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Abstract. Nonlinear multimodal filtering problems are usually addres-
sed via Monte Carlo algorithms. These algorithms involve sampling pro-
cedures that are similar to proportional selection in genetic algorithms,
and that are prone to failure due to genetic drift. This work investigates
the feasibility and the relevance of niching strategies in this context.
Sharing methods are evaluated experimentally, and prove to be efficient
in such issues.

1 Introduction

In evolutionary computation, genetic drift is often considered as a source of
premature convergence. Given a problem with multiple solutions, a genetic algo-
rithm (GA) will at best ultimately converge to a population containing only one
of these solutions. This phenomenon has been observed in natural as well as in
artificial evolution, and is undesirable in many applications (e.g. multi-objective
optimization). To overcome the above problem, several methods have been pro-
posed that take their inspiration from mathematical ecology [1]. GA were de-
veloped that are capable of forming and maintaining stable sub-populations,
or niches. GAs which employ niching mechanisms become capable of finding
multiple solutions to a problem, within a single population [2], [3], [4]. Among
these methods, the most popular is fitness sharing, that works by modifying the
objective function according to the presence of nearby individuals.

Beyond the field of evolutionary computation, similar phenomena have been
observed in Monte Carlo strategies such as iterated bootstrap or particle filtering
[5], [6]. Such algorithms are based on selection procedures as well, and are closely
connected to the traditional GA framework (see Section 2). These strategies
have proved their efficiency in high-dimensional nonlinear problems. In terrain
navigation for instance, an aircraft measures its relative elevation sequentially,
and the goal of filtering is to estimate the position and velocity of the aircraft.
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This problem is multimodal as several positions might correspond to a single
relative elevation. While Monte Carlo strategies are theoretically able to simulate
the true distribution of the aircraft position, selection often concentrates the
solutions on a single mode leading to wrong decisions.

While the benefit of sharing methods has been intensively studied by the
EC community, few efforts have been devoted to the other contexts. This work
evaluates the feasibility of sharing methods in Monte Carlo nonlinear filtering
algorithms. Section 2 presents an account on the filtering problem and Monte
Carlo methods. Section 3 introduces niching strategies in sampling procedures
for particle filters and discusses the choice of a sharing bandwidth. In Section 4,
the algorithm is evaluated on a set of one-dimensional test problems similar to
those encountered in terrain navigation. For these simple models, the solution
to the filtering problems can be computed exactly. On this basis, the niching
method is compared to the standard algorithm, and proves to be beneficial in
this context.

2 Monte Carlo Filtering

Filtering addresses the issue of predicting an unknown signal (Xt) given noisy
observations of this signal. Mathematically, the signal is modeled as a Markov
process taking values in some measurable space X :

Xt = F (Xt−1) + Vt, t ≥ 1 , (1)

where F is a deterministic function and (Vt) is a sequence of independent identi-
cally distributed centered random variables. More generally, such dynamics can
be specified according to some Markov kernel Q(x, dx) that describes the transi-
tion probabilities between successive states. The distribution of Xt is often called
the prior distribution.

In the filtering problem, the signal cannot be observed directly. Instead, data
are (indirectly) gathered from the observation of a second signal

Yt = H(Xt) + Wt, t ≥ 0 , (2)

where H is usually a nonlinear function and Wt a noisy variable independent
from Xt.

The filtering problem consists of making predictions about the original sig-
nal Xt given the observations Y0, Y1, . . ., Yt. This amounts to estimating (or
computing) the conditional distribution of Xt given these observations. This
distribution is called the posterior distribution.

Filtering has an old tradition that goes back to the seminal paper by Kalman
[7]. The standard approach assumes that F and H are linear and that Vt and
Wt are Gaussian random variables of known covariance matrices. In contrast,
solving nonlinear filtering problems turns out to be particularly difficult, and the
difficulty is even increased when the signal becomes unidentifiable (e.g., H not
invertible). In such a case, the posterior distribution may be multimodal. Kalman
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filters would therefore lead to erroneous predictions since these methods always
predict a single mode.

