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Water and energy resources

Manage water resources
Prevent pollution
Store waste, store energy, capture CO2

Use geothermal energy
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Reactive transport

Flow model

Single phase saturated flow

Constant density and porosity. Heterogeneous conductivity

Darcy’s law and mass conservation law

Transport model

Advection diffusion reaction

Molecular diffusion and hydrodynamic dispersion

Linear equations

Reactive transport model

Chemical equilibrium: components and secondary species

Mass action laws and mass conservation law

Transport of total analytical components
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Flow model
Transport model
Geochemistry model
Reactive transport model

MoMaS benchmark: geometry and porous media

Physical parameters

Medium A Medium B

Porosity ε 0.25 0.5
Conductivity K (L.T−1) 10−2 10−5
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Flow model
Transport model
Geochemistry model
Reactive transport model

MoMaS benchmark: flow model

{
q = −K∇h,
∇q = 0.

Boundary conditions

Inflow Outflow Other

Velocity q = 2.2510−2L.T−1 Pressure h = 1L No flow

Computations done using MODFLOW software with a mesh of 40× 84 cells
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Flow model
Transport model
Geochemistry model
Reactive transport model

MoMaS benchmark: transport model

ε
∂c

∂t
= ∇.(D ∇c)−∇.(q c)

D = εdmI + αT‖q‖I + (αL − αT )
qqT

‖q‖

Physical parameters

Medium A Medium B

Molecular diffusion dm (L2T−1) 0 0
Longitudinal Dispersion αL(L) 10−2 6× 10−2

Transverse Dispersion αT (L) 10−3 6× 10−3

Initial conditions c = 0 c = 0

Boundary conditions

Inflow Outflow Other

Injection 0 ≤ t ≤ 5000T : c = 0.3 No flux No total flux

Leaching 5000T ≤ t ≤ 6000T : c = 0 No flux No total flux
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Flow model
Transport model
Geochemistry model
Reactive transport model

MoMaS benchmark: simulation of an inert solute

Computations done using MT3D with a mesh of 80× 168 cells
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Flow model
Transport model
Geochemistry model
Reactive transport model

MoMaS benchmark: chemistry model

Chemical equilibrium

Four primary aqueous components cj and one primary fixed component s

Five secondary aqueous species αi and two secondary fixed species βj

Stoichiometric coefficients and equilibrium constants

c1 c2 c3 c4 s K

α1 0 -1 0 0 0 10−12

α2 0 1 1 0 0 1
α3 0 -1 0 1 0 1
α4 0 -4 1 3 0 0.1
α5 0 4 3 1 0 10+6

β1 0 3 1 0 1 10+6

β2 0 -3 0 1 2 10−1
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Flow model
Transport model
Geochemistry model
Reactive transport model

Chemical laws

Algebraic view of stoichiometric coefficients

c s K

α S 0 Kc

β A B Ks

Mass action laws
αi (c) = Kci

∏Nc
j=1 c

Sij
j , i = 1, . . .Nα,

βi (c, s) = Ksi

∏Nc
j=1 c

Aij

j

∏Ns
j=1 s

Bij

j , i = 1, . . .Nβ ,

cj ≥ 0, j = 1, . . .Nc ,
sj ≥ 0, j = 1, . . .Ns .

Mass conservation laws{
c + STα(c) + ATβ(c, s) = T ,
s + BTβ(c, s) = W ,
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Flow model
Transport model
Geochemistry model
Reactive transport model

Remarks about MoMaS geochemistry

Stoichiometric coefficients and equilibrium constants

c1 c2 c3 c4 s K

α1 0 -1 0 0 0 10−12

α2 0 1 1 0 0 1
α3 0 -1 0 1 0 1
α4 0 -4 1 3 0 0.1
α5 0 4 3 1 0 10+6

β1 0 3 1 0 1 10+6

β2 0 -3 0 1 2 10−1

Remarks

c1 = T1 thus c1 is an inert component

α1 = Kc1
c2

thus we assume that c2 > 0

If T3 = 0 then c3 = α2 = α4 = α5 = β1 = 0

If T4 = 0 then c4 = α3 = α4 = α5 = β2 = 0

If W = 0 then s = β1 = β2 = 0
11 / 24
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Flow model
Transport model
Geochemistry model
Reactive transport model

