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ABSTRACT. A distribution of ponctual masses (caracterized by its intensities and depths) is determi-
nated, in such a way that the associated equivalent potential approximates the best a given potential
field. For this purpose, a geodetic inverse problem is solved. On the whole unit sphere a potential
function is usually expressed in spherical harmonics, basis functions with global support. The iden-
tification of the two potentials is done by solving a least-squares problem. When a limited area is
studied, the estimation of the point-mass parameters by means of spherical harmonics is prone to
error, since they are no longer orthogonal over a partial domain of the cut sphere. The construction
of a local spherical harmonic bases that is orthogonal on the specified limited domain of the sphere,
allows us to treat the local point-mass determination problem.

RÉSUMÉ. Une distribution de points masses (caractérisés par leur intensités et leurs profondeurs) est
déterminée de telle manière qu’elle génère un potentiel qui approche au mieux un potentiel donné.
On définit ainsi un problème inverse (moindres carrés). Sur la sphère unité le problème est résolu en
identifiant les développements en harmoniques sphériques des deux potentiels. Lorsque seule une
région de la sphére unité est considérée, l’estimation des paramètres des points masses en utilisant
la base des harmoniques sphériques est susceptible d’erreur, puisque la propriété d’orthogonalité des
éléments de la base n’est plus vérifiée. La construction d’une base locale orthogonale sur la région
étudiée permettra de résoudre le problème local des points masses.
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1. Introduction
Given a potential gravitational field of the earth, we are interested in constructing a

distribution of buried point masses, in such a way that the generated potential best fits the
given one. In the case of the gravity potential of the whole earth, the buried masses are
determined by solving an inverse problem using the spherical harmonics basis. On the
other hand, when only a limited region of the earth is studied, the spherical harmonics
basis is no longer orthogonal. Consequently, the spherical harmonic basis for the deter-
mination of the local point-mass problem is not appropriate and hence one has to find
another basis which is localized in the region of interest. The question of finding a local
basis was first studied by Slepian, Pollak and Landau for an interval of the real line and
for a rectangular region of the plane [8, 9, 14, 15, 16, 17]. They discovered by serendipity
a basis of functions (now called Slepian functions) whose energies are concentrated in the
considered region.

The bases functions are orthonormal on the sphere and orthogonal on the specified
region. So that any arbitrary concentrated function on this region can be expanded into
a local spherical harmonics series. This procedure was very useful in several domains of
applied mathematics and physics, notably geophysics [1, 10], cosmology [5] and image
processing [3, 11]. In this paper a set of point masses is determined in such a way that
the associated potential best approximates the given gravitational potential on a specified
region.

2. Spherical harmonics
Let S2 denote the unit sphere in R

3 and (θ, φ) denote a generic point on the sphere
where θ is the colatitude and φ is the longitude. On the space of square integrable func-
tions on S2, we have the inner product 〈·, ·〉S2 defined by

〈f, g〉S2 =
1

4π

∫

S2

f(θ, φ)g(θ, φ) dσ =
1

4π

∫ 2π

0

∫ π

0

f(θ, φ)g(θ, φ) sin θ dθdφ. (1)

We recall [4] that any square integrable function on the unit sphere S2, can be expanded
in terms of spherical harmonics as

f(θ, φ) =

∞∑

n=0

n∑

m=−n

fmnYnm(θ, φ), (2)

where fmn is the spherical harmonic coefficient associated with Ynm(θ, φ), the spherical
harmonic of degree n and order m which is given by

Ynm(θ, φ) =

{
Pnm(cos θ) cosmφ if m ≥ 0,
Pnm(cos θ) sin |m|φ if m < 0.

(3)

Here Pnm(θ, φ) is a normalized version of Pnm(θ, φ), the Legendre’s function of degree
n and order m given by

Pnm(θ, φ) =

√

k(2n+ 1)
(n−m)!

(n+m)!
Pnm(θ, φ), where

{
k = 1 for m = 0,
k = 2 for m 6= 0.

(4)



The spherical harmonics functions Ynm are orthogonal with respect to inner product (1),
i.e.,

〈Ynm, Yn′m′〉S2 =
1

4π

∫

S2

Ynm(θ, φ) Yn′m′(θ, φ) dσ = δll′δmm′ .

Accordingly, the spherical harmonics coefficients of the function f are given by

fnm = 〈f, Ynm〉S2 =
1

4π

∫

S2

f(θ, φ)Ynm(θ, φ) dσ.

