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Introduction

Water and energy resources
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Manage water resources

Prevent pollution

Store waste, store energy, capture CO;
Use geothermal energy
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Introduction

Reactive transport

Flow model

@ Single phase saturated flow
@ Constant density and porosity. Heterogeneous conductivity

@ Darcy's law and mass conservation law

Transport model

@ Advection diffusion reaction

@ Molecular diffusion and hydrodynamic dispersion

@ Linear equations

Reactive transport model

@ Chemical equilibrium: components and secondary species

@ Mass action laws and mass conservation law

@ Transport of total analytical components
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transport mc

MoMaS benchmark: geometry and porous media
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Physical parameters

Medium A | Medium B
Porosity e 0.25 0.5
Conductivity K (L.T™?) 1072 107°
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MoMa$S benchmark Transport mc

MoMaS benchmark: flow model

{ g = —KVh,

Boundary conditions

Inflow Outflow Other
Velocity g = 2.2510 °L. T " | Pressure h=1L | No flow

1 —Inflowl

0.8

0.6

Outflow




MoMa$S benchmark

MoMaS benchmark: transport model
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Physical parameters

Medium A | Medium B
Molecular diffusion dn, (LT~ T) 0 0
Longitudinal Dispersion o (L) 1072 6 x 1072
Transverse Dispersion ar(L) 1073 6 x 103
Initial conditions c=0 c=0
Inflow Outflow Other
Injection 0 < t < 50007: ¢ =0.3 No flux | No total flux
Leaching 50007 < ¢t < 60007: ¢ =0 | No flux | No total flux




Flow model

MoMa$S benchmark Transport model
Geochemistry model
Reactive transport model

MoMaS benchmark: simulation of an inert solute

cl
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Computations done using MT3D with a mesh of 80 x 168 cells
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Geochemistry model
X transport model

MoMa$S benchmark: chemistry model

Chemical equilibrium

@ Four primary aqueous components ¢; and one primary fixed component s

@ Five secondary aqueous species o; and two secondary fixed species ;

Stoichiometric coefficients and equilibrium constants

G & 6 & | s K
a0 -1 0 0010712
a0 1 1 010 1
az | 0 -1 0 110 1
as | 0 -4 1 3|0 01
as | 0 4 3 1 |0] 10
B0 3 1 o0[1] 10™
B0 3 0 12| 10"




MoMa$S benchmark
Geochemistry model
ransport mc

Chemical laws

Algebraic view of stoichiometric coefficients

c | s K
al| S| 0| K
8| A|B| Ks
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port model

Geochemistry model
Reactive transport mode

Chemical laws

Algebraic view of stoichiometric coefficients

c | s K
al| S| 0| K
8| A|B| Ks

Mass action laws

ai(c) = Ka[I%, ¢, i=1,...Na,

Jj=1"j

A B )
/Bi(C,S):KsiH‘thjU Pl s, i=1,...Ng,

. j=1"7j
¢G>0, j=1,...N,
55>0, j=1,...Ns.




MoMa$S benchmark

Chemical laws

c | s K
al| S| 0| K
8| A|B| Ks

Mass action laws

0i(c) = Ka TI™% &, i=1,.. No,
Ne Ajj Ns _Bj o

/Bi(C,S):Ksiszlcjj 2180, i=1,...Ng,

¢G>0, j=1,...N,

s;>0, j=1,...N.

Mass conservation laws

c+STa(c)+A"B(c,s) =T,
s+ BTA(c,s) = W,




Flow model

MoMaS benchmark Transport model
Geochemistry model
Reac ansport model

Remarks about MoMa$S geochemistry

Stoichiometric coefficients and equilibrium constants

G & € C | S K
a1 |0 -1 0 00107
a0 1 1 010 1
az |0 -1 0 110 1
as | 0 -4 1 3|0]| 01
as | 0 4 3 1 |0] 107
6|0 3 1 o0]1] 10T
B0 -3 0 12| 10"

c1 = Ti thus ¢ is an inert component

a1 = %1 thus we assume that ¢ > 0

If ;=0thencs=ax=as=as =1 =0
If Ta=0thenaa=az=as=as =5 =0
If W=0thens=31=06=0




MoMa$S benchmark

Total analytical concentrations

Transport equation for each total analytical concentration
oT; .
e =VADVG() = V(4 G(o))j=1,... Ne

with the mobile part C(c) = ¢+ ST a(c)
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nistry el
Reactive transport model

Total analytical concentrations

Transport equation for each total analytical concentration
oT; .
e =VADVG() = V(4 G(o))j=1,... Ne

with the mobile part C(c) = ¢+ ST a(c)

Initial conditions

Medium A | 0 -2 0 2 1
Medium B 0 -2 0 2 10
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mistry model
Reactive transport model