Total analytical concentrations

Transport equation for each total analytical concentration

ε
∂Tj

∂t
= ∇.(D ∇Cj(c))−∇.(q Cj(c)), j = 1, . . .Nc

with the mobile part C(c) = c + STα(c)

Initial conditions

T1 T2 T3 T4 W

Medium A 0 -2 0 2 1
Medium B 0 -2 0 2 10

Inflow boundary conditions

T1 T2 T3 T4 W

Injection t ∈ [0, 5000] 0.3 0.3 0.3 0 0
Leaching t ∈ [5000, 6000] 0 -2 0 2 0

12 / 24



Introduction
MoMaS benchmark

Global DAE approach
Conclusion

Flow model
Transport model
Geochemistry model
Reactive transport model

Total analytical concentrations

Transport equation for each total analytical concentration

ε
∂Tj

∂t
= ∇.(D ∇Cj(c))−∇.(q Cj(c)), j = 1, . . .Nc

with the mobile part C(c) = c + STα(c)

Initial conditions

T1 T2 T3 T4 W

Medium A 0 -2 0 2 1
Medium B 0 -2 0 2 10

Inflow boundary conditions

T1 T2 T3 T4 W

Injection t ∈ [0, 5000] 0.3 0.3 0.3 0 0
Leaching t ∈ [5000, 6000] 0 -2 0 2 0

12 / 24



Introduction
MoMaS benchmark

Global DAE approach
Conclusion

Flow model
Transport model
Geochemistry model
Reactive transport model

Total analytical concentrations

Transport equation for each total analytical concentration

ε
∂Tj

∂t
= ∇.(D ∇Cj(c))−∇.(q Cj(c)), j = 1, . . .Nc

with the mobile part C(c) = c + STα(c)

Initial conditions

T1 T2 T3 T4 W

Medium A 0 -2 0 2 1
Medium B 0 -2 0 2 10

Inflow boundary conditions

T1 T2 T3 T4 W

Injection t ∈ [0, 5000] 0.3 0.3 0.3 0 0
Leaching t ∈ [5000, 6000] 0 -2 0 2 0

12 / 24



Introduction
MoMaS benchmark

Global DAE approach
Conclusion

Flow model
Transport model
Geochemistry model
Reactive transport model

Results of simulations

Computations done using GRT3D with a mesh of 80× 168 cells
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DAE formulation
Implicit time discretization
Newton method
GRT3D software
Performance analysis

Numerical reactive transport model

Space discretization

with, for example, a finite difference method using Nm points{
T = (T1, . . . ,Tk , . . . ,TNm ) ,
TT =

(
TT

1 , . . . ,T
T
j , . . . ,T

T
Nc

)
Semi-discrete reactive transport model

ω
dTT

j

dt
+ LCT

j (c) = QT
j , j = 1, . . . ,Nc ,

Tcj(c, s)− Tk = 0, k = 1, . . . ,Nm,
Tsj(c, s)−Wk = 0, k = 1, . . . ,Nm,
initial condition for T , positivity constraints c ≥ 0, s ≥ 0

DAE formulation
ω dvec T

dt
+ (L⊗ I )vecC(c)− vecQ = 0,

vec

(
Tc(c, s)
Ts(c, s)

)
− vec

(
T
W

)
= 0
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DAE Global approach with substitution

Time discretization: BDF scheme

dvecT

dt
' a

∆t
vecT +

1

∆t
vecZ ,{

aω
∆t

vecT + (L⊗ I )vecC(c)− ... = 0,
−(I ⊗ N)vecT + vec Φ(c, s)− ... = 0

Substitution

R(c, s) =
∆t

aω
(L⊗ N) vecC(c) + vec Φ(c, s)− ...