Kunita and Stettner [8] developed general recursion schemes that compute
the exact solution of the filtering problem based on Bayes’ formula. Despite
their closed form, these equations are hardly of practical interest since numerical
computations of high-dimensional integrals are involved.

Monte Carlo filtering is an algorithmic alternative to Kunita-Stettner recur-
sion. It consists of a computer intensive technique, and can be useful where linear
filtering fails. This method is based on a particle system approach [9], [10], [11]
in which the posterior distribution is computed empirically. In this approach, a
population of n particles is evolved in the signal space according to a two-stages
procedure. More precisely, let xt = (x1, . . . , xn) be the population at time t (x0
is randomly initialized). The two steps are iterated as follows.

1) Prediction. Create n new particles x′
1, . . ., x′

n by sampling from the
transition kernel Q(x, dx)

x′
i ∼ Q(xi, dx), i = 1, . . . , n .

Conditional to x1, . . . , xn, the new particles are independent.

2) Correction. Resample the particles according to a proportional scheme
taking the observation yt (at time t) into account:

x′′
i ∼ Lt(yt − H(x′

i))∑
j Lt(yt − H(x′

j))
,

where Lt is the likelihood function of the observation noise Wt. Define the
population at time t + 1 as being xt+1 = x′′.

The convergence of this algorithm to the optimal solution of the filtering problem
has been proved in [10], when the population size goes to infinity.

Turning to an evolutionary computation perspective, there is a close con-
nection between Monte Carlo filters and the simple GA without recombination.
This connection has been emphasized in previous works by [10], [12]. In the
above algorithm, particles can be identified as individuals in a population, where
the set of phenotypes corresponds to the possible states of the signal. The first
step, called prediction, is similar to the mutation step in GAs. Each individual
generates an offspring by mutation from the kernel Q(x, dx) (and the offspring
replaces its parent). In the second step, called correction, a random selection of
the offspring is performed. The selection strategy is similar to the proportional
selection scheme used in GAs. However, the fitness function is time-dependent
as it must account for the information contained in the data at each instant.
Mathematically, the fitness of offspring xi can actually be defined as

ft(xi) = Lt(yt − H(xi)) . (3)
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3 Niching in a Filtering Context

3.1 Niching Algorithms

The reason why Monte Carlo filtering methods should work is that their infinite-
population models correspond to Kunita’s recursion scheme precisely. However,
the shortcomings of infinite-population models are well-known. By their very
nature, they may not truly reflect the finite-population properties that are of
major interest to a practitioner. For instance, the effect of stochastic fluctuations
during the correction step are neglected in this approach.

The same kind of remark also holds for the traditional GA. To overcome the
above problem, Goldberg and Richardson proposed a method based on sharing
[1]. These methods require that the objective fitness function be shared as a
single resource among similar individuals in a population. Niching is achieved
by degrading the objective function (i.e., the unshared fitness) of an individual
according to the presence of nearby individuals. This type of niching requires a
distance metric on the phenotype of the individuals. The objective fitness f(i) of
an individual i is degraded by first summing all of the shared values of individuals
within a fixed bandwidth σsh of that individual and then dividing f(i) by this
sum, which is known as the niche count. More specifically, if two individuals are
separated by distance d(i, j), then a shared value

sh(d(i, j)) =




1 −
(

d(i, j)
σsh

)α

if d(i, j) < σsh

0 otherwise

(4)

is added to the niche count:

m(i) =
n∑

j=1

sh(d(i, j)) . (5)

The parameters σsh and α are chosen by the user of the niched GA based on
some a priori knowledge of the fitness landscape. The parameter α is often set
to one, yielding the triangular sharing function. Finally, the shared fitness is
defined as

f ′(i) =
f(i)
m(i)

. (6)

The actual fitness of each individual is modulated according to the density of
the population around it: the fitness of isolated individuals is increased, while
that of individuals in well represented regions of the search space is decreased.