If we denote by f = (. . . , fnm, . . .)
T , then we can define the spatial and spectral equiva-

lent norms of the function f , respectively, as follows

‖f‖2
S2 =

∫

S2

f(θ, φ)2 dσ, ‖f‖2
2 =

∞∑

n=0

n∑

m=−n

f2
nm. (5)

Given two points (θ, φ) and (θ′, φ′) on the unit sphere we have the identity
n∑

m=−n

Ynm(θ, φ)Ynm(θ′, φ′) =
2n+ 1

4π
Pn(cosψ), (6)

where ψ is the spherical distance between (θ, φ) and (θ′, φ′) given by

cosψ = cos θ′ cos θ + sin θ′ sin θ cos(φ′ − φ). (7)

3. The gravitational potential in terms of spherical harmonics
The gravitational potential is a harmonic function outside the earth. For a point P with

spherical coordinates (r, θ, φ) that lies outside the earth we have [7]

V (r, θ, φ) =
GM

r

+∞∑

n=0

n∑

m=−n

cnm

(a
r

)n

Ynm(θ, φ). (8)

Here G is the universal gravitational constant, M is the total mass of the earth, a is the
equatorial radius of the earth and cnm is the geopotential coefficient of degree n and or-
der m. The values of M and cnm depend on the choice of the geopotential model (e.g.,
EGM96, OSU91, etc.) at the considered zone. Note that the first term in the summation,
i.e., for n = 0 is GM/r, represents the potential generated by a homogeneous sphere
of mass M and radius r. Thanks to satellite missions, such as CHAMP (CHAllenging
Minisatellite Payload) and GRACE (Gravity Recovery and Climate Experiment), the co-
efficients cnm in this expansion can now be determined up to the order n = 360, see e.g.,
[12, 13].

4. The point-mass generated potential
Let S = {Mk ≡ (rk, θk, φk;mk)}1,..,N be a distribution of N points located at

(rk , θk, φk) and with masses mk. Recall that the potential at a spacial point P with
coordinates (r, θ, φ) generated by a point masses Mk is given by

Ṽk(r, θ, φ) =
Gmk

`k
. (9)



Here `k is the Euclidean distance between the two points Mk and P . If we denote by ψk

the spherical distance between Mk and P which is obtained by taking (θ′, φ′) = (θk, φk)

in (7), then `k =
√
r2 − 2rrk cosψk + r2k . As the point masses are buried, we have rk <

r, 1 ≤ k ≤ N , and as a consequence, the inverse of the distance between Mk and P ,
admits a convergent Legendre series expansion. Indeed, if we set αk = rk/r and uk =
cosψk, then `k = r

√
1 − 2αkuk + α2

k, and therefore r/`k = 1/
√

1 − 2αkuk + α2
k can

be expanded into power series with respect to αk [7]: r/`k =
∑+∞

n=0 α
n
kPn(uk). Then, it

follows from (6) that

1

`k
=

1

r

+∞∑

n=0

αn
kPn(uk) =

1

r

+∞∑

n=0

n∑

m=−n

αn
k

4π

2n+ 1
Ynm(θ, φ)Ynm(θk, φk). (10)

The expression (9) of the potential Ṽk becomes

Ṽk(r, θ, φ) =
Gmk

r

+∞∑

n=0

n∑

m=−n

αn
k

4π

2n+ 1
Ynm(θ, φ)Ynm(θk, φk).

The potential Ṽ generated by the N point masses, is the sum of the potentials generated
by the considered elementary buried masses

Ṽ (r, θ, φ) =
G

r

N∑

k=1

mk

+∞∑

n=0

n∑

m=−n

(rk
r

)n 4π

2n+ 1
Ynm(θ, φ)Ynm(θk, φk). (11)

On a selected sphere (i.e., for a fixed value R̃ of r) we seek the masses and positions of the
buried points, so that the resulting generated potential best approximates the gravitational
potential for the considered region. It consists in solving an inverse problem which we
formulate in the following section.