The Jacobian of R is

JR(c) =
∆t

aω
(L⊗ N) diag (

dC

dc
(cj)) + diag(JΦ(cj , sj)).

Nonlinear system

R(c, s) = 0

solved with Newton method
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DAE formulation
Implicit time discretization
Newton method
GRT3D software
Performance analysis

Choice of variables

Difficulties with variables (c, s)

The derivatives dα
dc

, etc, are not easy to compute

The positivity constraints must be satisfied at each time step

Change of variables

assuming c > 0, s > 0, use (ĉ, ŝ) = (log(c), log(s))

The positivity constraints are satisfied

The Jacobian is easy to compute

Difficulties with variables (log(c), log(s))

Concentrations can become very small

The matrix becomes almost singular for a component with almost null
concentration
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DAE formulation
Implicit time discretization
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GRT3D software
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GRT3D software

Transport modules

The velocity v is computed with MODFLOW

The transport operator L is computed with MT3D

Chemistry modules

The functions Φ(c, s) and C(c)

The derivatives JΦ(c, s) and dC(c)/dc

Coupling modules

The function R(c, s)

The derivative JR(c, s)

Solving modules

The DAE solver IDA in SUNDIALS using Newton-LU method

The sparse linear solver UMFPACK
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DAE formulation
Implicit time discretization
Newton method
GRT3D software
Performance analysis

Versions of GRT3D

GRT3D: First version with logarithms

Logarithmic variables log(c), log(s)
No elimination of T and C

GRT3DRL: Reduced version with logarithms

Logarithmic variables log(c), log(s)
Elimination of T and C in the linearized equations

GRT3DRSL: Reduced version without logarithms

Variables c, s
Elimination of T and C in the linearized equations
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Memory requirements

System size

Mesh GRT3D GRT3DRL GRT3D GRT3DRL
with c1 with c1 without c1 without c1

Nm 13Nm 5Nm 10Nm 4Nm

20x42 10920 4200 8400 3360

40x84 43680 16800 33600 13440

80x168 174720 67200 134400 53760
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CPU time
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GRT3DRSL

GRT3DRL

GRT3D

GRT3DRSL sans traceur

GRT3DRL sans traceur

GRT3D sans traceur

Removing the inert component c1 reduces the CPU time
Reducing the system size is efficient

Using variables c, s is faster than using logarithmic variables log(c), log(s)
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Number of time steps
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GRT3DRSL

GRT3DRL

GRT3D

Many time steps until times t = 1000 and near t = 5000

The CPU time is directly correlated to the number of time steps
21 / 24



Introduction
MoMaS benchmark

Global DAE approach
Conclusion

DAE formulation
Implicit time discretization
Newton method
GRT3D software
Performance analysis

Number of LU factorizations

0 1000 2000 3000 4000 5000 6000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

temps (s)

L
o
g
a
ri
th

m
e
 d

u
 n

o
m

b
re

 c
u
m

u
lé

 d
e
 r

é
s
o
lu

ti
o
n
 e

t 
d
e
 f
a
c
to

ri
s
a
ti
o
n

maillage 80x168 sans traceur

 

 

résolution avec GRT3DRSL

résolution avec GRT3DRL

résolution avec GRT3D

factorisation avec GRT3DRSL

factorisation avec GRT3DRL

factorisation avec GRT3D

Modified Newton method reduces efficiently the number of factorizations
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CPU time of factorization and solving
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Linearized equations use 90 % of total CPU time (fine mesh 80× 168)
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Conclusion

Summary: accuracy and efficiency

DAE global approach (implicit scheme and Newton method)

Efficiency of system size reduction

Efficiency of adaptive time step and modified Newton iterations

Logarithmic variables may lead to ill-conditioned systems

Future work

Iterative parallel linear solver

Parallel chemistry computations

Precipitation-dissolution with vanishing p

Adaptive mesh refinement
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