Chaînes de Markov cachées et filtrage particulaire 21-22 janvier 2002

Filtrage particulaire et suivi multi-pistes

Carine Hue

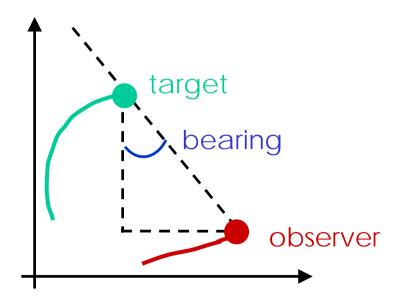
Jean-Pierre Le Cadre and Patrick Pérez

Context

• Applications:

Signal processing: target tracking
 bearings-only tracking
 fusion of active and passive measurements

Image analysis: people tracking (in other work)



Challenges

• Generic tracking issues

- (re)initialization
- Missing measurements
- Clutter (false alarms)
- Non-linearity
- Non observability
- Specific multiple-targets issues
 - Complexity
 - Association and estimation simultaneoulsy
 - Varying number of targets

Basic ingredients

• State variables X_t (position, velocity of the targets)

• Data Y_t (bearings, ranges)

- Estimation of posterior $P(X_t | Y_0 \cdots Y_t)$
 - > Dynamics: $P(X_t|X_{t-1})$

>Likelihood: $P(\boldsymbol{Y}_t | \boldsymbol{X}_t)$

State variables and dynamics

- Single-object state variable: $X = (Xx, Xy, v_x, v_y)$
- Multiple-object state variable: $X = (X^1 \cdots X^n)$
- Single-object dynamics prior: Markovian process

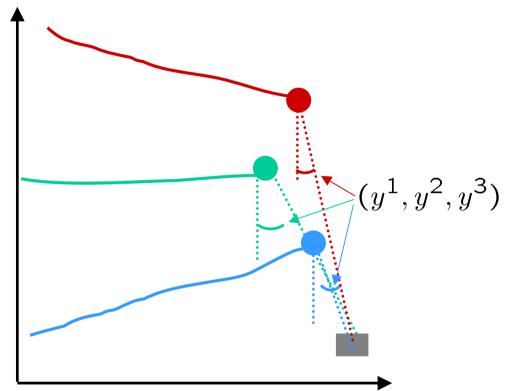
$$X_{t+\Delta t}^{i} = \begin{pmatrix} I_{2} & \Delta t \cdot I_{2} \\ 0 & I_{2} \end{pmatrix} \cdot X_{t}^{i} + \begin{pmatrix} \Delta t^{2} \\ \frac{2}{2} I_{2} \\ \Delta t \cdot I_{2} \end{pmatrix} \cdot V_{t}$$

where $V_{t} \approx N \begin{pmatrix} 0, \begin{pmatrix} \sigma_{x} & 0 \\ 0 & \sigma_{y} \end{pmatrix} \end{pmatrix}$

Multi-object dynamics: independent single-object dynamics

Data

• Bearings-only tracking: $Y_t = (y^1 \cdots y^{m_t})$ highly non-linear wrt the state variable



→How to assign the data to the states?

Data association

• Notation: association vector: $K^j = i$ if y^j is issued from target i

Association assumptions:

(H1)one measurement can originate from one object or from the clutter (*false alarms*)

(H2) one object can produce zero or one measurement

(H3)one object can produce zero or several measurements at one time

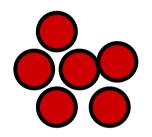
 Algorithms based on (extented) Kalman filter: (H1) + (H2) -> jpdaf

(H1) + (H3) ->pmht

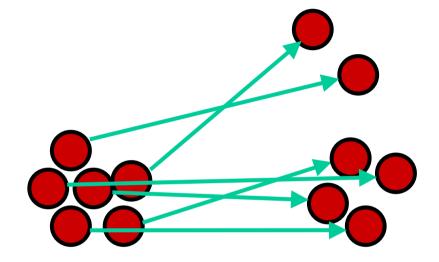
• Our proposition: particle filter using probabilistic association (MOPF):

$$\pi^i = p(K^j = i)$$

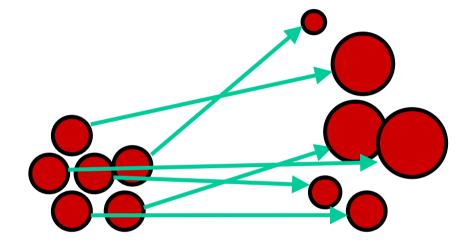
Another proposed algorithm: particle filter based on jpda (Sir-jpda)