Total analytical concentrations

Transport equation for each total analytical concentration

6% =V.(DVG(c) - Vg Glc),j=1,... Ne

with the mobile part C(c) = ¢+ ST a(c)

Initial conditions

. T, T3 T, | W
Medium A | 0 -2 0 2 1
Medium B 0 -2 0 2 10

Inflow boundary conditions

Tm T, T3 Ti | W
Injection t € [0, 5000] 03 03 03 O 0
Leaching t € [5000, 6000] 0 -2 0 2 0




MoMa$S benchmark

Reactive transport model

Results of simulations

c2
0.40000

0,017348

Computations done using GRT3D with a mesh of 80 x 168 cells




DAE formulation
Implicit tim

Global DAE approach

Numerical reactive transport model

Space discretization

with, for example, a finite difference method using N, points

T=(Ty, s Ta,..., Tn,) s
T =(T,....T,...,T,)

Semi-discrete reactive transport model

| A

a7 T T
w4+ LG (c)=Q, j=1,...,N,
Tci(c,s)— T« =0, k=1,...,Np,
Tsi(c,s) —Wik=0, k=1,...,Nn,

initial condition for T, positivity constraints ¢ > 0,5 > 0




Global DAE approach

Numerical reactive transport model

Space discretization

with, for example, a finite difference method using N, points

T=(Ty, s Ta,..., Tn,) s
T =(T,....T,...,T,)

Semi-discrete reactive transport model

wdt +LGT () =Q, j=1,....N,,
Tci(c,s)— T« =0, k=1,...,Np,
Tsi(c,s) —Wik=0, k=1,...,Nn,

initial condition for T, positivity constraints ¢ > 0,5 > 0

DAE formulation
w2l 4 (L@ I)vec C(c) —vec @ =0,

(e e ()




DAE formulation
i iscretization

Global DAE approach

DAE Global approach with substitution

Time discretization: BDF scheme

dvec T a 1
~ — T+ —vecZ
o Atvec + Atvec R

*evec T + (L® I)vec C(c) — ... =0,
—(/ ® N)vec T + vecP(c,s) —...=0




Global DAE approach

DAE Global approach with substitution

Time discretization: BDF scheme

dvec T a 1
~ — T+ —vecZ
o Atvec + Atvec R

*evec T + (L® I)vec C(c) — ... =0,
—(/ ® N)vec T + vecP(c,s) —...=0

Substitution

R(c,s) = %(L ® N)vec C(c) + vecd(c,s) — ...
The Jacobian of R is

In(e) = 2L (Lo N) diag (97 () + diag(Jo( i, ).




DAE mulation
Implicit time discretization
d

Newton
P
F

Global DAE approach

DAE Global approach with substitution

dvec T a 1
~ — T+ —vecZ
o Atvec + Atvec R

*evec T + (L® I)vec C(c) — ... =0,
—(/ ® N)vec T + vecP(c,s) —...=0

Substitution

R(c,s) = %(L ® N)vec C(c) + vecd(c,s) — ...
The Jacobian of R is

In(e) = 2L (Lo N) diag (97 () + diag(Jo( i, ).

Nonlinear system

R(c,s) =0

solved with Newton method
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Global DAE approach Wi sid )

Choice of variables

Difficulties with variables (c, s)

@ The derivatives ‘2—?,

@ The positivity constraints must be satisfied at each time step

etc, are not easy to compute

16 /24
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v

Change of variables

@ assuming ¢ > 0,s > 0, use (¢&,5) = (log(c), log(s))

@ The positivity constraints are satisfied

@ The Jacobian is easy to compute

A
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DAE formulation

Global DAE approach

Choice of variables

Difficulties with variables (c, s)

@ The derivatives 9%

dc etc, are not easy to compute

@ The positivity constraints must be satisfied at each time step

Change of variables

@ assuming ¢ > 0,s > 0, use (¢&,5) = (log(c), log(s))

@ The positivity constraints are satisfied

@ The Jacobian is easy to compute

Difficulties with variables (log(c), log(s))

@ Concentrations can become very small

@ The matrix becomes almost singular for a component with almost null
concentration

16 /24



DAE formulation
Implicit tim

Global DAE approach

GRT3D software

Transport modules

@ The velocity v is computed with MODFLOW
@ The transport operator L is computed with MT3D
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Global DAE approach CRYSD coftuare

Performance analysis

GRT3D software

Transport modules

@ The velocity v is computed with MODFLOW
@ The transport operator L is computed with MT3D

v

Chemistry modules

@ The functions ®(c,s) and C(c)
@ The derivatives Jo(c, s) and dC(c)/dc

N
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GRT3D software

Transport modules

@ The velocity v is computed with MODFLOW
@ The transport operator L is computed with MT3D

