# A global reactive transport model applied to the MoMaS benchmark

# Jocelyne Erhel SAGE team, Inria, RENNES

co-authors Souhila Sabit (SAGE team, Inria, Rennes, France)

### Pau, June 2015



(ロ) (同) (E) (E) (E)



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □









- 2 MoMaS benchmark
- Global DAE approach





- 2 MoMaS benchmark
- Global DAE approach





### Water and energy resources



1062 tdc forage

(ロ) (同) (E) (E) (E)

- Manage water resources
- Prevent pollution
- Store waste, store energy, capture CO<sub>2</sub>
- Use geothermal energy
- ...

### **Reactive transport**

# Flow model

- Single phase saturated flow
- Constant density and porosity. Heterogeneous conductivity
- Darcy's law and mass conservation law

### **Reactive transport**

# Flow model

- Single phase saturated flow
- Constant density and porosity. Heterogeneous conductivity
- Darcy's law and mass conservation law

# Transport model

- Advection diffusion reaction
- Molecular diffusion and hydrodynamic dispersion
- Linear equations

### **Reactive transport**

### Flow model

- Single phase saturated flow
- Constant density and porosity. Heterogeneous conductivity
- Darcy's law and mass conservation law

### Transport model

- Advection diffusion reaction
- Molecular diffusion and hydrodynamic dispersion
- Linear equations

### Reactive transport model

- Chemical equilibrium: components and secondary species
- Mass action laws and mass conservation law
- Transport of total analytical components

Flow model Transport model Geochemistry model Reactive transport mod

# MoMaS benchmark: geometry and porous media



2,1

### Physical parameters

|                                                  | Medium A  | Medium B  |
|--------------------------------------------------|-----------|-----------|
| Porosity $\varepsilon$                           | 0.25      | 0.5       |
| Conductivity K (L.T <sup><math>-1</math></sup> ) | $10^{-2}$ | $10^{-5}$ |

Flow model Transport model Geochemistry model

#### MoMaS benchmark: flow model

$$\left\{ \begin{array}{l} q = -\mathbf{K}\nabla h, \\ \nabla q = 0. \end{array} \right.$$





Flow model Transport model Geochemistry model Reactive transport model

# MoMaS benchmark: transport model

$$\varepsilon \frac{\partial c}{\partial t} = \nabla . (D \nabla c) - \nabla . (q c)$$
$$D = \varepsilon d_m I + \alpha_T ||q|| I + (\alpha_L - \alpha_T) \frac{q q^T}{||q||}$$

### Physical parameters

|                                        | Medium A     | Medium B          |
|----------------------------------------|--------------|-------------------|
| Molecular diffusion $d_m (L^2 T^{-1})$ | 0            | 0                 |
| Longitudinal Dispersion $\alpha_L(L)$  | $10^{-2}$    | $6 	imes 10^{-2}$ |
| Transverse Dispersion $\alpha_T(L)$    | $10^{-3}$    | $6	imes 10^{-3}$  |
| Initial conditions                     | <i>c</i> = 0 | <i>c</i> = 0      |

### Boundary conditions

| Inflow                                       | Outflow | Other         |
|----------------------------------------------|---------|---------------|
| Injection $0 \le t \le 5000 T$ : $c = 0.3$   | No flux | No total flux |
| Leaching $5000 T \le t \le 6000 T$ : $c = 0$ | No flux | No total flux |

≠) Q (↓ 7 / 24

Flow model Transport model Geochemistry model Reactive transport model

### MoMaS benchmark: simulation of an inert solute



Computations done using MT3D with a mesh of  $80\times168$  cells

Flow model Transport model Geochemistry model Reactive transport model

### MoMaS benchmark: chemistry model

#### Chemical equilibrium

- Four primary aqueous components c<sub>j</sub> and one primary fixed component s
- Five secondary aqueous species  $\alpha_i$  and two secondary fixed species  $\beta_j$

#### Stoichiometric coefficients and equilibrium constants

| K                |
|------------------|
| 10^{-12}         |
| 1                |
| 1                |
| 0.1              |
| 10+6             |
| 10 <sup>+6</sup> |
| 10^-1            |
|                  |