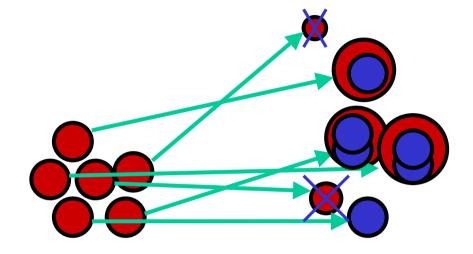
Current cloud at time t



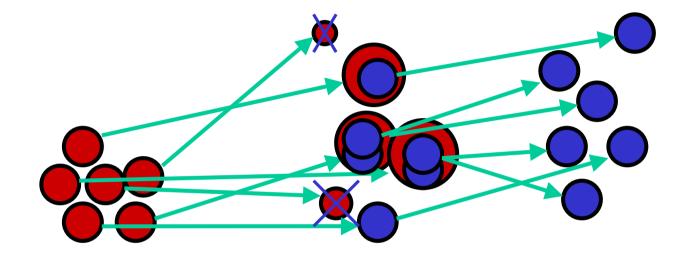
Propagation by sampling from the dynamic prior or from an importance function based on the data



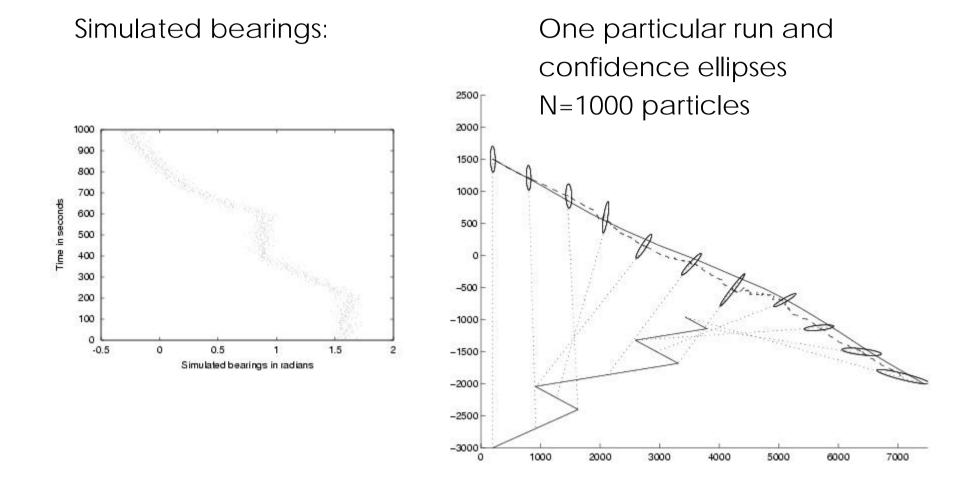
Weighting according to data likelihood



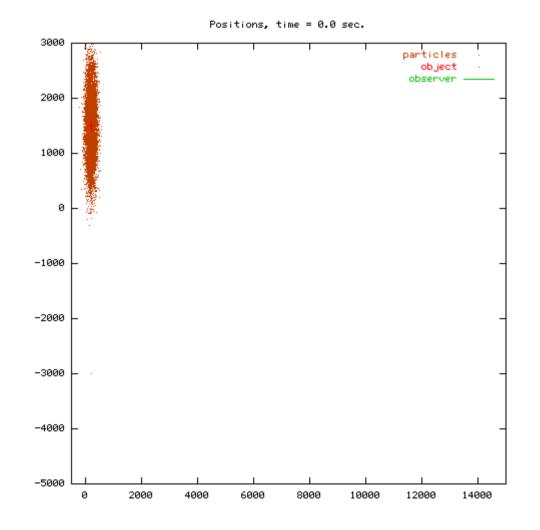
Resampling from the weighted particle set