5. Statement of the inverse problem
In the forward problem of point masses, we assume that the masses and their positions

are known, and we look for the potential generated by them. Considering the expression
of the elementary potential (9), we gave in (11) the potential caused by a distribution
of point masses at a spacial point P (R̃, θ, φ), as the sum of the elementary potentials
generated by all the point masses. The inverse problem, is then to find the masses m =
(m1, . . . ,mN ) and positions ξ = (r1, θ1, φ1, . . . , rN , θN , φN ) of the point masses for
which the difference between the chosen gravitational potential model and the predicted
one is minimized. Eventually, some constraints on those unkonwns need to be imposed
so that uniqueness and stability of the solution are guaranteed. If we assume that the
colatitudes and longitudes (θk, φk) of the point masses are distributed on a fixed regular
grid on the unit sphere then the unknown parameters are the masses m = (m1, . . . ,mN )T

and depths r = (r1, . . . , rN )T . The approach we use here, is based on the identification
of the two potentials (i.e., the modeled and that predicted) in the same orthogonal basis.
In the following sections, the orthogonal basis used varies with the region of interest: the
whole earth or on a limited region of the earth.



5.1. Point-mass determination on the whole earth
To find the distribution of point masses that generates a potential field that best fits (in

the sense of least squares) a given potential field we introduce the real-valued function
defined on R

3N × R
N by

F (ξ,m) = 1
2

∫

S2

|V (R̃, θ, φ) − Ṽ (R̃, θ, φ)|2 dσ,

and we consider the following minimization problem

min
ξ∈R3N ,m∈RN

F (ξ,m). (12)

That is we are interested in finding the masses m and positions ξ of the points so that the
function F (ξ,m) attains its minimum.

Using the spherical harmonic expansions (8) and (11) and the orthonormality of the
spherical harmonics, this minimization problem can be written as

min
ξ∈R3N ,m∈RN

1
2‖b −A(ξ)m‖2, (13)

where b is a vector with infinite numbers of rows and A(ξ) is a matrix function of ξ with
an infinite number of rows and N columns. The entries of b and A are

bI(n,m) = Mcnm

(
a

R̃

)n

, I(n,m) = 1, 2, . . . ,

AI(n,m)k(ξ) =
4π

(2n+ 1)

(
rk

R̃

)n

Ynm(θk, φk), I(n,m) = 1, 2, . . . , k = 1, . . . , N,

where I(n,m) =
∑n

l=0(2l+1)−n+m. If the location of the point masses are different
then the matrix A has full column rank.

As we shall see, this minimization problem can be formulated as a (nonlinear) mini-
mization problem for ξ only. We first solve the quadratic minimization problem for m

min
m∈RN

1
2‖b −A(ξ)m‖2,

whose solution is readily given by

m̂ = A+(ξ)b,

where A+(ξ) stands for the pseudo-inverse of A(ξ). Then the problem (13) is equivalent
to the minimization problem

min
ξ∈R3N

1
2‖b −A(ξ)A+(ξ)b‖2. (14)

Let us denote by P(ξ) = I −A(ξ)A+(ξ), the orthogonal projector onto the complement
of the range of A(ξ). Then by noting that P(ξ)T = P(ξ) and P(ξ)2 = P(ξ) we obtain

min
ξ∈R3N

1
2‖P(ξ)b‖2 = min

ξ∈R3N

1
2bTP(ξ)TP(ξ)b = min

ξ∈R3N

1
2bTP(ξ)b. (15)

The first-order optimality condition of this minimization problem is the vanishing of the
gradient of the objective function

ρ(ξ) = 1
2bTP(ξ)b.



Straightforward computation shows that

(∇ρ(ξ))i = −
[
bTP(ξ)

] dA(ξ)

dξi

[
A+(ξ)b

]
, i = 1, . . . , 3N. (16)

The solution of the minimization problem (14) is given by the solution of the nonlinear
equations (∇ρ(ξ))i = 0, i = 1, . . . , 3N , which we solve iteratively. Thus, the problem of
finding the point-mass parameters for the global gravitational potential has been solved.

5.2. Point-mass determination on a limited region of the earth
The fact that, on a limited region of the earth, the spherical harmonics basis is no

longer orthogonal, makes the computations of the entries of the matrix A(ξ) and vector b

more complicated. By using a new basis of functions that are concentrated on the region
of interest and orthogonal simplifies the computations.
5.2.1. Slepian basis of localized functions

A stated earlier, a square-integrable function f on the unit sphere can be represented
as

f(θ, φ) =

+∞∑

n=0

n∑

m=−n

fnmYnm(θ, φ) with fnm =

∫

S2

f(θ, φ)Ynm(θ, φ) dσ.