3.2 Sharing Methods in Monte Carlo Filters

In this paper, we investigate the maintenance of stable sub-populations in Monte
Carlo filtering algorithms using the method of sharing function. Since the avail-
able computational resources do not allow the number of particles to be arbitrary
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large, standard Monte Carlo filters often suffer from a loss of diversity due to
the stochastic nature of resampling. In real-world applications (e.g. real-time
target tracking algorithms), this premature loss of diversity implies loosing the
signal for some time by concentrating all individuals in a possibly wrong region
of the search space. Maintaining stable niches in Monte Carlo filter is there-
fore a crucial point, since these niches actually correspond to existing modes of
the posterior distribution. A niching procedure can be included in Monte Carlo
filters as follows.

1) Prediction (unchanged). Create n new particles x′
1, . . ., x′

n by sam-
pling from the transition kernel Q(x, dx)

x′
i ∼ Q(xi, dx), i = 1, . . . , n .

Conditional to x1, . . . , xn, the new particles are independent.

2) Correction. Resample the particles according to a proportional scheme
taking the observations into account:

x′′
i ∼ f ′

t(x
′
i)∑

j f ′
t(x′

j)
,

where f ′
t(x

′
i) is the shared fitness of ft(x′

i) = Lt(yt − H(x′
i)).

In implementing this algorithm, choosing the bandwidth σsh is a critical step.
Deb’s rule sets this parameter by taking into account distances between peaks,
and relative fitnesses. Specifically,

σsh = min
i,j

{
d(x′

i, x
′
j)

1 − rij

}
, (7)

where

rij = min

(
ft(x′

j)
ft(x′

i)
,
ft(x′

i)
ft(x′

j)

)
(8)

and the metric d corresponds to the Euclidean Distance. In one-dimensional
filtering problems, a better-supported rule is given by Silverman [13] inspired
from density estimation

σsh = 0.9 min (sd(x′), iqr(x′)/1.34) n−0.2 .

This rule is based on the minimum of the standard deviation of x′ and its
interquartile range divided by 1.34. Using this rule is quite natural in a niching
context. Sharing indeed degrades the fitness function by dividing by the density
of nearby particles and actually involves an estimation of this density. Note
that a proper use of this rule requires that the sharing method be build upon a
Gaussian kernel instead the triangular function. Similar rules also exist in higher
dimensions.
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4 Experiments

4.1 Test Problems

Evaluating the impact of the sharing method in Monte Carlo filters is difficult in
general. A number of test problems have been chosen to assess the performances
empirically. The selection of six test problems is inspired from target tracking
issues. Three noisy dynamical systems describe the motion of a target in one
dimension. The first motion is the classical AR(1) dynamics [7]

Xt = 0.9Xt−1 + Vt, Vt ∼ N (0, 1) , (9)

where the (random) initial condition X0 is sampled according to the Gaussian
distribution N (0, 5.26315) (so that the signal is stationary). The second motion
is called the piecewise linear dynamics, and can be described as

Xt = Xt−1 − 0.1 sign(Xt−1) + Vt, Vt ∼ N (0, 1) (10)

and X0 = 0. The third motion is called the double well dynamics [14]

Xt = Xt−1 − 0.04Xt−1(X2
t−1 − 1) + Vt, Vt ∼ N (0, 0.01 × q) , (11)

where q is a parameter set to 0.24 in [14], and X0 = 0. In addition, these three
motions are observed through different functions. The first observation function
is a symmetric one

H(x) = |x| , (12)

and the second is non-symmetric

H(x) =
{

2x if x ≥ 0 ;
−x/2 if x ≤ 0 .

(13)

The observation noise is standard Gaussian Wt = N (0, σ2) (σ is often set to 1).
The length of simulation runs is equal to T = 100. Regarding the symmetric ob-
servation function, the posterior distribution is bimodal while this is not always
the case for the non-symmetric function. For the six problems, the posterior
distribution can be computed exactly using Kunita’s recursions. Knowing the
exact solution will be useful in assessing the accuracy of the filtering procedures
during the experiments.

Figure 1 displays a typical trajectory from the double well dynamics (a)
and the exact posterior distributions computed via Kunita’s recursions under a
symmetric observation function (b). A population of 20 individuals is evolved
using the classical Monte Carlo procedure (c) and the niching algorithm (d).