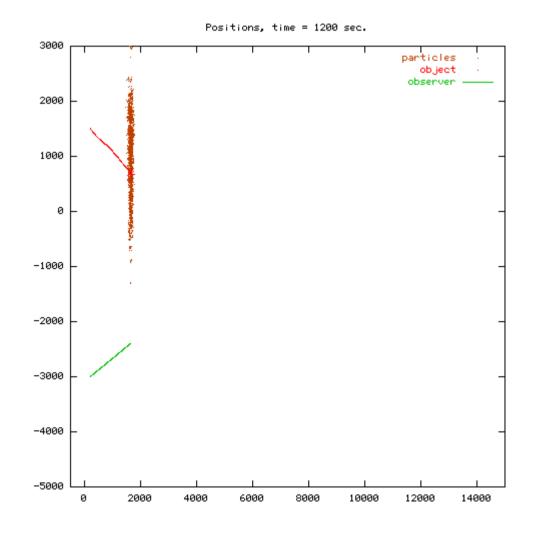


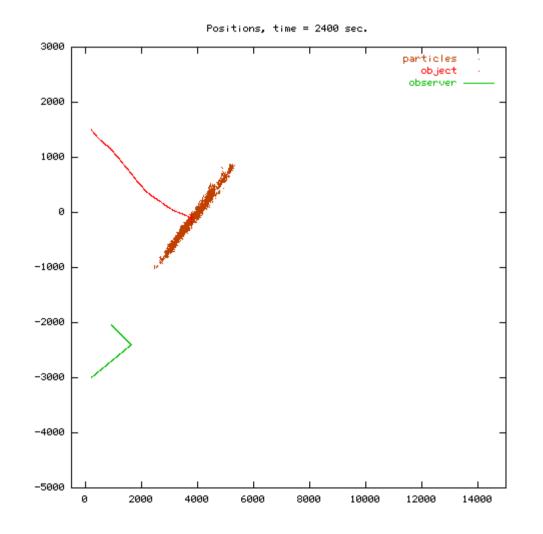
Prediction again ...

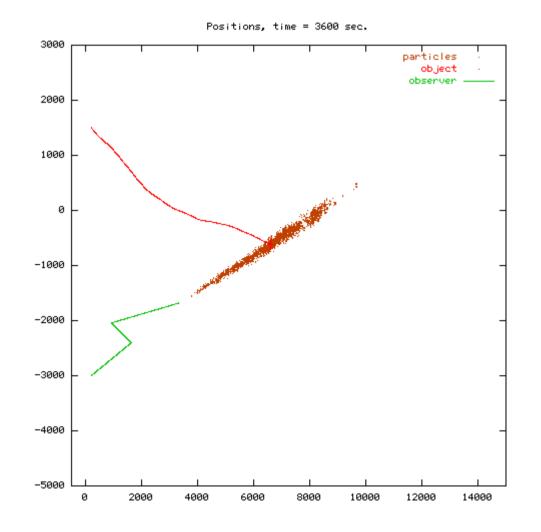


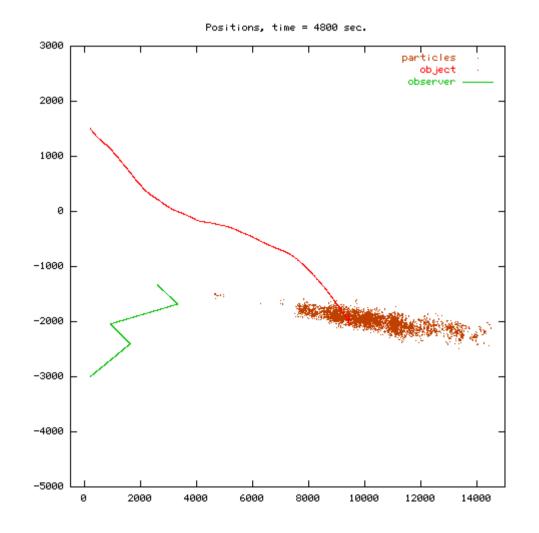
Particle cloud for one object (N = 10000 particles)