Flow model Transport model Geochemistry model Reactive transport model

# **Chemical laws**

### Algebraic view of stoichiometric coefficients

|          | с | 5 | K              |
|----------|---|---|----------------|
| $\alpha$ | S | 0 | K <sub>c</sub> |
| $\beta$  | A | В | Ks             |

4 ロ ト 4 日 ト 4 日 ト 4 日 ト 10 / 24

Flow model Transport model Geochemistry model Reactive transport model

# **Chemical laws**

### Algebraic view of stoichiometric coefficients

|          | с | 5 | K              |
|----------|---|---|----------------|
| $\alpha$ | S | 0 | K <sub>c</sub> |
| $\beta$  | A | В | Ks             |

#### Mass action laws

$$\begin{cases} \alpha_{i}(c) = K_{ci} \prod_{j=1}^{N_{c}} c_{j}^{S_{ij}}, & i = 1, \dots N_{\alpha}, \\ \beta_{i}(c,s) = K_{si} \prod_{j=1}^{N_{c}} c_{j}^{A_{ij}} \prod_{j=1}^{N_{s}} s_{j}^{B_{ij}}, & i = 1, \dots N_{\beta}, \\ c_{j} \ge 0, & j = 1, \dots N_{c}, \\ s_{j} \ge 0, & j = 1, \dots N_{s}. \end{cases}$$

4 ロ ト 4 部 ト 4 差 ト 差 う 4 で 10 / 24

Flow model Transport model Geochemistry model Reactive transport model

# **Chemical laws**

### Algebraic view of stoichiometric coefficients

|          | с | s | Κ              |
|----------|---|---|----------------|
| $\alpha$ | S | 0 | K <sub>c</sub> |
| $\beta$  | A | В | Ks             |

#### Mass action laws

$$\begin{cases} \alpha_i(c) = K_{ci} \prod_{j=1}^{N_c} c_j^{S_{ij}}, & i = 1, \dots N_{\alpha}, \\ \beta_i(c, s) = K_{si} \prod_{j=1}^{N_c} c_j^{A_{ij}} \prod_{j=1}^{N_s} s_j^{B_{ij}}, & i = 1, \dots N_{\beta}, \\ c_j \ge 0, & j = 1, \dots N_c, \\ s_j \ge 0, & j = 1, \dots N_s. \end{cases}$$

#### Mass conservation laws

$$\begin{cases} c + S^{\mathsf{T}} \alpha(c) + A^{\mathsf{T}} \beta(c, s) = \mathsf{T}, \\ s + B^{\mathsf{T}} \beta(c, s) = \mathsf{W}, \end{cases}$$

Flow model Transport model Geochemistry model Reactive transport model

### Remarks about MoMaS geochemistry

#### Stoichiometric coefficients and equilibrium constants



#### Remarks

- $c_1 = T_1$  thus  $c_1$  is an inert component
- $\alpha_1 = \frac{\kappa_{c1}}{c_2}$  thus we assume that  $c_2 > 0$

• If 
$$T_3 = 0$$
 then  $c_3 = \alpha_2 = \alpha_4 = \alpha_5 = \beta_1 = 0$ 

• If 
$$T_4 = 0$$
 then  $c_4 = \alpha_3 = \alpha_4 = \alpha_5 = \beta_2 = 0$ 

• If 
$$W = 0$$
 then  $s = \beta_1 = \beta_2 = 0$ 

うくで 11/24

Flow model Transport model Geochemistry model Reactive transport model

イロト イロト イヨト イヨト 二日

12/24

### **Total analytical concentrations**

Transport equation for each total analytical concentration

$$\varepsilon \frac{\partial T_j}{\partial t} = \nabla . (D \nabla C_j(c)) - \nabla . (q C_j(c)), j = 1, \dots N_c$$

