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DtoN map Trace theorem : g

Let © c R” a bounded domain with Lipschitz boundary
= 0Q.Vu e H'(Q), 3yu € H'/?(T) the trace satisfying

voullgizry < crllullp - (1)
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5 The Dirichlet to Neumann map
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DtoN map Trace theorem : g

Let © c R” a bounded domain with Lipschitz boundary
= 0Q.Vu e H'(Q), 3yu € H'/?(T) the trace satisfying

voullgizry < crllullp - (1)

Bounded extension : e

vice versa, Yu € H'/2(I"), 3eu € H'(Q) a bounded
extension satisfying voeu = u and

leullm@y < cm-llullpye- (2)
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Set LOOu0x) = ~Efjor 5 lax) 50 u(0). 35 € (0D

L(.) is assumed to be uniformly elliptic,

Y7ioq8i(x)§6 > co- €2, V€ € R",Vx € Q
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soow Set LOJU() =~y A {@(0) e u(x)], & € Lo(B)
DTD k 8X X,'
o L(.) is assumed to be uniformly elliptic,

Yic1ai(x)E& > co- €2, V€ € R",Vx € Q
The conormal derivative ~4 is given by

) = Ty Ol 5 U], e T

where n( x) is the exterior unit normal vector.
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G 0 0
ssoon Set LOU(x) = 5 -[@i(x) 5 U] & € Loo(B)
DTD 1= 8X X,'
o L(.) is assumed to be uniformly elliptic,

Yic1ai(x)E& > co- €2, V€ € R",Vx € Q
The conormal derivative ~4 is given by
0
Y u(x) = By m(0)[8i(x) 5 ~u(x)], vx €T
I

where n( x) is the exterior unit normal vector.

a(u.v) - 2/8 (3(x) - u(x)

ij=1

/l\x_ - / Lu(x)v(x)dx + / Y1U(X)70v(x)dSy
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oy Necas Lemma = 3lu € H'(Q) solution of Dirichlet Pb :

AS DDM

DTD L(x)u(x) = f(x),for x € Q,yvu(x) = g(x) for x € I (4)

DtoN map



i
oy Necas Lemma = 3lu € H'(Q) solution of Dirichlet Pb :

AS DDM

DTD L(x)u(x) = f(x),for x € Q,yu(x) = g(x) for x € I (4)
DtoN map Then setting :

I(w) = a(u,ew) — /Q f(x)ew(c)dx Yw e H'/2(T).

Riez thm : 3x € H=V2(I) : (A, w),ry = I(w) Yw € H'/2(T).
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DtoN map

Necas Lemma = 3lu € H'(Q) solution of Dirichlet Pb :
L(x)u(x) = f(x),for x € Q,yu(x) = g(x) for x € I (4)
Then setting :
I(w) = a(u,ew) — /Q f(x)ew(c)dx Yw e H'/2(T).
Riez thm : 3x € H=V2(I) : (A, w),ry = I(w) Yw € H'/2(T).
Hence, the conormal derivative A € H~1/2(I") satisfies

/)\(X)W(X)dsx = a(up + g, ew) — / f(x)ew(x)dx Yw e H'/?
r Q
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DtoN map

Necas Lemma = 3lu € H'(Q) solution of Dirichlet Pb :
L(x)u(x) = f(x),for x € Q,yu(x) = g(x) for x € I (4)
Then setting :
I(w) = a(u,ew) — /Q f(x)ew(c)dx Yw e H'/2(T).
Riez thm : 3x € H=V2(I) : (A, w),ry = I(w) Yw € H'/2(T).
Hence, the conormal derivative A € H~1/2(I") satisfies

/)\(X)W(X)dsx = a(up + g, ew) — / f(x)ew(x)dx Yw e H'/?
r Q

= f fixed, we have a DtoN map : g = you — A :== yqu
nu(x) = Sg(x) - Nf(x).¥w e T (5)