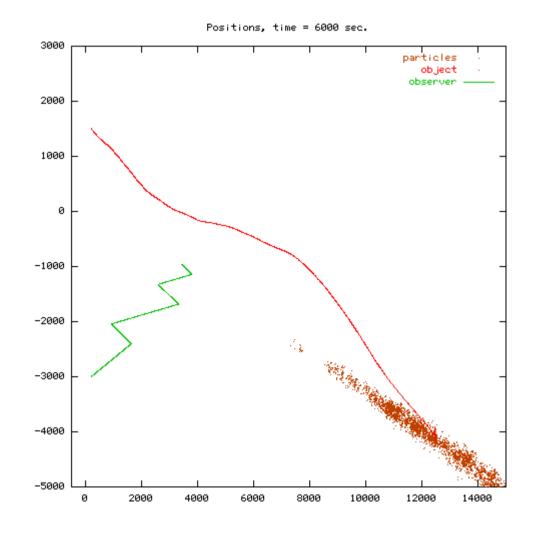




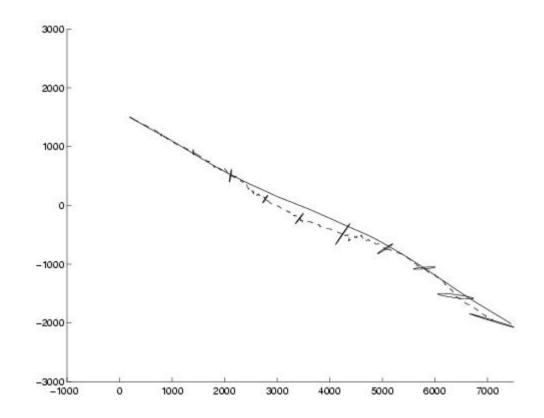








Averaged estimate over 100 runs and 2 σ confidence ellipses N=1000 particles



Multi-object data likelihood

$$p(Y_t = (y_t^1, \dots, y_t^{m_t}) | X_t = (x_t^1, \dots, x_t^M))$$

$$\underline{\underline{H3}}\prod_{j=1}^{m_t} p(y_t^j \mid X_t = (x_t^1, \dots, x_t^M))$$

$$=\prod_{j=1}^{m_t} \frac{\pi_t^0}{V} + \sum_{i=1}^M \pi_t^i p(y_t^j \mid X_t^i = x_t^i)$$

$$\pi^0_t, \cdots, \pi^M_t$$
 à estimer

MOPF

$$\underline{\underline{H2}}_{all\ associations} p(Y_t = (y_t^1, \dots, y_t^{m_t}) | X_t, K_t^u) p(K_t^u)$$

$$= \sum_{all \text{ associations}} \prod_{j=1}^{m_t} p(y_t^j \mid X_t, K_t^u) p(K_t^u)$$

SIR-JPDA

MOPF: use of a Gibbs sampler

 Estimation of the association probabilities vector with a Gibbs sampler:

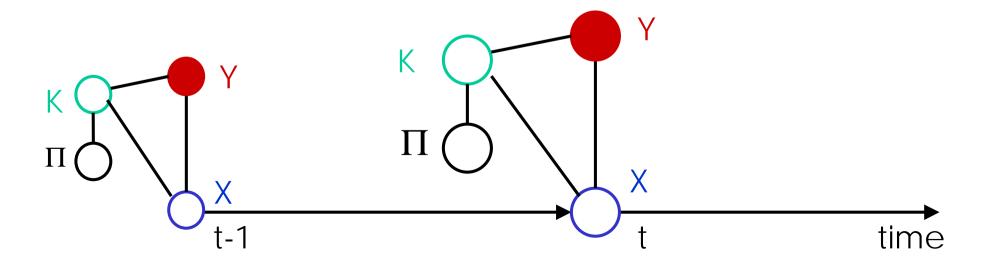
For
$$\tau = 1, \dots, \tau_{end}$$
:
• Sample $K_{t,\tau+1}$ from $p(K_t^j | X_{t,\tau}, \Pi_{t,\tau}, Y_{0:t})$
• Sample $\Pi_{t,\tau+1}$ from $p(\Pi_t^i | X_{t,\tau}, K_{t,\tau+1}, Y_{0:t})$
• Sample $X_{t,\tau+1}$ from $p(X_t^i | K_{t,\tau+1}, \Pi_{t,\tau+1}, Y_{0:t})$
Compute $\hat{\pi}_t = \frac{1}{\tau_{end} - \tau_{beg}} \sum_{\tau=\tau_{beg}}^{\tau=\tau_{end}} \pi_{t,\tau}$

