Particle Filter Track Before Detect Algorithms

Theory and Applications

Y. Boers and J.N. Driessen JRS-PE-FAA THALES NEDERLAND

> Hengelo The Netherlands

> > Email:

{yvo.boers,hans.driessen}@nl.thalesgroup.com

Outline

- Introduction
- Filtering
- Detection
- Examples
- Overview
- Conclusions

TBD integrates the information over time.

Detection is based on power/energy that has been integrated over time (multiple scans).

Classical tracking : single scan based detection.

* TBD provides higher probability of detection (P_d) at the same level of probability of false alarm (P_{fa}) * TBD circumvents the data association problem.

Introduction

Twofold problem

The TBD problem is twofold:

- 1. Filtering
- 2. Detection

The System

$$s_{k+1} = f(t_k, s_k, d_k, w_k), \quad k \in \mathbb{N}$$

$$\mathsf{Prob}\{d_{k+1} = j \mid d_k = i\} = [\Pi(t_k)]_{ij}$$

$$z_k = h(t_k, s_k, d_k, v_k), \quad k \in \mathbb{N}$$

Filtering Problem: Determine $p(s_k, d_k | Z_k)$

Basic idea of the particle filter

" Describe the a posteriori pdf $p(s_k, d_k | Z_k)$ by a cloud of N particles that propagates in time such that the cloud approximately equals an N-sample drawn from $p(s_k, d_k | Z_k)$ "

NOTE:

This is more than just a (point) estimate !!!!

Kalman vs. PF representation

THALES

Using a (proper) particle filter on the system:

The following holds

$$\sum_{i=1}^{N} \frac{1}{N} \delta(s - \tilde{s}_{k}^{i}) \xrightarrow{a.s.} p(s_{k}|Z_{k})$$

i.e. almost sure convergence...

Popular (point) estimators obtained from particle cloud:

$$\hat{s}_{k}^{MV} = \int_{\mathbb{R}^{n}} s_{k} p(s_{k} \mid Z_{k}) ds_{k} \approx \sum_{i=1}^{N} \frac{1}{N} \tilde{s}_{k}^{i}$$
$$\hat{s}_{k}^{MAP} = \arg \max_{s_{k} \in \mathbb{R}^{n}} p(s_{k} \mid Z_{k}) \approx s_{k}^{i^{*}}$$
ere $i^{*} = \arg \max_{i} q_{k}^{i}$

whe ι ${}^{\mathcal{I}}\mathcal{K}$

THALES

ENST Paris 3-12-03

7 7

Detection

Deciding upon presence of target:

Hypothesis testing:

Given two hypotheses

• \mathcal{H}_0 : no signal present

$$z(j) = v(j), \ j = 0, \dots, k$$

• \mathcal{H}_1 : signal present

THALES

$$z(j) = h(s(j), v(j)), \ j = 0, \dots, k$$

where s(k) evolves according to dynamical system

Detection

Using particle filter output for detection

Every optimal detector can be expressed in terms of a Likelihood Ratio Test:

 $L(Z(k,l)) \leq \tau$

THEOREM:

THALES

$$L(Z(k,l)) = \frac{p(z(k-l+1),...,z(k) \mid \mathcal{H}_1)}{p(z(k-l+1),...,z(k) \mid \mathcal{H}_0)} \approx \frac{\prod_{j=k-l+1}^k (\sum_{i=1}^N \tilde{q}^i(j))}{N^l \prod_{j=k-l+1}^k p_v(z(j))}$$

Detection

Using particle filter output for detection

Elements of the Proof:

$$p(z(l),\ldots,z(m) \mid \mathcal{H}_0) = \prod_{j=l}^m p_v(z_j)$$

$$p(z(l),...,z(m) | \mathcal{H}_1) = \prod_{j=l}^m p(z(j) | Z(j-1))$$

where

THALES

$$p(z(j) \mid Z(j-1)) = \int_{\mathcal{S}} p(z(j), s \mid Z(j-1)) ds$$

= $\int_{\mathcal{S}} p(z(j) \mid s, Z(j-1)) p(s \mid Z(j-1)) ds$
= $E_{p(s \mid Z(j-1))} p(z(j) \mid s, Z(j-1))$
 $\approx \frac{1}{N} \sum_{i=1}^{N} p(z(j) \mid s^{i}(j)) = \frac{1}{N} \sum_{i=1}^{N} \tilde{q}^{i}(j)$

Example - Detection

Linear Gaussian scalar system:

$$s(k+1) = s(k) + w(k)$$

$$z(k) = s(k) + v(k)$$

 $w(k) \sim N(0,1), v(k) \sim N(0,1)$ and $s(0) \sim N(0,10)$

Data has been generated according to the above model.