. eq(4) (with Q4 and Qp, M2 = 1 N 2L\ ) leads to :
ﬁ

AS DDM An 0 Ais X4 f
DTD Ax = 0 Ax» Aoz Xo | = f>
A31 A32 Ag13) T Ag%) X3 fé1) ar féz)

DioN map
x1 = Ay (fi — Aiaxa), Xo = Ay (fo — AsaXs),
setting :
Si = A — AgiA Aig, g = ) — AgiA7 '
we obtain the interface Schur complement system
Sx3=(S1+S)X=01+g=g (6)

Note that the following identity holds : (r. Natajaran, s1AM J. Sci. Comput.,
18(4) :1187-1199,1997)
—1

) ()-8 ) (2) o
4 J.\,)‘_. Azy Ag?) Sixs | 0 / X3
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The GSAM

Conormal derivative is not the optimal interface condition in

Schwarz

The Generalized Schwarz Alternating Method (GSAM)
B. Engquist and H.-K. Zhao, Appl. Numer. Math. 27 (1998), no. 4, 341-365.

Consider Q = Q4 U Q5 with the two artificial boundaries I'1, I's
intersecting 092.

Algorithm
Lx)u™(x) = f(x), ¥x € Qq, 2" (x) = g(x), Vx € 0 \I'y,
au2n+1 (X) 3U2n(X)
/\ 2n+1 1 — /\ 2n 2
1U5 + A 7(9”1 iU + M o, , Vx erly
L(x)ud™23(x) = f(x), Vx € Qa, U3"3(x) = g(x), VX € 0 \Iz,
2n+2 2n+1
/\2u§”+2 aF )\QM = /\2U12n+1 + /\QM, Vx e lo.
ono on

where A;’s are some operators and \;’s are constants.
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If A\ =1 and A is the DtoN operator at I'1 associated to the
homogeneous PDE in 2, with homogeneous boundary

condition on 99, N 92 then GSAM converge in two steps.
prooflete! =u—u",i=1,2,, then

L(x)el(x) = 0, V¥xeQq, el(x)=0, Vx € dQ\ly,
oel(x) 06J(x)
1 1 0 2
+ = + r
A1 ey an, Aie; oy Vx € [

since A¢ is the DtoN operator at 'y in Qo

0e)
241 ME) = ——24+2-0, > el =0inQ
8n1

Hence we get the exact solution in two steps []
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B
AS DO Let Q = Q41 UQs, Q4o = Q21 NQp, Q,’,’ZQ,’\Q12
DTD el = u— u in Q; satisfies :
(M +MS))R1EE™ = (A — \1S2)RoaPo€5"
The GSAM (/\2 + )\ZSZ)RZQ?H_2 = (/\2 - )\2822):‘:1’11 P1 e.12n+1

with
@ Pi: H'(Q) — H'(Q)
@ S (S;) the DtoN map operator in Q; ( Qi) on [ (M mog(i2)+1)-
@ Ri: H'(Q:) — HVA(Ty), Ry - H' (i) — H'3(T mod(i2)+1);

® R : RR; =1,
Vg € H'2(I;), L(X)Rfg=0,R;g=gonl,Rrg=
0 on 8(2,-\F,-

Thus the convergence of GSAM is purely linear ! Aitken-Schwarz
DDM uses this property to accelerate the convergence :
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The GSAM

@ Pb : A; DtoN operators are global operators (linking all
the subdomains when > 3).



[CRoNC]
% S
BgH

AS DDM
DTD

@ Pb : A; DtoN operators are global operators (linking all

the subdomains when > 3).

The GSAM @ In practice, the algebraical approximations of this

operators are used (see Nataf, Gander).
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The GSAM

@ Pb : A; DtoN operators are global operators (linking all
the subdomains when > 3).

@ In practice, the algebraical approximations of this
operators are used (see Nataf, Gander).

@ On the other hand, the convergence property of the
Schwarz Alternating methodology is used to define the
Aitken-Schwarz methodology.
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The GSAM

@ Pb : A; DtoN operators are global operators (linking all
the subdomains when > 3).

