noise. Responses were acquired through twelve accelerometers
at a 256Hz sampling frequency. For more information on the data, we refer to [19, 20], where other (non-
recursive) identification methods were applied to the same dataset.

The data are preprocessed in the following way. The data are lowpass filtered and downsampled with a
factor 8 because all relevant information is available below 16Hz. In that way, the sampling frequency
becomes 32Hz. We discard noisy output signals, whose coherence with the input is too small. For flight
points #1, #2 and #4, the fifth and seventh output are not taken into account, while for flight points #3 and
#5, outputs one, three, five and seven are discarded.

The parameters in the identification methods are chosen as follows: n = 16 and 7 = 4. Because the flight
points represent time-invariant conditions, the forgetting factor was taken equal to A = 1 (no forgetting).
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Figure 5: The estimated frequencies (top) and damping ratios (bottom) when the order of the model (n = 6) is larger
than the true system order (n = 4). The yellow dashed lines represent the correct values, the black dots the results
obtained with RPM2, the magenta plus signs show the results of EIVPM.

The PO MOESP scheme is used in the RPM2 algorithm and the instrumental variable in EIVPM is chosen as
& = (u£ s yg S)T. For flight points #1, #2 and #4, where 10 outputs are available, 95 data points are used
to initialize the model with the non-recursive algorithm com_stat, while for flight points #3 and #5, with
8 outputs, 79 data points are used for the initialization. At every time step the models obtained with the two
recursive methods RPM2 and EIVPM are updated. Their results are compared to the results obtained with
the non-recursive algorithm com_stat, which estimates a new model every 32 data points, i.e. once every
second. It uses all available measurements up to that point to estimate a new model.

6.2 Identification results
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Figure 6: The estimated frequencies (top) and dampings (bottom) for flight point #1. The black dots represent the
results obtained with RPM2, the magenta plus signs show the results of EIVPM and the blue circles those of the non-
recursive com_stat.

For all five flight points models were identified recursively. The modal frequencies and damping ratios
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Figure 7: The stabilization diagram for flight point #1. The black dots represent the results obtained with RPM2, the
magenta plus signs show the results of EIVPM and the blue circles those of the non-recursive com_stat. The green
dashed line represents the FRF of the input and fourth output.

obtained from the data in flight point #1 are shown in Figure 6 as a function of time. Many frequency and
damping estimates converge in time. Some estimates disappear after some time, while others show a higher
variance than the converging estimates over time. Both effects are due to the overestimation of the model
order, as explained in Section 5.2. Following the terminology often used in vibration mode analysis, the
converging modes can be called ‘physical modes’, while the others are ‘mathematical modes’. Furthermore,
we introduce here a new type of stabilization diagram, where the x-axis is frequency and the y-axis is not the
model order, as in common stabilization diagrams (see e.g. [19,20]), but time. In Figure 7 the stabilization
diagram for the first flight point is shown. The green dashed line represents a non-parametric estimate of the
transfer function (FRF) from the input to the fourth output.

The final values of the stabilized, ‘physical’ frequencies and damping ratios for the five flight points are
given in Table 1. Note that the damping ratios corresponding to some stabilized frequencies did not stabilize.
The results for these modes were not included in Table 1. The frequencies and damping ratios obtained are
similar to those reported in [19,20].

Several observations can be made:

e The stabilization diagrams of the non-recursive algorithm com_stat are more difficult to interpret
than those of the recursive algorithms.

flight point #1 flight point #2 flight point #3 flight point #4 flight point #5
f (Hz) ¢ (%) | f(Hz) ¢ (%) | f(Hz) ¢ (%) | f(Hz) ¢ (%) | f(Hz) ¢ (%)

RPM2 | 6.0116 3.5815 5.9581 4.5295 6.6710 1.8541 6.1739 | 14.3069 6.6265 2.6188
6.6235 3.7528 6.7232 2.9545 6.7756 7.3267 6.6669 5.8640 6.7398 5.7286
6.9564 3.6494 6.8227 5.0781 7.4701 | 12.7308 6.7506 1.2581 7.0437 | 21.0211
8.5265 | 10.4214 7.4480 | 22.5484 | 11.4220 3.6722 9.1797 | 12.8608 | 11.0306 4.1329