with the mobile part  $C(c) = c + S^T \alpha(c)$ 

Flow model Transport model Geochemistry model Reactive transport model

### **Total analytical concentrations**

Transport equation for each total analytical concentration

$$\varepsilon \frac{\partial T_j}{\partial t} = \nabla . (D \nabla C_j(c)) - \nabla . (q C_j(c)), j = 1, \dots N_c$$

with the mobile part  $C(c) = c + S^T \alpha(c)$ 

#### Initial conditions

|          | $T_1$ | $T_2$ | <i>T</i> <sub>3</sub> | $T_4$ | W  |
|----------|-------|-------|-----------------------|-------|----|
| Medium A | 0     | -2    | 0                     | 2     | 1  |
| Medium B | 0     | -2    | 0                     | 2     | 10 |

Flow model Transport model Geochemistry model Reactive transport model

### **Total analytical concentrations**

Transport equation for each total analytical concentration

$$\varepsilon \frac{\partial T_j}{\partial t} = \nabla . (D \nabla C_j(c)) - \nabla . (q C_j(c)), j = 1, \dots N_c$$

with the mobile part  $C(c) = c + S^T \alpha(c)$ 

#### Initial conditions

|          | $T_1$ | $T_2$ | <i>T</i> <sub>3</sub> | $T_4$ | W  |
|----------|-------|-------|-----------------------|-------|----|
| Medium A | 0     | -2    | 0                     | 2     | 1  |
| Medium B | 0     | -2    | 0                     | 2     | 10 |

#### Inflow boundary conditions

|                               | $T_1$ | $T_2$ | <i>T</i> <sub>3</sub> | $T_4$ | W |
|-------------------------------|-------|-------|-----------------------|-------|---|
| Injection $t \in [0, 5000]$   | 0.3   | 0.3   | 0.3                   | 0     | 0 |
| Leaching $t \in [5000, 6000]$ | 0     | -2    | 0                     | 2     | 0 |

Flow model Transport model Geochemistry model Reactive transport model

#### **Results of simulations**



Computations done using GRT3D with a mesh of  $80\times168$  cells

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

### Numerical reactive transport model

#### Space discretization

with, for example, a finite difference method using  $N_m$  points

$$\left\{\begin{array}{l}T = (T_1, \dots, T_k, \dots, T_{N_m}), \\T^T = (T_1^T, \dots, T_j^T, \dots, T_{N_c}^T)\end{array}\right.$$

Semi-discrete reactive transport model

$$\begin{split} \omega \frac{dT_j^l}{dt} + LC_j^T(c) &= Q_j^T, \quad j = 1, \dots, N_c, \\ Tc_j(c, s) - T_k &= 0, \quad k = 1, \dots, N_m, \\ Ts_j(c, s) - W_k &= 0, \quad k = 1, \dots, N_m, \\ \text{initial condition for } T, \text{positivity constraints } c \geq 0, s \geq 0 \end{split}$$

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

### Numerical reactive transport model

#### Space discretization

with, for example, a finite difference method using  $N_m$  points

$$\left\{\begin{array}{l}T = (T_1, \dots, T_k, \dots, T_{N_m}),\\T^T = (T_1^T, \dots, T_j^T, \dots, T_{N_c}^T)\end{array}\right.$$

#### Semi-discrete reactive transport model

#### DAE formulation

$$\begin{cases} \omega \frac{d \operatorname{vec} T}{dt} + (L \otimes I) \operatorname{vec} C(c) - \operatorname{vec} Q = 0, \\ \operatorname{vec} \begin{pmatrix} Tc(c, s) \\ Ts(c, s) \end{pmatrix} - \operatorname{vec} \begin{pmatrix} T \\ W \end{pmatrix} = 0 \end{cases}$$

) Q (\* 14/24

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

イロト イロト イヨト イヨト 二日

15/24

# DAE Global approach with substitution

Time discretization: BDF scheme

$$\frac{d\mathbf{vec}\,T}{dt} \simeq \frac{a}{\Delta t}\mathbf{vec}\,T + \frac{1}{\Delta t}\mathbf{vec}\,Z,$$

$$\begin{cases} \frac{a\omega}{\Delta t}\mathbf{vec}\,T + (L\otimes I)\mathbf{vec}\,C(c) - \dots = 0, \\ -(I\otimes N)\mathbf{vec}\,T + \mathbf{vec}\,\Phi(c,s) - \dots = 0 \end{cases}$$