@ In practice, the algebraical approximations of this
operators are used (see Nataf, Gander).

@ On the other hand, the convergence property of the
Schwarz Alternating methodology is used to define the
Aitken-Schwarz methodology.

@ Consequently, no direct approximation of the DtoN map

is used, but an approximation of the operator of error
linked to this DtoN map is performed.



Exemple of linear convergence

D. Calugaru & D.Tromeur-Dervout, LNCSE, 40 :529-536,2004

8U1 8
—k1AU1 =fin Q1, —k2AU2 =fin Qg, Uy Ir = U2|r7 k1 |r k2
ony an,
The GSAM
3 p() = a1 =P1ke|E] | ar—PBaki ]
e arFBikiEl ozt Bokel€]
D-N __o=""
ot B RCab 1 @ IRCarb: ;= ki

@ ORChom: oy = 3, ap = 30 -
Q1 0pt = ko \/gminﬁma)n @2, 0pt = kq \/in

@ ORCLi:a~7 optimizing the convergence

ORCL1

. loglO of maximum error

M. J. Gander, F. Magoules, and F. Nataf,

SIAM J. Sci. Comput., 24(1) :38-60, 2002

Iterations f(x, y) = 2ky ko sin x sin y, and Dirichlet B.C. u = 1(

{ — Ky (@) 6, €) — 2T (x, )] = T(x, €), in (—oo, 0) x R
a0, €) + Bk (0 @71)4(0,€) = a1 TL(0, &) + Brha ()4 (0, €), EER
{ Kl )5, ) — €T 0, O] =T0x, ), in (0,00) xE

Ui (0, ) — Boko(U5T1)4(0, €) = U T(0, £) — Boky (U]T1),(0,€), € €R

RHONEALPES
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Acceleration of Schwarz Method for Elliptic Problems

M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,
DTD Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002

Aitken-
Schwarz

e
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Acceleration of Schwarz Method for Elliptic Problems

M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,
Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002

@ additive Schwarz algorithm :
o LluM="finQ, ult! =uj.

n+171 : n+1 _ . .n
o Lug"™'] =finS, Uy, = Ufir,-



Acceleration of Schwarz Method for Elliptic Problems
[ Pl
AS DDM M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,
DTD Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002
@ additive Schwarz algorithm :
n+11 _ £ n+1 _ ;n
o Luf™]="finy, uijr = Uy,
n+11 _ £ n+1 _ . n
Ao o Lug"™'] =finS, Uy, = Ufir,-
Schwarz

@ the interface error operator T is linear, i.e

n+1 _ n

® ujr, = Ur, =&1(ugr, — Ur,),
n+1 _ n

® Uyr — = <52(u1|r2 - Ur,).

e

RHONEALPES



Acceleration of Schwarz Method for Elliptic Problems
[ Pl
AS DDM M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,
DTD Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002
@ additive Schwarz algorithm :
n+11 _ £ n+1 _ ;n
o Luf™]="finy, uijr = Uy,
n+11 _ £ n+1 _ . n
Ao o Lug"™'] =finS, Uy, = Ufir,-
Schwarz

@ the interface error operator T is linear, i.e
n+1 _ n
o ufr, — Ur, = d1(ugr, — Ur)),
n+1 _ n
° U2||_1 - - 62(U1|r2 - U||—2),
@ Consequently

2 1 1.0
° Uy, — Uy, = 51(U2|r1 u2|r1),
2 1 _ il 0
® Uy, — Uy, = 52(U1|r2 - ’-’1|r2)7

e

RHONEALPES
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Acceleration of Schwarz Method for Elliptic Problems

M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,
Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002

@ additive Schwarz algorithm :

n+11 _ £ n+-1

o Luf™]="finy, uijr = Uy,
n+1 g n+1

o Llug™'] =1inQe, uyr, = uf,.