11.1040 4.7235 | 11.1762 7.5918 | 12.3259 3.1036 | 10.8343 8.6058 | 11.5147 1.8748

11.7505 3.4432 | 11.6339 4.7289 11.5777 3.9094 | 12.5687 3.3231

EIVPM| 6.5891 4.0818 6.8084 2.8753 6.6045 5.1471 6.5380 | 4.9126 6.5654 | 6.3881
6.9411 2.3670 | 11.3809 3.5252 6.7449 1.6147 6.7656 1.2370 6.6689 2.0430
9.4888 | 11.3808 | 11.5954 5.4129 | 10.9731 5.7992 | 10.9263 5.7984 | 11.4863 5.1401

11.3188 4.1065 11.5553 3.0436 | 11.6006 3.9410 | 12.5857 2.9964

11.6613 4.4686 12.7096 3.0437

Table 1: The estimated frequencies (f) and damping ratios ({) for all flight points using two recursive subspace
identification methods RPM2 and EIVPM.



e Algorithm RPM2 tends to give more stabilized modes than EIVPM. In flight point #2, e.g., EIVPM
only finds three stabilized modes, while RPM2 finds six.

e Not every mode is detected in each flight point. For example, algorithm RPM2 finds a mode around
6Hz in flight points #1, #2 and #4, but not in flight points #3 and #5.

e Damping ratio estimates corresponding to the same frequency sometimes differ much from flight point
to flight point. For example, in flight point #3 the mode with frequency around 6.7Hz, identified by
RPM2, has damping ratio 7.33%, while in flight point #4 it is only 1.26%.

e It is not always easy to decide which mode in one flight point corresponds to which in another flight
point. It would be advantageous to track the frequencies and dampings in between the different flight
points. This is exactly the aim of future in-flight tests, when also data will be measured during the
transition from one flight point to the following.

6.3 Computational speed

In Figure 8 we show the time needed to process 96 new data points as a function of time. Note that com_stat
only updates the model every 32 points, while EIVPM and RPM2 do this every time a new data point is avail-
able. Therefore, the blue circles in Figure 8 represent the computation cost for 3 updates of the com_stat
model and for 96 updates of the other two models. The computation time for com_stat increases linearly
with time (i.e. with the number of data points used for the identification). On the other hand, the time needed
to update the models by means of the recursive methods, remains constant.

It is clear from Figure 8 that the data can be processed in real-time. For com_stat it might become more
difficult when longer data sequences are given. In this case, memory problems could arise too. A solution
for these problems could be to use a sliding window that discards the data points that lie furthest in the past.
The recursive algorithms EIVPM and RPM2 do not have these problems.
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Figure 8: The time needed to process 96 new data points as a function of time. The black squares represent the time
needed by RPM2 for 96 model updates, the magenta diamonds the computation time for 96 updates by EIVPM and the
blue circles the time needed for 3 identifications by the non-recursive com_stat.

7 Conclusions and future work

In this paper two recent recursive subspace identification algorithms are studied. Simulation examples show
that the algorithms are able to track changing damping ratios, provided that for noisy measurements the
forgetting factor is chosen large enough (not much forgetting). The algorithms are also applied to in-flight
measurements on an airplane. Using measurements from five flight points, several modes (eigenfrequencies
and damping ratios) of the airplane are identified. The computation time is short enough to apply the methods



on-line.

However, several issues need to be looked at in the future. The entire dataset was used to decide which
outputs could be discarded. This is not possible when working on-line. It will be investigated if keeping the
data from the noisy outputs deteriorates the identification results much. We also used the whole dataset to
decimate the data (lowpass filtering followed by downsampling). This must be done on-line too.

In the near future measurements from the transition in between flight points will become available. The
methods described in this paper, will be applied to these data. By tracking the modal parameters, it should be
much easier to decide which frequencies and dampings correspond to the same modes in the different flight
points.

It would be interesting to have a recursive subspace identification algorithm based on the propagator concept,
for the purely stochastic identification problem, i.e. one without measured input. When the input applied by
the pilot falls away, one should be able to switch to the stochastic method and keep tracking the modal
parameters.

It would also be very useful to have confidence bounds on the identified modal frequencies and damping
ratios. To the best of our knowledge they do not even exist for non-recursive subspace algorithms.
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