One iteration of the Gibbs sampler

• Sample
$$K_{t,\tau+1}^{j}$$
 from $p(K_{t,\tau+1}^{j} = i) \propto \begin{cases} \pi_{t,\tau}^{i} p(y_{t}^{j} | x_{t,\tau}^{i}) & \text{if } i = 1, \dots, M \\ \pi_{t}^{0} / V & \text{if } i = 0 \end{cases}$

• Sample
$$\Pi_{t,\tau+1}^{1:M}$$
 from *Multinomial* $(\pi; (n^i(K_{t,\tau+1}))_{i=1,\dots,M})$
where $n^i(K) \stackrel{\Delta}{=} Card\{j: K^j = i\}$

• Sample $X_{t,\tau+1}^{i}$ from a law based on the predicted cloud



Sir-jpda

• Énumération exhaustive des associations

$$p(Y_t = (y_t^1, \dots, y_t^{m_t}) | X_t = (x_t^1, \dots, x_t^M))$$

$$= \sum_{all \text{ associations}} \prod_{j=1}^{m_t} p(y_t^j \mid X_t, K_t^u) p(K_t^u)$$

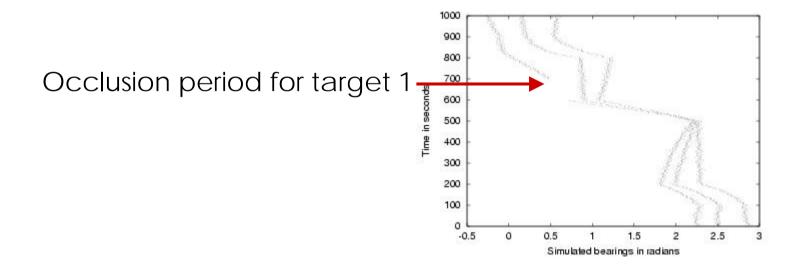
avec
$$p(K_t^u) = \frac{\Phi^u!}{m_t!} p_F(\Phi^u) \prod_{i=1}^M P_d^{D^u(i)} \prod_{i=1}^M (1 - P_d)^{1 - D^u(i)}$$

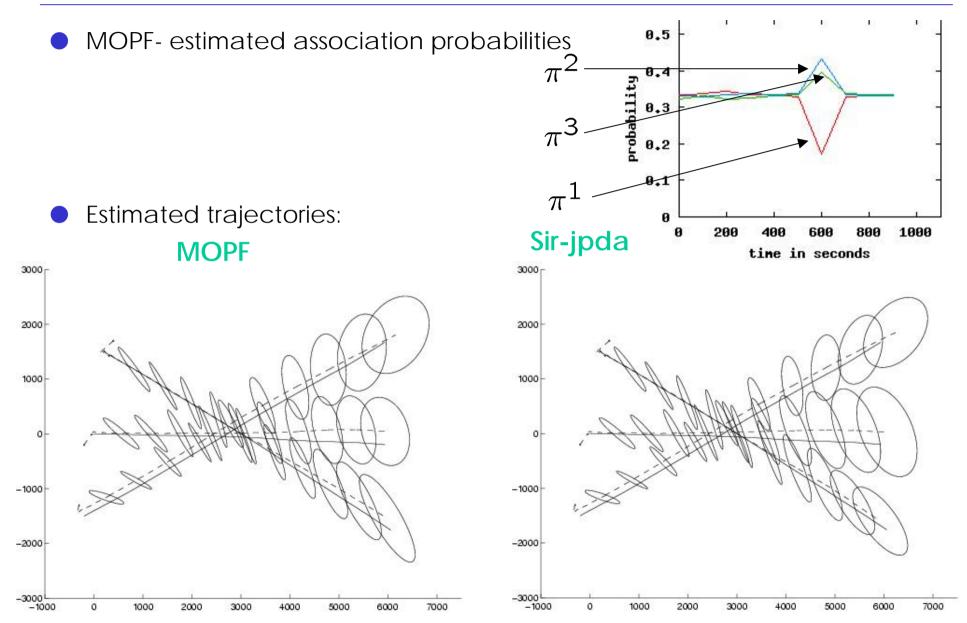
 Φ^{u} = nombre de fausses alarmes dans K_{t}^{u}