@ the interface error operator T is linear, i.e
n+1 _ n
o ufr, — Ur, = d1(ug, — ih
n+1 _ n
® U, — = b2(Ufr, = Ur.)-
@ Consequently
2 1 _ 1 0
® Ujr, — Uy, = 01(Uyr, — Uy, ),
2 1 _ 1 0
® Uy, — Upr, = 02(Ugyr, = Ur,);

@ Computation of 645 :
L[V1/2] =0in Q1/2, Vr1/2 = 1. thus 51/2 = VF2/1 o

@ iff § # 1 Aitken-Schwarz gives the solution with exactly 3
iterations and possibly 2 in the analytical case.
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AS Method : One D - Arbitrary number of subdomains
[l
AS DDM ang .
DTD Additive Schwarz alg. with : Q = UQ;, Qi1 N Q; # 0,
fori=1..q,do

L[u,”+1] =finQ;,
1 1
u™ M (xf) = Ul (x)), ult (X)) = Ul (X)),
enddo

Aitken-
Schwarz
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AS Method : One D - Arbitrary number of subdomains
[l
AS DDM ang .
DTD Additive Schwarz alg. with : Q = UQ;, Qi1 N Q; # 0,
fori=1..q,do

L[u,”+1] =finQ;,
1 1
u™ M (xf) = Ul (x)), ult (X)) = Ul (X)),
enddo

o interfaces : &" = (u”, uf", ug", ug", .. ug" Ul )

Aitken-
Schwarz
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AS Method : One D - Arbitrary number of subdomains

Additive Schwarz alg. with : Q = UQ;, Qi1 N Q; # 0,
fori=1..q,do
Llu™"] = f in Q,,
1 1
UPJr (Xll) = U/'nf1(xil)7 uin+ (X/'r) = uirzH (Xir)v
enddo
o interfaces : &" = (u”, uf", ug", ug", .. ug" Ul )

@ matrix corresponding to iterations for interfaces :
0 50 0
s’ 0 o &f

r,l r,r
Sy 0 0 Sy
P
r,l r,r
6q71 0 0 g1
0 s 0



a
AS Method : One D - Arbitrary number of subdomains

o
AS DDM 0 .
DTD Additive Schwarz alg. with : Q = UQ;, Qi1 N Q; # 0,
fori=1..q,do
L[u,"“] =finQ;,
n+1 N | n+1 _
umi(xg) = Ul (), Ut (X)) = Ul (xD),
_ enddo
Aitken-
Sch g -
chware @ interfaces : U" = (ué’”, TAS UQ”, uy", ., ué,”l ugﬂ)

@ matrix corresponding to iterations for interfaces :
0 50 0
s’ 0 o &f

r,l r,r
Sy 0 0 Sy

@ if||P|| < 1,

> = (Id - P)~" (@™ — PT").
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Aitken-Schwarz algorithm : One D - Arbitrary number of subdomains
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a
Aitken-Schwarz algorithm : One D - Arbitrary number of subdomains

&
AS DDM
DTD
ghl ghr
e @ step1 : compute in parallel each subblocks P; = ( 5’, / 5’,, )
Itken- il )
I

Schwarz

from each subproblems.



a
Aitken-Schwarz algorithm : One D - Arbitrary number of subdomains

&
AS DDM
DTD
ghl ghr
e @ step1 : compute in parallel each subblocks P; = ( 5’, / 5’,, )
Itken- il "
I

Schwarz

from each subproblems.

@ step2 : apply one additive Schwarz iterate.
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Schwarz

@ step1 : compute in parallel each subblocks P; = ( :;Siv/ o)
i
from each subproblems.
@ step2 : apply one additive Schwarz iterate.

@ step3 : apply generalized Aitken acceleration on the
interfaces.
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Aitken-
Schwarz

Aitken-Schwarz algorithm : One D - Arbitrary number of subdomains

@ step1 : compute in parallel each subblocks P; = ( :;Siv/ o)
i
from each subproblems.
@ step2 : apply one additive Schwarz iterate.

@ step3 : apply generalized Aitken acceleration on the
interfaces.