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

### DAE Global approach with substitution

Time discretization: BDF scheme

$$\frac{d \operatorname{vec} T}{dt} \simeq \frac{a}{\Delta t} \operatorname{vec} T + \frac{1}{\Delta t} \operatorname{vec} Z,$$

$$\begin{cases} \frac{a\omega}{\Delta t} \operatorname{vec} T + (L \otimes I) \operatorname{vec} C(c) - \dots = 0, \\ -(I \otimes N) \operatorname{vec} T + \operatorname{vec} \Phi(c, s) - \dots = 0 \end{cases}$$

### Substitution

$$R(c,s) = rac{\Delta t}{a\omega}(L\otimes N)\operatorname{vec} C(c) + \operatorname{vec} \Phi(c,s) - ...$$

The Jacobian of R is

$$J_R(c) = rac{\Delta t}{a\omega}(L\otimes N)\operatorname{diag}\left(rac{dC}{dc}(c_j)
ight) + \operatorname{diag}(J_{\Phi}(c_j,s_j)).$$

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

### DAE Global approach with substitution

Time discretization: BDF scheme

$$\frac{d\mathbf{vec}\,T}{dt} \simeq \frac{a}{\Delta t}\mathbf{vec}\,T + \frac{1}{\Delta t}\mathbf{vec}\,Z,$$

$$\begin{cases} \frac{a\omega}{\Delta t}\mathbf{vec}\,T + (L\otimes I)\mathbf{vec}\,C(c) - \dots = 0, \\ -(I\otimes N)\mathbf{vec}\,T + \mathbf{vec}\,\Phi(c,s) - \dots = 0 \end{cases}$$

### Substitution

$$R(c,s) = rac{\Delta t}{a\omega}(L\otimes N) \operatorname{vec} C(c) + \operatorname{vec} \Phi(c,s) - ...$$

The Jacobian of R is

$$J_{R}(c) = rac{\Delta t}{a\omega}(L\otimes N)\operatorname{diag}\left(rac{dC}{dc}(c_{j})
ight) + \operatorname{diag}(J_{\Phi}(c_{j},s_{j})).$$

Nonlinear system

$$R(c,s)=0$$

solved with Newton method

うく(~ 15/24

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

### **Choice of variables**

#### Difficulties with variables (c, s)

- The derivatives  $\frac{d\alpha}{dc}$ , etc, are not easy to compute
- The positivity constraints must be satisfied at each time step

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

# **Choice of variables**

### Difficulties with variables (c, s)

- The derivatives  $\frac{d\alpha}{dc}$ , etc, are not easy to compute
- The positivity constraints must be satisfied at each time step

#### Change of variables

- assuming c > 0, s > 0, use  $(\hat{c}, \hat{s}) = (\log(c), \log(s))$
- The positivity constraints are satisfied
- The Jacobian is easy to compute

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

# **Choice of variables**

### Difficulties with variables (c, s)

- The derivatives  $\frac{d\alpha}{dc}$ , etc, are not easy to compute
- The positivity constraints must be satisfied at each time step

#### Change of variables

- assuming c > 0, s > 0, use  $(\hat{c}, \hat{s}) = (\log(c), \log(s))$
- The positivity constraints are satisfied
- The Jacobian is easy to compute

### Difficulties with variables $(\log(c), \log(s))$

- Concentrations can become very small
- The matrix becomes almost singular for a component with almost null concentration

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

### **GRT3D** software

#### Transport modules

- The velocity v is computed with MODFLOW
- The transport operator L is computed with MT3D

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

### **GRT3D** software

#### Transport modules

- The velocity v is computed with MODFLOW
- The transport operator L is computed with MT3D

#### Chemistry modules

- The functions  $\Phi(c, s)$  and C(c)
- The derivatives  $J_{\Phi}(c,s)$  and dC(c)/dc