Measurement equation

$$Y_t^j = \operatorname{atan} \frac{Xx_t^i - Xx_t^{obs}}{Xy_t^i - Xy_t^{obs}} + W_t \text{ if } K_t^j = i \text{ where } W_t \sim N(0, \sigma^2)$$

Simulated bearings for the three objects

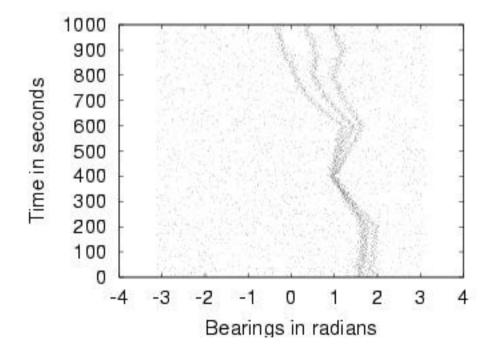


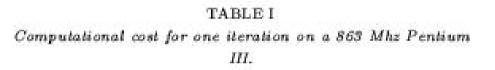


Example: tracking with high clutter

• detection probability for each target $P_d=0.9$

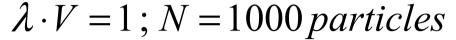
• clutter ~ Poisson law of parameter $\lambda \cdot V = 0, 1, 2, 3$

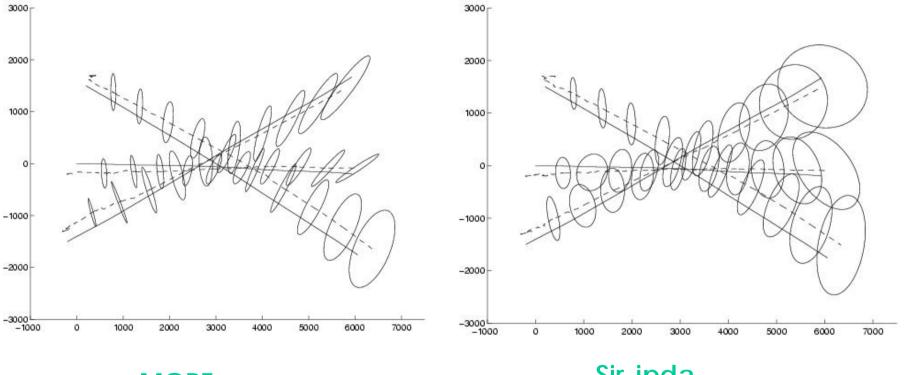




clutter density	0	1	2	3
SIR-JPDA	75ms	155ms	290ms	540ms
MOPF	385ms	400ms	415ms	430 ms