@ step4 : compute in parallel the solution for each subdomain.
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Aitken-Schwarz algorithm : One D - Arbitrary number of subdomains
[P

AS DDM
DTD

Aitken-
Schwarz

@ step1 : compute in parallel each subblocks P; = ( gﬁy, o)
i
from each subproblems.
@ step2 : apply one additive Schwarz iterate.

@ step3 : apply generalized Aitken acceleration on the
interfaces.

@ step4 : compute in parallel the solution for each subdomain.

@ Again the overlap can be minimum !



[CRoNC]
% S
BgH

AS DDM
DTD

Aitken-
Schwarz

Num. analysis for the Neumann-Dirichlet algo. (3 subdomains)

Non overlapping subdomains : [, 1] U [[1,T2] U [[2, 5],
F1 < rg.
Then the Schwarz algorithm writes :

0 +1/2) _

ALY = fon [a, 4] Au(j+1/2) f on [F1, Fz]

(j)( ) 0 , 6U (F1) 8U1 (F1) (8)
() = W 72() ey = 0

Aug) = fon [Fg,ﬁ]
oud) ("2) _ oud=12(rp)

()8n on
Usj (ﬂ) =0

The error on subdomain / writes e;j(x) = ¢;x + d;.



D]
Num. analysis for the Neumann-Dirichlet algo. (3 subdomains)
[l
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DTD

For subdomains 1 and 3 we have

a 1 0 0\ /c -0 0
i —1/2 o
Sear 1 ool|[ad| [e572)] [ egVi? o
008 1]|la|" 0 = 0 |
0 010/ \& oef~'/?(rz) dexgy "2
on

This equation gives

-1/2) (j=1/2)
() 9291 e, g 1
ey’ (x) = o T X+ o T (10)
eg)( x) = de gl 1/2)y _ Bdes g(l 1/2) (11)
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Num. analysis for the Neumann-Dirichlet algo. (3 subdomains)
Error on the second subdomain satisfies
ae(ry) )
(e (@)= (i )= (os) 02
M 1 ab eél)(rz) €30
el™1/2)(x) = de1g(/)x — de1g'15 + esgy (13)
Replacing e3¢ and desg\”, eJ™/?)(x) writes :
; r
f A = e g$’ V2) 4 (T~ B)deagd /2 (14)

o —
Consequently, the foIIowmg identity holds :

Mo — T4
6291 v) _ a — [ f2=5 e g1/ W (15)
degg 1 0 d6292 R

a—1Ty

Consequently the matrix do not depends of the solution,
neither of the iteration, but only of the operator and the
shape of the domain.
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“oo a=0,4=1,T1=044,=07.

Convergence 3 domaines 10

Num. analysis for the Neumann-Dirichlet algo. (3 subdomains)

T T T
——Acceleration Aitken-Schwarz
——Schwarz normal
o fx 4
\/v
7l
Aitken- \l \*h\/“‘
Schwarz = Y
\/ ’\/k
W
Iy
| /\f‘x
4 F M
LAY
s
1™
3 1 r&“w
@ 9 |
v 1V
‘!‘ T
| ¥
-+ |\
\f
! |/Mps
R
\
|
-0 x
s
1 1 1 1 1
0 20 «0 60 0 100 pri
iterations

’/,.1.\3,‘ Cvg for 1D Poisson pb with 3 non-overlapping subdomains
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P(% —

N

Aitken acceleration of convergence in n-D

L i=0,1,...
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Aitken acceleration of convergence in n-D

@ X1 —E=P(X%—¢€),i=01,...

B
AS DDM
DTD
@ ( Xnip1— Xn
Aitken- v v
Schwarz P( XN — XN—1

Fo— %y )=
X1 — Xo )



m . . .
Aitken acceleration of convergence in n-D
[P
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DTD

@ X1 —E=P(X%—¢€),i=01,...

