MICAS Modelling and Intensive Computation for Aquifer Simulations

ANR-CIS Project Kick-off meeting INRIA Rennes January 30th – February 1st

Surface water and groundwater

©Yves Chaux

Groundwater numerical models

- Understand physical phenomena
- Manage water resources
- Prevent risks of pollution
- Help in remediation

MICAS project: summary

Understand physical phenomena Heterogeneity and lack of data

- 7 great challenges in hydrogeology
- A scientific software platform

MICAS project: history

- Ph-D of J-R. de Dreuzy, 1999
- Ph-D of H. Mustapha, 2005
- Post-doc of A. Beaudoin, september 2004 to august 2005
- Secondment of D. Tromeur-Dervout, september 2005 to august 2006
- Junior engineer E. Bresciani, october 2006 to january 2008
- Grants from ACI GRID: Hydrogrid, 2002-2005 ; Grid'5000, 2004-2007
- Grant BQR from U. of Rennes 1: Geolog, 2006
- Grant from ANR CIS: Micas, 2008-2011
- Co-authored publications 2003-2007 :
- 3 papers in journals, 7 proceedings of conferences,
- 3 invited talks, 3 mini-symposia organized

MICAS project: tasks

- 1. Macro-dispersion in 3D heterogeneous porous media
- 2. Steady flow in 3D Discrete Fracture Networks (DFN)
- 3. Well test interpretation in 2D and 3D heterogeneous porous media and in DFN
- 4. Flow in 2D and 3D fractured porous media
- 5. Large scale multilevel sparse linear solvers
- 6. Stochastic models and algorithms for dealing with lack of observation
- 7. Deployment of multi-parametric simulations on a computational grid
- 8. Development of a scientific software platform
- 9. Flow solvers for 3D fractured porous media
- 10. Parametrization and inverse problems

Micas project: management (1/2)

T1. Macro-dispersion in 3D heterogeneous porous media

Post-doc, 18 months, at Geoenv

T2. Steady flow in 3D Discrete Fracture Networks (DFN)

Post-doc, 18 months, MICAS, at Transf, Géraldine Pichot

T3. Well test interpretation in 2D and 3D heterogeneous porous media and in DFN Post-doc, 18 months, INRIA, at Sage

T4. Flow in 2D and 3D fractured porous media

Thesis, 36 months, at Geosciences, Delphine Roubinet

T5. Large scale multilevel sparse linear solvers

Thesis, 36 months, at CDCSP

T6. Stochastic models and algorithms

Thesis, 36 months, at Sage, with ENS-Cachan/Ker Lann

MICAS project : management (2/2)

T7. Deployment of multi-parametric simulations on a computational grid Engineer, 5 months, INRIA, at Sage, 09/2007-01/2008, Etienne Bresciani
T8. Development of a scientific software platform
Engineer, 12 months, INRIA, at Sage, Etienne Bresciani
Engineer, 36 months, at Sage

T9. Flow solvers for 3D fractured porous media
Thesis, 36 months, MESR, at Sage, Baptiste Poirriez
T10. Parametrization and inverse problems
Thesis, 36 months, CNRS, at Transf, Romain Le Goc

MICAS project : planning

Task	то	TO+6	TO+12	TO+18	TO+24	TO+30	TO+36	TO+42	
T1									
T2									
Т3									
T4									
Т5									
Т6									
Т7									
Т8									
Т9								P.	
T10								AC)	Ø.

3D Discrete Fracture Network

porous medium

Each curve represents 100 simulations on domains with 67.1 millions of unknowns high performance computing is required

Challenge: switch from 2D to 3D

T2: Flow in 3D Discrete Fracture Networks

For j=1,...,N_s

AMAS CONNECT

Compute V(ω_j,x) using A mixed finite element method

End For

T3: Well test interpretation

Generalized flux equation

$$S\frac{\partial h}{\partial t} = \frac{T}{r^{D-1}}\frac{\partial}{\partial r}\left(r^{D-1-(d_w-2)}\frac{\partial h}{\partial r}\right)$$

Challenge: relation between drawdown and physical model

Challenge: large scale transient simulations

T4: Porous Fractured media

Challenge: coupling porous and fractured models

T5: multilevel methods

Clusters at Irisa Grid'5000 project

Funded by ACI GRID and Brittany council

©INRIA/Photo Jim Wallace 16,8 millions of unknowns in 100 seconds with 16 processors

Challenge: 16 billions of unknowns

Numerical model

T6: Uncertainty Quantification methods

Challenge: non intrusive methods for random data and random domains

T7: Multiparametric simulations on grids

Efficient tools for parametric studies

- Automatic generation of parametric studies
 - Parameters files
 - Running batch
- Automatic crossing of several executions
 - Results files

Challenge: using several clusters in a grid

T8: scientific platform Hydrolab

T8: scientific platform Hydrolab

- Object-oriented and modular with C++
- Parallel algorithms with MPI
- Efficient numerical libraries

Objective: management of the software Objective: web portal Hydroweb and database Hydrodata

Excepted results

- Publications in top journals and proceedings
- Breakthroughs in hydrogeology
- Achievements in high performance computing
- Original numerical methods
- Generic software platform

