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1 Estimating [not testing]

the number of components/states
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In the mixture model,

yi ∼ f(y) =
k∑

j=1

pjf(y|θj) , i = 1, · · · , n

what if k is unknown?!
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1.1 Meaning of the question

• weak identifiability of mixtures

• insolvable “philosophical” problem unless k has a proper intrinsic
meaning [and even so...]

• hence testing per se is impossible: the data cannot distinguish
between k and k + h [unless guided by a firm hand!]

• the choice of a prior on k π(k) is thus necessary to translate the
degree of details required [equivalence with penalizing factors in

likelihood analysis]
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1.2 Multiplicity of technical solutions

• Saturated models with n mostly empty components

• Reversible jump MCMC techniques for exploration of most models
[Green (1995); Richardson & Green (1997)]

• Birth and death and other jump processes
[Preston (1976); Ripley (1977); Stephens (1999,2000)]
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1.2.1 Principles of RJMCMC

– Births and deaths are proposed with probabilities βk and δk,
respectively, when having k components.

– Acceptance probability for birth move is min(A, 1), with

A = likelihood ratio× δk+1

βk
× (1− w)k−1

b(w, φ)
.

– Acceptance probability for death move is min(A−1, 1).
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1.2.2 Principles of BDMCMC

– New components are born according to a Poisson process with
rate λk when having k components.

– Each component (w, φ) dies with rate

d(w, φ) = likelihood ratio−1 × λk

k + 1
× b(w, φ)

(1− w)k−1
.
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1.2.3 More general moves

Local balance in for Markov jump processes in general:

π(θ)q(θ, θ′) = π(θ′)q(θ′, θ)

For birth-death, split-merge moves etc.:

π(k)π(θk|k)L(θk)×λkb(uk)J−1 = π(k+1)π(θk+1|k+1)L(θk+1)×d(θk+1, θk)
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1.2.4 Comparison of mixing properties

– RJMCMC works poorly if

A = likelihood ratio× δk+1

βk
× (1− w)k−1

b(w, φ)

is small.

– If A is small, then

d(w, φ) = likelihood ratio−1 × λk

k + 1
× b(w, φ)

(1− w)k−1

≈ N × 1
k + 1

×A−1

is large and BDMCMC works poorly.
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1.2.5 RJMCMC→BDMCMC

Rescaling time

– In discrete-time RJMCMC, let the time unit be 1/N , put
βk = λk/N and δk = 1− λk/N .

– As N →∞ each birth proposal will be accepted, and having k

components births occur according to a Poisson process with rate
λk.
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– As N →∞, a component (w, φ) dies with rate

lim
N→∞

Nδk+1 × 1
k + 1

×min(A−1, 1)

= lim
N→∞

N
1

k + 1
× likelihood ratio−1

× βk

δk+1
× b(w, φ)

(1− w)k−1

= likelihood ratio−1 × λk

k + 1
× b(w, φ)

(1− w)k−1
.

Hence “RJMCMC→BDMCMC”. This holds more generally.
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1.3 Inference with varying k

• Little difference from the fixed k setting

• Inference must be conditional on k

• General principle in Bayesian model choice: parameters
appearing in different models must be considered as separate
entities
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• Inference on k through posterior probabilities and predictive
plots of the regression lines
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Results on a large uniform sample for the beta mixture:

p0 + (1− p0)
k∑

i=1

ωi∑
` ω`

Be(αiεi, αi(1− εi))

• k never estimated as 0

• p0 very small

• likelihood widely different from 1

• curve almost flat
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2 Extensions to more challenging

structures

Introduce more advanced models by way of additional latent
variables with possible dependence
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2.1 Hidden Markov models

z1 ∼ π · · · zi ∼ pzi−1zi

x1|z1 ∼ N (µz1 , σ
2
z1

) · · · xi|zi ∼ N (µzi , σ
2
zi

)
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• Very similar to normal mixture but for additional structure
which improves estimation