We say that f is band-limited with band width K if fnm = 0 for all n > K, i.e., it has
the representation

f(θ, φ) =
K∑

n=0

n∑

m=−n

fnmYnm(θ, φ). (17)

To find a basis of functions that are localized on a given region Ω of the unit sphere, we
seek functions f such that the ratio

λ =

∫
Ω
f2(θ, φ)dσ∫

S2 f2(θ, φ) dσ
. (18)

between its energy over Ω and its energy over S2 is maximized. This maximization
problem is equivalent to an eigenvalues and eigenfunctions problem. When the set Ω ⊂
S2 has positive measure and is not equal to S2, we have 0 < λ < 1 for any f . If f is
band-limited with band width K then (18) reduces to

λ =
1

‖f‖2
2

K∑

n=0

n∑

m=−n

fnm

K∑

n′=0

n′∑

m′=−n′

Dnm,n′m′fn′m′ , (19)

where
Dnm,n′m′ =

∫

Ω

Ynm(θ, φ)Yn′m′(θ, φ) dσ.

If we denote by D the (K + 1)2 × (K + 1)2 matrix with coefficients Dnm,n′m′ and
by f = (f00, . . . , fnm, . . . , fKK)T the f -spherical harmonic coefficients vector, then

λ =
fTDf

fT f
, and the maximization problem becomes the algebraic eigenvalue problem

Df = λf . (20)



The matrix D is real, symmetric and positive definite, so its (K + 1)2 eigenvalues λ and
associated eigenvectors f are always real. The eigenvalues λ1, . . . , λ(K+1)2 are ordered
such that 1 > λ1 ≥ λ2 . . . ≥ λ(K+1)2 > 0. The symmetry of D guaranties the orthogo-
nality of the eigenvectors. Consequently,

fT
p f q = δpq, fT

pDf q = λpδpq . (21)

Every eigenvector fp, p = 1, 2, . . . , (K + 1)2 defines an associated band-limited spatial
eigenfunction fp(θ, φ) of the form (17). We remark that these functions are at the same
time orthonormal over the whole sphere S2 and orthogonal over the region Ω, i.e.,

∫

S2

fp(θ, φ)fq(θ, φ) dσ = δpq,

∫

Ω

fp(θ, φ)fq(θ, φ) dσ = λpδpq . (22)

If now we multiply the eigenvalue equation (20) by Ynm(θ, φ) and sum over all 0 ≤
n ≤ K and −n ≤ m ≤ n, we deduce that the eigenfunction f satisfies also the Fredholm
integral eigenvalue equation of the second kind in Ω

D(f)(θ, φ) :=

∫

Ω

D((θ, φ), (θ′ , φ′))f(θ′, φ′)dσ = λf(θ, φ), (θ, φ) ∈ Ω,

where D is the integral operator andD is its associated kernel. The kernelD is symmetric
and depends only on the spherical distance, ψ, between (θ, φ) and (θ′, φ′)

D((θ, φ), (θ′, φ′)) =

K∑

n=0

2n+ 1

4π
Pn(cosψ).

When Ω is the spherical cap α ≤ cos θ ≤ 1, Grünbaum et al. [6] discovered a second-
order differential operator H that commutes with the integral operator D:

H =
d

dx

[
(1 − x2)(α− x)

d

dx

]
−K(K + 2)x−

m2(α− x)

1 − x2
, ∀ 0 ≤ m ≤ K,

where x = cos θ. It follows that both D and H possess the same eigenfunctions (the
Slepian functions), but not necessarily the eigenvalues. They found that the eigenfunc-
tions of the operator H are much easier to obtain. From a numeric point of view this
requires a diagonalization of the tridiagonal matrix of the operator H. Every eigenvector
of H defines a Slepian basis function through its spherical harmonic coefficients.
5.2.2. Point-mass determination using the Slepian basis

In the previous section we constructed a local basis of the band-limited and spatial-
limited concentrated functions on a domain Ω ∈ S2. In this section we discuss the prob-
lem of point-mass determination on a limited region of the earth. Two principal steps
are presented. First, the point-mass generated potential Ṽ and the analytic gravitational
potential V on the considered region are expressed in the Slepian basis. Second, we solve
the local inverse problem analogous to the global one determined in the equation (12) as
follows:

i) In the first step, we express the earth’s gravitational potential in the Slepian basis
using the properties of the equations (22)

ii) The second step consists in solving the local point-mass problem by identifying the
locally expanded potentials (the analytic and the predicted ones) that are band-limited on
Ω, to finally determine the masses parameters for the specified region.



6. Conclusion
The use of localized spectral analysis allowed us to study the inverse problem of point-

mass determination and avoid the discrepancies we may have locally when the spherical
harmonics basis is used. The numerical solution of the point-mass determination problem
locally and globally is the subject of forthcoming paper.
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