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

### **GRT3D** software

#### Transport modules

- The velocity v is computed with MODFLOW
- The transport operator L is computed with MT3D

#### Chemistry modules

- The functions  $\Phi(c, s)$  and C(c)
- The derivatives  $J_{\Phi}(c,s)$  and dC(c)/dc

#### Coupling modules

- The function R(c, s)
- The derivative  $J_R(c,s)$

DAE formulation Implicit time discretizatior Newton method GRT3D software Performance analysis

17 / 24

# **GRT3D** software

#### Transport modules

- The velocity v is computed with MODFLOW
- The transport operator L is computed with MT3D

#### Chemistry modules

- The functions  $\Phi(c, s)$  and C(c)
- The derivatives  $J_{\Phi}(c,s)$  and dC(c)/dc

#### Coupling modules

- The function R(c, s)
- The derivative  $J_R(c, s)$

### Solving modules

- The DAE solver IDA in SUNDIALS using Newton-LU method
- The sparse linear solver UMFPACK

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

### Versions of GRT3D

### GRT3D: First version with logarithms

Logarithmic variables log(c), log(s)No elimination of T and C



DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

### Versions of GRT3D

#### GRT3D: First version with logarithms

Logarithmic variables log(c), log(s)No elimination of T and C

#### GRT3DRL: Reduced version with logarithms

Logarithmic variables log(c), log(s)Elimination of T and C in the linearized equations

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

# Versions of GRT3D

#### GRT3D: First version with logarithms

Logarithmic variables log(c), log(s)No elimination of T and C

#### GRT3DRL: Reduced version with logarithms

Logarithmic variables log(c), log(s)Elimination of T and C in the linearized equations

#### GRT3DRSL: Reduced version without logarithms

Variables c, sElimination of T and C in the linearized equations

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

# **Memory requirements**

# System size

| Mesh           | GRT3D                    | GRT3DRL                 | GRT3D                    | GRT3DRL                 |
|----------------|--------------------------|-------------------------|--------------------------|-------------------------|
|                | with $c_1$               | with $c_1$              | without $c_1$            | without $c_1$           |
| N <sub>m</sub> | 13 <i>N</i> <sub>m</sub> | 5 <i>N</i> <sub>m</sub> | 10 <i>N</i> <sub>m</sub> | 4 <i>N</i> <sub>m</sub> |
| 20x42          | 10920                    | 4200                    | 8400                     | 3360                    |
| 40×84          | 43680                    | 16800                   | 33600                    | 13440                   |
| 80x168         | 174720                   | 67200                   | 134400                   | 53760                   |

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

### **CPU time**



Removing the inert component  $c_1$  reduces the CPU time Reducing the system size is efficient Using variables c, s is faster than using logarithmic variables log(c), log(s)

20 / 24

э

Introduction DAE form MoMaS benchmark Global DAE approach Conclusion DAE form

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

#### Number of time steps



Many time steps until times t = 1000 and near t = 5000The CPU time is directly correlated to the number of time steps, and the steps of the st

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

#### Number of LU factorizations



Modified Newton method reduces efficiently the number of factorizations

DAE formulation Implicit time discretization Newton method GRT3D software Performance analysis

### CPU time of factorization and solving



Linearized equations use 90 % of total CPU time (fine mesh  $80 \times 168$ )

### Conclusion

#### Summary: accuracy and efficiency

- DAE global approach (implicit scheme and Newton method)
- Efficiency of system size reduction
- Efficiency of adaptive time step and modified Newton iterations
- Logarithmic variables may lead to ill-conditioned systems

### Conclusion

#### Summary: accuracy and efficiency

- DAE global approach (implicit scheme and Newton method)
- Efficiency of system size reduction
- Efficiency of adaptive time step and modified Newton iterations
- Logarithmic variables may lead to ill-conditioned systems

#### Future work

- Iterative parallel linear solver
- Parallel chemistry computations
- Precipitation-dissolution with vanishing *p*
- Adaptive mesh refinement