Hmm days/ENST/January 21, 2002 19

• Still allows for flat priors

π(µ, σ, P ) ∝ 1
σk

1

exp
{ −1

2σ2

∑
(µi+1 − µi)2

}
× IIσ1>···>σk

[Robert & Titterington (1997)]

• Gibbs implementation straightforward

1. Generate “missing data”

p(zi = j|zi−1, zi+1, θ, p)
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2. Generate parameters

pi. ∼ D(ni1 + 1, · · · , nik + 1)

µi ∼ N
(

niσ
−2
i x̄i + αi−1µi−1 + αi+1µi+1

niσ
−2
i + αi−1 + αi+1

,

(niσ
−2
i + αi−1 + αi+1)

)

σ2
i ∼ IG

(
ni − 1

2
,
ni(x̄i − µi)2 + s2

i

2

)
× IIσi−1<σi<σi+1

[Celeux, Diebolt & Robert (1993)]
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• Non-Gibbsic implementation also possible, without the missing
states, thanks to forward-backward formulae

• Estimation of k possible via reversible jump
[Robert, Rydén & Titterington (1999)]

and other jump process methods
[Cappé, Robert & Rydén (2001)]



Hmm days/ENST/January 21, 2002 22

2.1.1 Split-merge moves for HMMs

– Parametrisation:

pij = ωij/
∑

`

ωi`, Yt|Xt = i ∼ N (µi, σ
2
i ).

– Move to split component j∗ into j1 and j2:

ωij1 = ωij∗εi, ωij2 = ωij∗(1− εi), εi ∼ U(0, 1);

ωj1j = ωj∗jξj , ωj2j = ωj∗j/ξj , ξj ∼ logN (0, 1);

similar ideas give ωj1j2 etc.;

µj1 = µj∗ − 3σj∗εµ, µj2 = µj∗ + 3σj∗εµ, εµ ∼ N (0, 1);

σ2
j1 = σ2

j∗ξσ, σ2
j2 = σ2

j∗/ξσ, ξσ ∼ logN (0, 1).

– [Split intensity] λS,k = kλB [Birth intensity]
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– Fixed k moves also used

Example :
Wind intensity in Athens
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MCMC output on k (histogram and rawplot), number of
states, and corresponding likelihood values
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when conditioning on k = 3
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2.2 Other latent variable models and hidden

structures

• Hidden semi-Markov models

• Switching ARMA models

• Stochastic volatility and ARCH models

• Discretised diffusions
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2.2.1 Hidden semi-Markov models

Example : Ion chanel model
[Hobson, 1999; Carpenter et al., 2001]

Observables
y = (yt)1≤t≤T

directed by a hidden Gamma process x = (xt)1≤t≤T :

yt|xt ∼ N (µxt , σ
2) xt ∈ {0, 1}

with durations (i = 0, 1)

dj = tj+1 − tj ∼ Ga(si, λi)

if xt = i for tj ≤ t < tj+1.
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Prior assumptions

• conjugate normal-gamma prior on the µ’s and σ

N (θ0, τσ2)× G(ζ, η)−1

• conjugate gamma prior on the λ’s

G(α, β)

• flat prior on the s’s on {1, . . . , S}
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Particle system

Generation of a system of particles

(ω(j),x(j))j (j = 1, . . . , J)

where
ω = (µ0, µ1, σ, λ0, λ1, s0, s1)

based on a proposal/instrumental/importance distribution

π(ω|y,x)× πH(x|y, ω)
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where πH full conditional of a fitted hidden Markov model with
transition matrix

IP =


1− λ0

s0

λ0
s0

λ1
s1

1− λ1
s1


 ,

by analogy with average sojourn times for both models.
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Simulation

Use of
forward–backward formulae,
of conjugate structure for the µ’s, λ’s and σ and
of finite support for s, distributed as

si|x ∼ π(si|x) ∝
[

∆i

(β + vi)ni

]si Γ(nisi + α)
Γ(si)ni

II{1,2,...,S}(si)
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Iterated particle system

Repeated calls to importance sampling with systematic resampling
steps to improve fit

• How many steps?

• Which improvement?