Example: tracking with high clutter

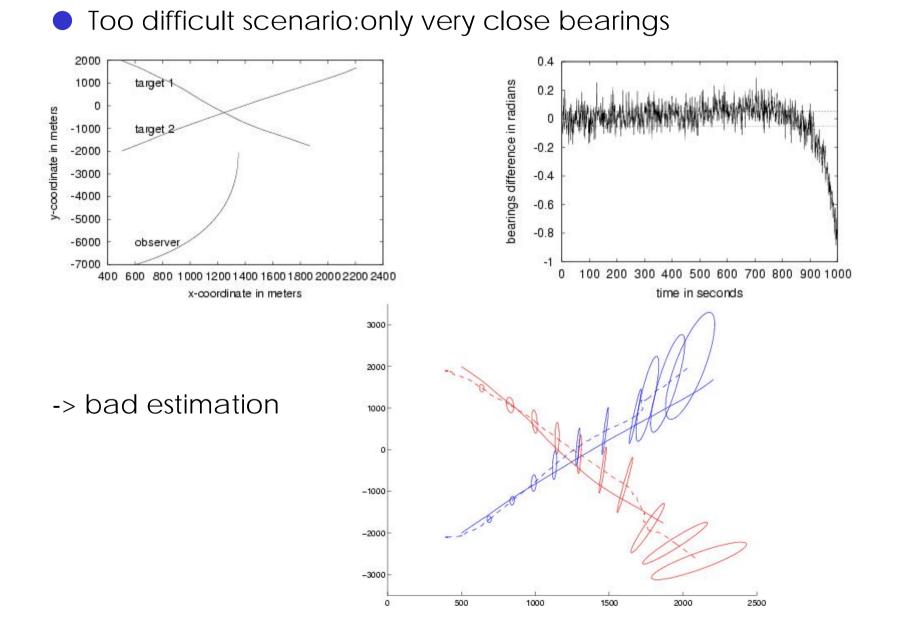




MOPF

Sir-jpda

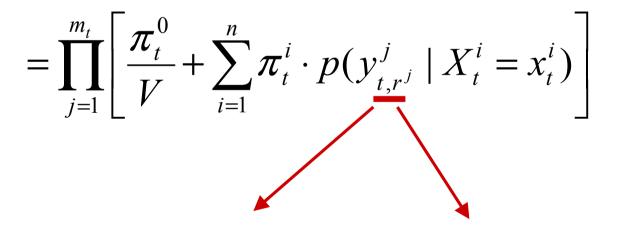
Active and passive measurements:



MOPF using multiple receivers

• measurement \mathcal{Y}^{j} is received by receiver \mathcal{r}^{j} known (bearing or range)

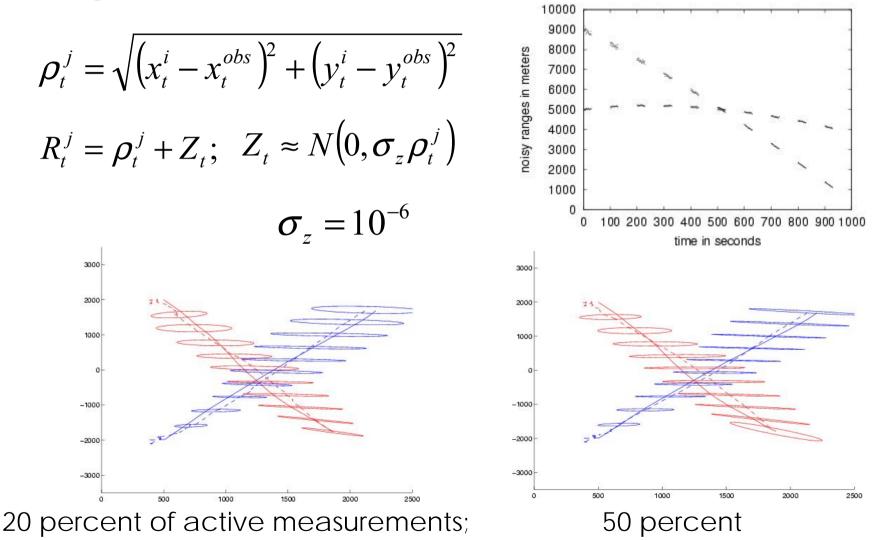
$$p(Y_t = (y_{t,r^1}^1, \dots, y_{t,r^{m_t}}^{m_t}) \mid X_t = (x_t^1, \dots, x_t^n)) = \prod_{j=1}^{m_t} p(y_{t,r^j}^j \mid X_t = (x_t^1, \dots, x_t^n))$$



bearings-likelihood or range likelihood

Example:range and bearings

Range measurements added at certain times:



Conclusion and further work

- MOPF: Generic multi-object tracker based on a mix of particle filtering and Gibbs sampling
 - suitable for various applications
- Sir-jpdaf: particle filtering and jpda
- Drawbacks
 - Fixed number of objects
 - Costly

Perspectives

- Test with varying number of objects
- Compare the results with a posteriori Cramer-Rao bounds

The End

Questions?