Particle filter solution (200 particles) and the **exact (Kalman) solution** have been calculated.

Ratio exact and p.f. likelihood

THALES

Example - MTT TBD

The Fighter-Missile Example:

Multi target track before detect application for *small to very small closely spaced targets*. Early detection is crucial.

Modelling details in:

Y. Boers, J.N. Driessen, F. Verschure, W.P.M.H. Heemels and A. Juloski. A Multi Target Track Before Detect Application. *Workshop on Multi Object Tracking*, Madison, WI, June 2003.

System:

$$s_{k+1} = f(t_k, s_k, d_k) + g(t_k, s_k, d_k)w_k$$

where

THALES

$$f(t_k, s_k, d_k) = \begin{pmatrix} 1 & 0 & T & 0 \\ 0 & 1 & 0 & T \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} s_k$$

The process noise input model is given by

$$g(t_k, s_k, d_k) = \begin{pmatrix} \frac{1}{2} (\frac{1}{3} a_{x,max}) T^2 & 0\\ 0 & \frac{1}{2} (\frac{1}{3} a_{y,max}) T^2\\ \frac{1}{3} a_{x,max} T & 0\\ 0 & \frac{1}{3} a_{y,max} T \end{pmatrix}$$

Example- MTT TBD

System:

The discrete mode d_k represents one of three hypotheses (*each have a different measurement equation!!*)

- $d_k = 0$: There is no target present.
- $d_k = 1$: The prime target is present.
- $d_k = 2$: There are two targets present.

Markov process:

$$\Pi(t_k) = \left(\begin{array}{rrr} 0.90 & 0.10 & 0.00\\ 0.10 & 0.80 & 0.10\\ 0.00 & 0.10 & 0.90 \end{array}\right)$$

THALES

Example - MTT TBD

Simulations

Initially, there is no target present. The first target (fighter: SNR=13dB) appears after 5 seconds (T = 1s) and moves at a constant velocity of $200ms^{-1}$ towards the sensor.

After 20 seconds, a second target (missile: SNR 3dB) spawns from the first and accelerates to a velocity of $300ms^{-1}$ in 3 scans.

1000 particles have been used in a 'plain vanilla particle filter implementation'

Simulations

Matlab movies

Overview

Related work (co)authored by presenter:

Y. Boers and J.N. Driessen. A Particle Filter Based Detection Scheme. *IEEE Signal Processing Letters*, October, 2003.

Y. Boers, J.N. Driessen, F. Verschure, W.P.M.H. Heemels and A. Juloski. A Multi Target Track Before Detect Application. *Workshop on Multi Object Tracking*, Madison, WI, June 2003.

Y. Boers and J.N. Driessen. Hybrid State Estimation: A Target Tracking Application. *Automatica*, vol. 38, no.12, 2002.

Y. Boers and J.N. Driessen. An Interacting Multiple Model Particle Filter. To appear in *IEE Proceedings* -*Radar, Sonar and Navigation*, 2004.

Overview

Some Other Related work:

D.J. Ballantyne, H. Y. Chan and M.A. Kouritzin. A novel branching particle method for tracking. *SPIE Aerosense 2000 proceedings*, volume 4048, pp. 277-287, Orlando FL, 24-28 April 2000.

D.J. Salmond and H. Birch, A Particle Filter for Track-Before-Detect, *In Proc. of the American Control Conference*, June 25-27, 2001, Arlington, VA.

C. Kreucher et al., Multi Target Tracking Using A Particle Representation of The Joint Multi Target Density. *Submitted to IEEE Transactions AES / In Proceedings* of SPIE Small Targets Conference, 2003

Overview

General Particle Filter literature:

As an excellent general book on Particle Filtering with a lot of theory, applications and references:

A. Doucet, N.J. Gordon and N. de Freitas eds. Sequential Monte Carlo Methods in Practice, Springer Verlag, New York, 2001.

Conclusions

Specific Conclusions

Every optimal detector can be expressed in terms of PF weights.....Very important result both from a theoretical and practical point of view.

A multi target particle filter for closely spaced targets has been presented for a TBD application. The algorithm can be applied in real time.

Questions/Remarks/Discussions