. O(YN+1—YN )_('2—)_('1):
anen P( Xy —Xn—1 ... X1—Xo )
@ Thusif ( Xy —Xv_1 ... Xi —Xo )is non singular then P =
()_(,N+1*)_(,N )_('27)_(’1 )( )_(’Nf)?N,1 )_('17)_(’0 )_1

If ||P|| < 1 then £ = (ld — P)~'(Xni1 — PXy)



m . . .
Aitken acceleration of convergence in n-D

Qg8
AS DDM
DTD
0)_(’,‘+17§=P()_(’,‘7§),I':0,1,...
O(YN+1—YN )?2—)?1)2
Aftken 2 AL
Sohwarz P( Xn—Xn—1 ... X1—Xo )
@ Thusif ( Xy —Xv_1 ... Xi —Xo )is non singular then P =
()_(’N+1*)_(’N )_('27)_(’1 )( )_(’Nf)?N,1 )_('17)_(’0 )_1

If ||P|| < 1then & = (Id — P)~'(Rn.1 — PXn)

@ The construction of P claims at least N + 1 iterates if the
error components are linked together. =

e write the solution in a functional basis were the
components error are decoupled
e Construct an approximation of P



a
- Acceleration of Schwarz for Elliptic Problems : 3D
7] ]

AS DDM second order finite differences in y and z directions
oTP the point interface between two subdomains in 1D is replaced by
a 2D interface in 3D
Laplace Operator with Homogeneous Dirichlet BC in
y=0,z=0, y =T,z =TI, writes

Aitken-

Schwarz (1

N 4 jh 4 khy .o\ . P
(U, xx— (75 sin (j y) sin?(=2)) Ux)sin(i.k.hz)sin(i.j.hy).
= hz h2 2

No coupling between the modes thus the operator P for the speed
up is a block diagonal matrix and multi-D is analogous to the one
D

@ for relaxation method such Schwarz each wave has is own
linear rate of convergence and high frequencies are damped
first.

@ for high modes the matrix P can be approximate with
L‘ neglecting far Macro-Domains interactions. (Less data to be
send )
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B8
. For a separable operator in 2D or 3D :
AS DDM

oo @ step1 : build P analytically or numerically from data given by

two Schwarz iterates

@ step2 : apply one Jacobi Schwarz iterate to the differential

i problem with block solver of choice i.e multigrids, FFT etc...
itken-
Schwarz

SOLVE SOLVE

@ step3 : exchange boundary information :




a
& ) . o
@ step4 : compute the Fourier expansion uﬁri, n=0,1 of the
ASDDT%M traces on the artificial interface I';,/ = 1..nd for the initial
boundary condition U|OF,- and the Schwarz iterate solution uﬂr’,.

Aitken-
Schwarz

wz A
nZeEH

@ stepb : apply generalized Aitken acceleration based on
0~ = (ld—P)" (&' — Pi°)

H 00
in order to get U

V6 Ol
Cmhoap
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Configuration of the following results :

@ 3D Domain decomposition Py x P, x P, (1D Aitken-Schwarz
in x (Macrodomains M, 2D PCD3D iny and z

subdomains)

@ regular mesh in y and z , different sizes in x following the
parallel computer power.

W

Py

X

Two-level 3D domain decomposition
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Large scale computing framework

§5
R " i Scientific.Computing
T Snp:r:ompjléﬁf.:mrl, % £ Center of vty
A (CRAY TIE 512) Helsinki , Finland(CRAY TIES$12)
; RS KFA, Julich, Gemany™ >
H T, (CRAYDES12) F,' - p
" 1 e ., } = 1 1
| . i 3 g 3
b \ CDCSP, Lyon, Frafice” .4 #
K - 3
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@ 3 Crays with 1280 procs (2 Germany, 1 USA) ,

@ 732 10% unknowns Pb solved in less than 60s with
|le|]ec < 1078

@ network 3-5 Mb/s (communication between 17s and
23s)