Chemistry modules
@ The functions ®(c,s) and C(c)
@ The derivatives Jo(c, s) and dC(c)/dc

Coupling modules

@ The function R(c,s)

@ The derivative Jg(c, s)

A\
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Global DAE approach

erformance analysis

GRT3D software

Transport modules

@ The velocity v is computed with MODFLOW
@ The transport operator L is computed with MT3D

Chemistry modules

@ The functions ®(c,s) and C(c)
@ The derivatives Jo(c, s) and dC(c)/dc

Coupling modules

@ The function R(c,s)

@ The derivative Jg(c, s)

Solving modules

@ The DAE solver IDA in SUNDIALS using Newton-LU method
@ The sparse linear solver UMFPACK 17/ 24




Global DAE approach

Versions of GRT3D

GRT3D: First version with logarithms

Logarithmic variables log(c), log(s)
No elimination of T and C

DAE formulation
Implicit tim

N n method
GRT3D software

Performance analysis
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Implicit tim

Global DAE approach

Versions of GRT3D

GRT3D: First version with logarithms

Logarithmic variables log(c), log(s)
No elimination of T and C

GRT3DRL: Reduced version with logarithms

Logarithmic variables log(c), log(s)
Elimination of T and C in the linearized equations

™



Global DAE approach CRYSD coftuare

Performance analysis

Versions of GRT3D

GRT3D: First version with logarithms

Logarithmic variables log(c), log(s)
No elimination of T and C

GRT3DRL: Reduced version with logarithms

Logarithmic variables log(c), log(s)
Elimination of T and C in the linearized equations

GRT3DRSL: Reduced version without logarithms

| A

Variables ¢, s
Elimination of T and C in the linearized equations

N




Memory requirements

Global DAE approach

Mesh | GRT3D | GRT3DRL GRT3D GRT3DRL
with ¢ with ¢ without ¢; | without ¢
Nm 13N, 5N 10N, 4N,
20x42 10920 4200 8400 3360
40x84 43680 16800 33600 13440
80x168 | 174720 67200 134400 53760




DAE formulation
Implicit ti i tization

Global DAE approach

Performance analysis

x10° maillage 80x168
—— GRT3DRSL j j j j
GRT3DRL
45 ——GR13D ]
GRT3DRSL sans traceur
4}| —— GRT3DRL sans raceur 4
—— GRTAD sans traceur

Le temps CPU cumulé
T
L

L L L L L
] 1000 2000 3000 4000 5000 6000
temps (s)

Removing the inert component ¢; reduces the CPU time
Reducing the system size is efficient
Using variables c, s is faster than using logarithmic variables log(c), log(s)



DAE formulation
Implicit ti i tization

Global DAE approach

Performance analysis

Number of time steps

maillage 80x168 sans traceur

Le nombre de pas temps internes cumulé

. . . .
1000 2000 3000 4000 5000 6000
temps (s)

Many time steps until times t = 1000 and near t = 5000
The CPU time is directly correlated to the number of time steps



DAE formulation
Implicit time

Newton method
GRT3D
Performance analysis

Global DAE approach

Number of LU factorizations

maillage 80x168 sans traceur
10 T T T

résolution avec GRT3DRSL
10" résolution avec GRT3DRL ||
résolution avec GRT3D
= = = factorisation avec GRT3DRSL
= = = factorisation avec GRT3DRL
factorisation avec GRT3D
T T

Logarithme du nombre cumulé de résolution et de factorisation

I I I
0 1000 2000 3000 4000 5000 6000
temps (s)

Modified Newton method reduces efficiently the number of factorizations



DAE formulation
Implicit ti i tization

Global DAE approach

Performance analysis

CPU time of factorization and solving

GRT3DRSL
100 T T T T

—6— cc2/cpu %
90 —6—cc3/cpu % 4
- © - cc2/cpu sans traceur %,

- © - cc3/cpu sans traceur %)

80

701 q

60

% temps(s)
(4
o
:

401

301

201

0 2000 4000 6000 8000 10000 12000 14000

maillage

Linearized equations use 90 % of total CPU time (fine mesh 80 x 168)
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Conclusion

Summary: accuracy and efficiency

DAE global approach (implicit scheme and Newton method)
Efficiency of system size reduction
Efficiency of adaptive time step and modified Newton iterations

Logarithmic variables may lead to ill-conditioned systems
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Conclusion

Summary: accuracy and efficiency

DAE global approach (implicit scheme and Newton method)
Efficiency of system size reduction

Efficiency of adaptive time step and modified Newton iterations

Logarithmic variables may lead to ill-conditioned systems

@ lterative parallel linear solver

@ Parallel chemistry computations

@ Precipitation-dissolution with vanishing p

@ Adaptive mesh refinement
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