• Why bother?!
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Algorithm

Step 0. Generate (j = 1, . . . , J)

1. ω(j) ∼ π(ω)

2. x(j)
− = (x(j)

t )1≤t≤T ∼ πH(x|y, ω(j))

and compute the weights (j = 1, . . . , J)

%j ∝
π(ω(j),x(j)

− |y)

π(ω(j))πH(x(j)
− |y, ω(j))
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Step i. (i = 1, . . .) Generate (j = 1, . . . , J)

1. ω(j) ∼ π(ω|y,x(j)
− )

2. x(j)
+ = (x(j)

t )1≤t≤T ∼ πH(x|y, ω(j))

compute the weights (j = 1, . . . , J)

%j ∝
π(ω(j),x(j)

+ |y)

π(ω(j)|y,x(j)
− )πH(x(j)

+ |y, ω(j))

resample the couples ω(j),x(j)
+ from the weights %j ,

and take x(j)
− = x(j)

+ (j = 1, . . . , J).
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3 Solving optimization problems
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Role of maximum a posteriori estimation in Bayesian inference

θ =(θ1, θ2) ∈ Θ1 ×Θ2 ∼ p (θ)

especially when posterior means are useless but difficulty with
marginal MAP (MMAP) estimates because nuisance parameters
must be integrated out

θMMAP
1 = argΘ1

max p (θ1|y)

where

p (θ1|y) =
∫

Θ2

p (θ1, θ2|y) dθ2
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1. If integration possible in closed-form, use
Expectation-Maximization (EM) algorithm

[Dempster et al. (1977)]

Deterministic algorithm which depends on initialization and is
limited to certain classes of models.

Stochastic variants like Stochastic EM (SEM) or Monte Carlo
EM (MCEM)

[Celeux & Diebolt (1985),
Wei & Tanner (1991)]

Parameter of interest always updated deterministically in the M step
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2. “Standard” (and Markov chain) Monte Carlo: draw random
samples from the joint posterior distribution

p (θ1, θ2|y)

or MCMC (approximate, dependent) sample
{(

θ
(i)
1 , θ

(i)
2

)
; i = 1, . . . , N

}

and discard nuisance parameters.
More suited to integration than to optimization
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3. Simulated annealing (SA) for maximizing p (θ1|y)

Non-homogeneous variant of MCMC for global optimization:
invariant distribution at iteration i proportional to

pγ(i) (θ1|y) ,

γ (i) increasing function diverging at infinity.

Idea: as γ (i) goes to infinity, pγ(i) (θ1|y) concentrates itself upon
the set of global modes.
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3.1 State Augmentation for Marginal Estimation

[Doucet, Godsill & Robert (2001)]

Artificially augmented probability model whose marginal distribution
is

pγ (θ1|y)

via replications of the nuisance parameters:

• Replace θ2 with γ artificial replications,

θ2 (1) , . . . , θ2 (γ)

• Treat the θ2 (j)’s as distinct random variables:

qγ (θ1, θ2 (1) , . . . , θ2 (γ)|y) ∝
γ∏

k=1

p (θ1, θ2 (k)|y)
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• Use corresponding marginal for θ1

qγ (θ1|y) =
∫

qγ (θ1, θ2 (1) , . . . , θ2 (γ)|y) dθ2 (1) . . . dθ2 (γ)

∝
∫ γ∏

k=1

p (θ1, θ2 (k)|y) dθ2 (1) . . . dθ2 (γ)

= pγ (θ1|y)

• Build a MCMC algorithm in the augmented space, with invariant
distribution

qγ (θ1, θ2 (1) , . . . , θ2 (γ)|y)

• Use simulated subsequence
{

θ
(i)
1 ; i ∈ IN

}

as drawn from marginal posterior pγ (θ1|y)
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Application to the benchmark galaxy dataset
[Roeder (1992)]

82 observations of galaxy velocities from 3 (?) groups

Algorithm EM MCEM SAME

Mean log-posterior 65.47 60.73 66.22

Std dev of 2.31 4.48 0.02

log-posterior