@ Barberou, Garbey, Hess, Resch, Rossi, Toivanen and Tromeur-Dervout, J. of Parallel and Distributed
Computing, special issue on Grid computing, 63(5) :564-577, 2003



extensibdity in metacomputing versus macrosubdomains towards an ideal linear sohver
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Scalability of AS (with PDC3D as inner solver) in a
) metacomputing framework in comparison with an ideal linear
Toermsrs solver.
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For GSAM with two subdomains, errors e/, = Uﬁ = Uj, satisfy
h h h

et el
( ol =Pl & (16)
F% s
[ a discretisation of the interfaces
I, to be the coarsest discretisation in the sense that it

produces V the smallest set of orthonormal vectors &, that
belong to I', with respect to a discrete hermitian form [[., .]].

Let Ur, be the decomposition of Ur with respect to the
orthogonal basis V.

Urh = ZQ:O ok Pk

The «ai represents the "Fourier” coefficients of the solution

with respect to the basis V.
The orthogonality = ax = [[Ur, ®«]]

Then
B! i
b =P h 17
<ﬁ%1 (] g, (17)
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Explicit building of Py

uses how basis ¢, are modified by the Schwarz iterate.
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Steps to build the Py ;; matrix

a starts from the the basis function ¢, and get its value on
interface in the physical space
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Explicit building of Py

uses how basis ¢, are modified by the Schwarz iterate.
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(b)

Steps to build the Py ;; matrix

a starts from the the basis function ¢, and get its value on
interface in the physical space

b performs two schwarz iterates with zeros local right hand
sides and homogeneous boundary condition on

00 = 8(91 n Qg)
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Explicit building of Py

o
AS DDM uses how basis ¢, are modified by the Schwarz iterate.
DTD
. 2 g
Aitken-
Slzhwarz /
(a) b) ©

Steps to build the Py ;; matrix

a starts from the the basis function ¢, and get its value on
interface in the physical space

b performs two schwarz iterates with zeros local right hand
sides and homogeneous boundary condition on
00 = 3(91 n Qg)

¢ decomposes the trace solution on the interface in the basis
~---b'\~ V. We then obtains the column k of the matrix Py j;
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@ Py, can be compute in parallel, (# local subdomain solve =
_ # interface points, and the number of columns computed
Sowarz during the Schwarz iterates can be set according to the
computer architecture
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@ Py, can be compute in parallel, (# local subdomain solve =
Ao # interface points, and the number of columns computed
Schwarz during the Schwarz iterates can be set according to the
computer architecture

@ Its adaptive computation is required to save computing.
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@ Py, can be compute in parallel, (# local subdomain solve =
_ # interface points, and the number of columns computed
Sowarz during the Schwarz iterates can be set according to the
computer architecture

@ Its adaptive computation is required to save computing.

@ The Fourier mode convergence gives a tool to select the
Fourier modes that slow the convergence.



LFORS

AS DDM
DTD

Adaptive
Aitken-
Schwarz

e Non separable operator , non regular mesh, adaptive
Aitken-Schwarz
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ASDDTDDM Nonuniform Cartesian grids and/or non separable
differential operator = P is no longer diagonal

@ Select Fourier modes higher than a fixed tolerance and
through their decreasing factor between 2 Schwarz
iterations. Index = array containing the list of selected
modes.
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s Adaptive construction of matrix Py,

ASDOY Nonuniform Cartesian grids and/or non separable

differential operator = P is no longer diagonal
@ Select Fourier modes higher than a fixed tolerance and
through their decreasing factor between 2 Schwarz
iterations. Index = array containing the list of selected

modes.
Adaptive ) q
Aitken- @ Take the subset v of Fourier modes from 1 to
Schwarz
max(Index).
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s Adaptive construction of matrix Py,

ASDOY Nonuniform Cartesian grids and/or non separable

differential operator = P is no longer diagonal
@ Select Fourier modes higher than a fixed tolerance and
through their decreasing factor between 2 Schwarz
iterations. Index = array containing the list of selected

modes.
Adaptive ) q
Aitken- @ Take the subset v of Fourier modes from 1 to
Schwarz
max(Index).

