Particle Filter Track Before Detect Algorithms
Theory and Applications

Y. Boers and J.N. Driessen

JRS-PE-FAA
THALES NEDERLAND

Hengelo
The Netherlands

Email:
{yvo.boers,hans.driessen}@nl.thalesgroup.com
Outline

- Introduction
- Filtering
- Detection
- Examples
- Overview
- Conclusions
TBD integrates the information over time.

Detection is based on power/energy that has been integrated over time (multiple scans).

Classical tracking: single scan based detection.

* TBD provides higher probability of detection (P_d) at the same level of probability of false alarm (P_{fa})
* TBD circumvents the data association problem.
Twofold problem

The TBD problem is twofold:

1. Filtering

2. Detection
Filtering

The System

\[s_{k+1} = f(t_k, s_k, d_k, w_k), \quad k \in \mathbb{N} \]

\[\text{Prob}\{d_{k+1} = j \mid d_k = i\} = [\prod(t_k)]_{ij} \]

\[z_k = h(t_k, s_k, d_k, v_k), \quad k \in \mathbb{N} \]

Filtering Problem: Determine \(p(s_k, d_k|Z_k) \)
Basic idea of the particle filter

"Describe the a posteriori pdf \(p(s_k, d_k | Z_k) \) by a cloud of \(N \) particles that propagates in time such that the cloud approximately equals an \(N \)-sample drawn from \(p(s_k, d_k | Z_k) \) "

NOTE:
This is more than just a (point) estimate !!!!
Filtering

Kalman vs. PF representation

\[\text{Graphs showing the comparison between Kalman and PF representations.} \]
Filtering

Using a (proper) particle filter on the system:

The following holds

\[\sum_{i=1}^{N} \frac{1}{N} \delta(s - \tilde{s}_i^k) \xrightarrow{a.s.} p(s_k | Z_k) \]

i.e. almost sure convergence...

Popular (point) estimators obtained from particle cloud:

\[\hat{s}_k^{MV} = \int_{\mathbb{R}^n} s_k p(s_k | Z_k) ds_k \approx \sum_{i=1}^{N} \frac{1}{N} \tilde{s}_i^k \]

\[\hat{s}_k^{MAP} = \arg \max_{s_k \in \mathbb{R}^n} p(s_k | Z_k) \approx \hat{s}_i^* \]

where \(\hat{s}_i^* = \arg \max_i q_k^i \)
Detection

Deciding upon presence of target:

Hypothesis testing:

Given two hypotheses

• \mathcal{H}_0 : no signal present

\[z(j) = v(j), \quad j = 0, \ldots, k \]

• \mathcal{H}_1 : signal present

\[z(j) = h(s(j), v(j)), \quad j = 0, \ldots, k \]

where $s(k)$ evolves according to dynamical system
Detection

Using particle filter output for detection

Every optimal detector can be expressed in terms of a Likelihood Ratio Test:

\[L(Z(k, l)) \leq \tau \]

THEOREM:

\[
L(Z(k, l)) = \frac{p(z(k - l + 1), \ldots, z(k) \mid \mathcal{H}_1)}{p(z(k - l + 1), \ldots, z(k) \mid \mathcal{H}_0)} \approx \frac{\prod_{j=k-l+1}^{k}(\sum_{i=1}^{N} \tilde{q}^i(j))}{N^l \prod_{j=k-l+1}^{k} p_v(z(j))}
\]
Detection

Using particle filter output for detection

Elements of the Proof:

\[p(z(l), \ldots, z(m) \mid \mathcal{H}_0) = \prod_{j=l}^{m} p_v(z_j) \]

\[p(z(l), \ldots, z(m) \mid \mathcal{H}_1) = \prod_{j=l}^{m} p(z(j) \mid Z(j - 1)) \]

where

\[p(z(j) \mid Z(j - 1)) = \int_S p(z(j), s \mid Z(j - 1)) ds \]

\[= \int_S p(z(j) \mid s, Z(j - 1)) p(s \mid Z(j - 1)) ds \]

\[= E_{p(s \mid Z(j - 1))} p(z(j) \mid s, Z(j - 1)) \]

\[\approx \frac{1}{N} \sum_{i=1}^{N} p(z(j) \mid s^i(j)) = \frac{1}{N} \sum_{i=1}^{N} \tilde{q}^i(j) \]
Example - Detection

Linear Gaussian scalar system:

\[s(k + 1) = s(k) + w(k) \]

\[z(k) = s(k) + v(k) \]

\(w(k) \sim N(0,1) \), \(v(k) \sim N(0,1) \) and \(s(0) \sim N(0,10) \)

Data has been generated according to the above model.

Particle filter solution (200 particles) and the \textbf{exact (Kalman) solution} have been calculated.
Example - Detection

True states and estimates

Ratio exact and p.f. likelihood
The Fighter-Missile Example:

Multi target track before detect application for *small to very small closely spaced targets*. Early detection is crucial.

Modelling details in:
Example - MTT TBD

System:

\[s_{k+1} = f(t_k, s_k, d_k) + g(t_k, s_k, d_k) w_k \]

where

\[
 f(t_k, s_k, d_k) = \begin{pmatrix}
 1 & 0 & T & 0 \\
 0 & 1 & 0 & T \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix} s_k
\]

The process noise input model is given by

\[
 g(t_k, s_k, d_k) = \begin{pmatrix}
 \frac{1}{2}(\frac{1}{3} a_{x,\text{max}})T^2 & 0 \\
 0 & \frac{1}{2}(\frac{1}{3} a_{y,\text{max}})T^2 \\
 \frac{1}{3} a_{x,\text{max}} T & 0 \\
 0 & \frac{1}{3} a_{y,\text{max}} T
\end{pmatrix}
\]
System:

The discrete mode d_k represents one of three hypotheses (each have a different measurement equation!!)

- $d_k = 0$: There is no target present.
- $d_k = 1$: The prime target is present.
- $d_k = 2$: There are two targets present.

Markov process:

$$\Pi(t_k) = \begin{pmatrix} 0.90 & 0.10 & 0.00 \\ 0.10 & 0.80 & 0.10 \\ 0.00 & 0.10 & 0.90 \end{pmatrix}$$
Simulations

Initially, there is no target present. The first target (fighter: SNR=13dB) appears after 5 seconds ($T = 1s$) and moves at a constant velocity of $200ms^{-1}$ towards the sensor.

After 20 seconds, a second target (missile: SNR 3dB) spawns from the first and accelerates to a velocity of $300ms^{-1}$ in 3 scans.

1000 particles have been used in a ’plain vanilla particle filter implementation’
Simulations

Matlab movies
Estimation of the mode

True mode

- o no target present
- * 1 target present
- * 2 targets present
Overview

Related work (co)authored by presenter:

Some Other Related work:

Overview

General Particle Filter literature:

As an excellent general book on Particle Filtering with a lot of theory, applications and references:

Conclusions

Specific Conclusions

Every optimal detector can be expressed in terms of PF weights.....Very important result both from a theoretical and practical point of view.

A multi target particle filter for closely spaced targets has been presented for a TBD application. The algorithm can be applied in real time.

Questions/Remarks/Discussions