4.2 Experimental Design

Simulation runs contain simulated trajectories of the signal motion and the cor-
responding observations. For each of the six models, simulations are repeated
100 times so that the performances can be evaluated statistically. In the exper-
imental design, the following parameter settings are experimented.
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Fig. 1. (a) A simulated trajectory from the double well dynamics. (b) Contour plot of
the posterior distribution densities. The observation function is symmetric H(x) = |x|.
(c) Classical Monte Carlo filtering plot (population size = 20). (d) Monte Carlo +
Niching simulation plot.

NS No Sharing.
Sil Silverman’s rule for the sharing bandwidth.
Deb Deb’s rule for the sharing bandwidth.
σsh constant sharing bandwidth (values = 0.1, 1, 10).

The variable NS means that no sharing is used. The algorithm corresponds to the
classical Monte Carlo filtering method. The next levels indicate how the sharing
bandwidth has been set up: Silverman’s rule, Deb’s rule or constant. Except for
Silverman’s rule, the triangular function is chosen (parameter sh = 1 in Figure 2).
Other choices were tested but the results did not change significantly.

4.3 Performance Measures

As shown by Figure 1, sharing can be helpful in combating genetic drift in
Monte Carlo filtering algorithms. Indeed, the distribution of individuals seems
closer to the true distribution than the population corresponding to the classical
procedure. To quantify these observations, several performance measures can be
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introduced. Such measures assess the distance of the empirical distribution of
the population from the true distribution. The ratio of good decisions taken by
the algorithms can be compared.

KS distance. The Kolmogorov-Smirnov metric is a standard measure of the
distance between two probability distributions µ1 and µ2. It is defined as

DKS(µ1, µ2) = sup
t

|F1(t) − F2(t)| ∈ [0, 1] ,

where F is the cumulative distribution function of µ. Here, µ1 denotes the em-
pirical distribution of the population computed from Monte Carlo algorithms
and µ2 denotes the true distribution.

Measure of symmetry: MS. In the case where H is symmetric (half of the sim-
ulation runs), the posterior distribution of Xt is bimodal (and symmetric). MS
is the fraction of time during which two niches (modes) subsist. (A niche is
considered active when more than 10 percent of the population are present.)

Ratio of good decisions: RGD. In the case where H is non symmetric, we say
that an algorithm takes a decision when all individuals are located at the same
side of zero during 5 time steps. Good decisions correspond to all individuals
evolving in the same region as the signal.

4.4 Results

This Section presents the most significant results obtained after the series of
experiments. Symmetric observation functions are discussed first. Figure 2 re-
ports the values of MS and the KS distance for the double well dynamics (DW).
Similar results have been obtained for AR(1) and the piecewise linear dynamics.
These results are summarized in Table 1.

Figure 2 shows that the fraction of time (MS) during which two niches subsist
averages to 0.346 in the Monte Carlo filtering algorithm. This fraction increases
to 0.922 when sharing is used together with Deb’s rule (the best bandwidth is
however σsh = 1). Simulation runs have also been performed with a popula-
tion size of 100 individuals. The improvement due to sharing is more significant
when the population size is small. Similar remarks can be made regarding the
KS distance. For large population sizes, the goodness-of-fit seems better when
Silverman’s rule is used.

Table 1 reports the relative gain in using Deb’s rule computed for each mea-
sure (MS and KS). This gain represents the difference between measures with
sharing / without sharing averaged over 100 runs. The results are given as per-
centages (MS and KS are floating point numbers between 0 and 1). Numbers
in brackets represent the best ratio obtained from constant bandwidth rules
(when this ratio is significantly better than Deb’s rule). The star means that MS
reached the maximal value (100%). The following set of comments can be made
about these results.
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NS Gau 1 1 1 1

0.
2

0.
6

1.
0 0.346 0.676 0.922 0.855 0.953 0.403

sh
bw  Sil  Deb 0.1 1 10

MS, 20 individuals

NS Gau 1 1 1 1

0.
2

0.
4

0.
6

0.
8

1.
0 0.772    1    1    1    1 0.926

sh
bw  Sil  Deb 0.1 1 10

MS, 100 individuals

NS Gau 1 1 1 1
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3
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5
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7