@ Approximate Py ;; with P[*[.,.]] using only v.
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s Adaptive construction of matrix Py

A0 Nonuniform Cartesian grids and/or non separable

differential operator = P is no longer diagonal

@ Select Fourier modes higher than a fixed tolerance and
through their decreasing factor between 2 Schwarz
iterations. Index = array containing the list of selected

modes.
Adaptive ) q
Aitken- @ Take the subset v of Fourier modes from 1 to
Schwarz

max(Index).

@ Approximate Py ;; with P[*[. 1 using only v.
@ Accelerate ¥ through the equation :

‘700 = (Id - Pﬁ_7.]])_1(‘7n+1 - Pﬁ7]] Vn)

Other modes are not accelerated.



2
s Adaptive construction of matrix Py

A0 Nonuniform Cartesian grids and/or non separable
differential operator = P is no longer diagonal

@ Select Fourier modes higher than a fixed tolerance and
through their decreasing factor between 2 Schwarz
iterations. Index = array containing the list of selected
modes.

Adaptive

Alen @ Take the subset vV of Fourier modes from 1 to
o max(Index).

@ Approximate Py ;; with P[*[.,.]] using only v.
@ Accelerate ¥ through the equation :

‘700 = (Id - Pﬁ_7.]])_1(‘7n+1 - Pﬁ7]] Vn)

Other modes are not accelerated.
° P[*[_ 1 columns can be built in parallel and the number of

columns computed during the Schwarz iterates can be
el set according to the computer architecture
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AS-DDM on a strongly non separable operator and irregular matching grids
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V.(a(x,y)V)u(x,y) = f(x,y), onQ=]0,1[?
U(X,y)IO, (X,y)GaQ
a(x,y) =a + (1 — a)(1 + tanh((x — (3hxy +1/2 — h))/n))/2,
and @y = 10", u = 1072,
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Numerical results
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FIG.: adaptive acceleration using sub-blocks of Py ;;, with 100

points on the interface, overlap= 1, ¢ = h,/8 and Fourier modes

tolerance = ||0¥||, /10’ for i = 1.5 and 3 for 1st iteration and i = 4
-h\- for successive iterations.
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FIG.: acceleration using sub-blocks of Py ;; with 90 points on the
interface, overlap= 5 and ¢ = h, /2. Black line refers to results for
a uniform grid and overlap=5 in Baranger & al., e itken-Like Acceleration
of the Schwarz Method on Non-Uniform Cartesian Grids, Technical Report Number UH-CS-05-18, 2005.
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Convergence of AS in random porous media

K follows a log-normal random process
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Work on Paradis :

o
AS DDM
DTD
Simon Pomarede work (end engineering training period 6
months) :
Adaptive @ A "block building” of the matrix P j; in the same time
anen than the Schwarz iterate.

@ Implementation of the block Aitken-Schwarz in Paradis

@ define different paterns of communication with respect
to the mode values

@ Deployment on the grid 5000 with mipch madeleine
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Aitken-Schwarz for non conforming DDM
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= needs projection of interface solutions
= use NUDFT for spectral interpolation :

k=0

-bA—. Uz(M2)(y2) = Z U k(T2) 1,k (y2)
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Aitken-Schwarz convergence for the Poisson problem on
non uniform non conforming meshes for 100 (right) and 400
(left) interface points. The interface error is computed with
. respect to the exact discretised solution. = Limitation not in
~--l%~ the Aitken acceleration, rather on the solution representation
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Aitken-Schwarz for non conforming DDM
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Aitken-Schwarz convergence for the Poisson problem on
non uniform non conforming meshes for 100 interface points
when the interface error is computed with respect to the
i\\- exact discretised solution (black line) vs. the projected exact
e discretised solution (red line).
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Aitken-Schwarz for Fractured network ?

@ how to define a decomposition of the interface ?

e POD of the trace ?
o local representation ?
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