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Chemistry model

Mass action laws (no precipitation)

logx = S log c + logKc

log y = A log c + B log s + logKs

• c ∈ RNc : aqueous components

• s ∈ RNs : sorbed components

• x ∈ RNx : secondary aqueous species

• y ∈ RNy : secondary sorbed species

• Kc ∈ RNx and Ks ∈ RNy : equilibrium constants

• S =

S 0
A B

 ∈ RNx+Ny,Nc+Ns : stoechiometric coefficients
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Chemistry model

Mass conservation

T = c + STx + ATy

W = s + BTy

• W fixed and given

• T given or coupled with transport model

• aqueous total C = c + STx

• fixed total F = ATy
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Chemistry model

Nonlinear equations

Φ(a)−
 T

W

 = 0

• Φ(a) = exp(a) + STexp(K + Sa)

• a = (log c, log s)T

• K = (logKc, logKs)T

Jacobian matrix

Jc(a) = diag(exp(a)) + ST diag(exp(K + Sa))S

Newton iterative method

Global method with line search or trust region
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Chemistry model with precipitation

Mass Conservation

F = ATy + DTp

p ∈ RNp : precipitated species

Mass action laws

Π : saturation index

Π = logKp + D log cpi = 0 if Πi < 1

Πi = 1 otherwise .
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Coupled transport and chemistry models

Advection-dispersion

L(C) = ∇.
(
C~V

)
−∇. (D∇C)

Transport of each chemical component

ω
∂Tj

∂t
+ L(Cj) = 0, j = 1, . . . , Nc

Chemistry equations (no precipitation)

a = (log c, log s)T

C = c + ST exp(logKc + S log c) = C(a)

Φ(a)−
 T

W

 = 0
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Discrete coupled model

Space discretization with a Finite Volume method with Nm

points.

Discrete transport operator.

Variables T, C, F of order NmNc and a of order Nm(Nc + Ns).
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TC formulation

with explicit chemistry

dT
dt + (L⊗ I)C = 0,

Φ(a)−
 T

W

 = 0,

C − C(a) = 0.

with implicit chemistry
dT
dt + (L⊗ I)C = 0,
C − C(Ψ(T )) = 0,
a = Ψ(T ).
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CC formulation

with explicit chemistry

dC
dt + dF

dt + (L⊗ I)C = 0,

Φ(a)−
 C + F

W

 = 0,

C − C(a) = 0 or F − F (a) = 0.
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ODE and DAE frameworks

ODE framework with TC formulation and implicit chemistry

dT

dt
+ (L⊗ I)C(Ψ(T )) = 0.

• chemistry solver for each function evaluation

• No explicit Jacobian

• Chemistry solver as a black box
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ODE and DAE frameworks

DAE framework with CC formulation

M
dy

dt
+ f(y) = 0.

y =


C
a
F

 , M =


I 0 I
0 0 0
0 0 0

 , f(y) =


(L⊗ I)C

Φ(a)−
 C + F

W


F − F (a)


• chemistry functions

• Explicit Jacobian
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ODE and DAE frameworks

Implicit time discretization

Euler implicit scheme and DAE : Myn+1 + ∆tf(yn+1) = Myn

Nonlinear equations at each timestep

Nonlinear solvers

• block-SOR-Newton : Sequential Iterative Approach

• Newton-type : Global Approach

? Newton-block-SOR (inexact Newton)

? Newton-LU

? Newton-Krylov (inexact Newton)
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Sequential Iterative Approach

Implicit Euler :Myn+1 + ∆tf(yn+1) = Myn.

block-SOR-Newton

y1 = yn

For k = 1, ...until convergence
(I + ∆t(L⊗ I))Ck+1 + F k = Cn + Fn

Φ(a)−
 Ck+1 + F k

W

 = 0

F k+1 = F (a)
End
• slow convergence

• chemistry solver at each iteration

• decoupled transport and chemistry
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Global approach

Implicit Euler :Myn+1 + ∆tf(yn+1) = Myn.

Newton-type method
y1 = yn

For k = 1, ...until convergence
(M + ∆tJk)(yk+1 − yk) = −(M(yk − yn) + ∆tf(yk))
End

Jk =


L⊗ I 0 0

−
 I

0

 diag(Jc(ak)) −
 I

0


0 −dF

da (ak) I


• Linearised chemistry at each Newton iteration

• fast convergence

• Coupled large sparse linear system
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Global approach

Newton linearized equations :(M + ∆tJk)(∆y) = zk.

Newton-block-SOR method

For j = 1, ... until convergence
(I + ∆t(L⊗ I))∆Cj+1 + ∆F j = zk

c

diag(Jc(ak))∆a−
 I

0

 (∆Cj+1 + ∆F j) = zk
a

∆F j+1 − dF
da (ak)∆a = zk

f
End

• decoupled transport and linearized chemistry

• slow convergence
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Global approach

Newton linearized equations :(M + ∆tJk)(∆y) = zk.

Newton-LU method

• efficient sparse linear solvers

• large matrix

Newton-Krylov method

• decoupled linearized chemistry and transport

• requires an efficient preconditioner
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Our global strategy

Transport discrete operator

• currently, 1D finite volume method with upwind

• currently, fixed cell size

Chemistry equations

• currently, precipitation with given number of precipitated spe-

cies

DAE framework

• TC formulation with unknowns (T, C, a)
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Our implementation

DAE solver

• variable order and adaptive time step (BDF method)

• modified Newton method with adaptive update of Jacobian

• control of convergence with adaptive time step

• Newton-LU solver with direct multifrontal sparse linear solver

• libraries SUNDIALS and UMFPACK
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Numerical experiment : Ex11

Ex11 : example 11 from PhreeqC package

• column with potassium, sodium and nitrate in equilibrium with

a cation exchanger

• injection of a calcium chloride solution

• transport by advection and diffusion
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Numerical experiment : Momas benchmark

easy 1D test case

• four aqueous components, one sorbed component

• five aqueous secondary species, two sorbed secondary species

• different porosity and dispersion in medium A and medium B
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Results for Momas benchmark
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Future work

Chemistry and transport operators

• 2D transport solver (library MT3D)

• variable mesh step with refinement

• precipitation and dissolution with a variable number of species

DAE solver

• complexity analysis

• comparison with SIA method

• Newton-Krylov method with preconditioner
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