0.529 0.42 0.39 0.376 0.381 0.518

sh
bw  Sil  Deb 0.1 1 10

KS distance, 20 individuals

NS Gau 1 1 1 1

0.
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0.
4
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5

0.316 0.235 0.251 0.254 0.254 0.256

sh
bw  Sil  Deb 0.1 1 10

KS distance, 100 individuals

Fig. 2. Performance measures corresponding to the double well dynamics (q = 0.24,
σ = 1) and the symmetric observation function. sh refers to the sharing function
(Gaussian or triangular) and bw to the bandwidth parameter.

1) For this set of bimodal problems, sharing always improves Monte Carlo filters
(the improvement may sometimes be a minor one).

2) Deb’s rule is competitive (and has the advantage to be adaptive). This ex-
plains why this rule is chosen as a reference rule in Table 1.

3) Silverman’s rule outperforms the other rules for large population sizes. (In
some sense, this rule is optimal in density estimation when n grows to infin-
ity.)

4) Sharing is less efficient when the observation noise is small.

Turn now to the experimental results in the non-symmetric observation con-
text. These results are summarized in Table 2 using the same notations as before.
In the non-symmetric context, the measure of symmetry has been replaced by
the ratio of good decisions (RGD). The posterior distribution is indeed multi-
modal only during a short interval of time, after that it concentrates on a single
mode.

In contrast to bimodal problems, high gains can hardly be expected. The aim
of sharing is maintaining individuals in niches when such niches truly exist. Note
that this method do not create artificial niches. Significant gains can nevertheless
be observed when the posterior distribution remains multimodal within a long
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period before concentrating on a single mode. In the period during which the
filtering problem is multimodal, maintaining sub-populations in all niches is
crucial, as the algorithm should be capable of tracking the mode that will subsist.

Table 1. Improvement obtained from sharing with Deb’s rule (symmetric observation
function).

gains (%)
20 individuals 100 individuals

dynamics MS KS MS KS
AR(1), σ = 1 24 5 4* 3
AR(1), σ = 0.1 0 0 (15) 2 (7) 1
piecewise linear, σ = 1 17 6 13* 8
piecewise linear, σ = 0.2 1 1 (20) 7 4
DW, q = 0.05, σ = 1 (49) 35 (15) 8 25* 6
DW, q = 0.24, σ = 1 57 14 23* 6
DW, q = 0.1, σ = 1 62 17 21* 6
DW, q = 0.24, σ = 0.05 (21) 12 4 40 15

Table 2. Performances of sharing for the non-symmetric observation function.

gains (%)
20 individuals 100 individuals

dynamics RGD KS RGD KS
AR(1), σ = 1 2 -1 2* -3
AR(1), σ = 0.1 (1) -5 0 -2 0
piecewise linear, σ = 1 (2) -4 1 0 -5
piecewise linear, σ = 0.2 -2 2 4 3
DW, q = 0.05, σ = 1 11 9 17* (1) -5
DW, q = 0.24, σ = 1 (19) 6 6 10* (1) -12
DW, q = 0.24, σ = 0.05 -2 -1 5 -3

5 Discussion

This paper presented a new paradigm in Monte Carlo filtering algorithms: the
method of likelihood sharing. While niching methods are widely accepted in
evolutionary computation, the benefit of these techniques remains unexplored in
several neighboring domains.

Our results give evidences that sharing methods can improve Monte Carlo
filtering algorithms significantly. These methods are dedicated to problems for
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which posterior distributions are multimodal and standard algorithms are not
efficient. Adding a sharing method allows population sizes to be reduced by a
large factor, and contributes to the global efficiency of the algorithm.

The method can be beneficial as well for problems that are not purely multi-
modal. This occurs in tracking a specific mode among several others that would
be prominent after a while.

The empirical results presented in this paper have been obtained for one-
dimensional problems, for which the solution can be computed by standard
numerical methods. Further work is needed to extend this contribution to real-
world problems (such as those arising in terrain navigation) and higher dimen-
sional issues.
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