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I. Geoid determination.



Gravitational Attraction

Newton attraction law (1687) :
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Earth potential

d
Mass density is given by p = d—m

(9
Gravitational potential at a given point is

r=—aff a2

Centrifugal potential : The centrifugal force

f =mp w? \/x2+y2 u)
derives from a centrifugal potential & :
1
f =V® where & = EwQ(:cQ + y?)
Total earth gravity field :

W=V+o>

AW = —47TGp—|—2w2.

Out of the
earth :

V is  harmonic
and V(o) = 0.
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What is the geoid and what is it built for 7

Any water surface on the earth, corresponds to an equipotential of
the earth gravity field W.

The mean level of the seas on the earth is called : geoid

It can be considered on a region in order to :

e study the topography of the zone,

e study control air traffic,

e develop some civil engineering applications.



and at a wider extent, to

e provide a new precise and useful reference surface for topogra-
phy : combined with GPS to obtain precise altitudes or the sea
level.

e determine a global model of the international geoid.

e climinate the problems in connexion with the distinct reference
systems.

e find a new interpretation and understanding for the internal
physics of the earth.



Earth geoid

From CNES



Geoid determination

Because of the irregular distribution of mass inside the earth, the
geoid cannot be directly computed. It is obtained by adjusting a
model to given measurements.

An approximation of the earth is defined by an ellipsoid (homoge-
neous mass distribution, ellipsoid mass = earth mass + atmosphere
mass, rotational symmetry).

From the reference ellipsoid a mathematical expression of the cor-
responding gravity field U is calculated; it is called normal potential

A correction T'= W — U, called anomalous potential , is computed
by adjusting given measurements in geodetic fundamental relations.
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Fondamental quantities
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EXxisting reference ellipsoids

GRS 1980 : a = 6,378,137 m
b = 6,356,752.3141 m
GM = 3,986,005 x 108 m3s~2
WGS84 : a = 6,378,137 m
b = 6,356,752.3142 m
GM = 3,986,004.418 x 108 m3s—2

373,249.20 m

Clarke 1880 : a = 6,
6,356,515 m

S
|
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Computation of the normal potential

The normal potential is U =V + ® where

e ) ellipsoidal gravitational potential

e & centrifugal force potential

V is a harmonic function outside the ellipsoid. In spherical coordi-
nates :

18(2812) 1 a( av> 1 0%V
29V _

— sin 06— =
r2 Or or r2sin 060 o0 r2sin @ OA\2

This is solved by a classical technique of separation of variables :

V(r,0,\) = f(r)Y (0, )

where r = radius, A = longitude and 6 = co-latitude
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Series expansion of V (spherical harmonics)

The normal gravitational potential can be writen as a Legendre
series expansion

GM X /a\2n
Y = 1— > <—> J>y, Po,,(COS )
T — . \T
n=1
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Collocation Method
This is the most appropriate method when the measured data are a
mixture of several types of geodetic measurements (e.g. gravimetric

data, GPS measurements, deflection of the vertical, etc.)

It is used to characterize the geoid by computing its height N from
the ellipsoid surface.

Brun's formula links the geoidal height N to the anomalous poten-
tial T'=W — U and the magnitude of the normal gravity vector ~

T
N = —.
8
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Some relations

T is related to the geodetic parameters by linear expressions obtained
by linearizing fundamental relations:

The Vening Meinesz formulae :

¢ = 10T . 1 0T
T ¢ ’ n_vfrsinqba)\
¢ and n are the deflection of vertical components (North-South and

Est-West)

The so-called fondamental formula of physical geodesy :

where Ag(P) = g(P) —~v(Q) is gravity anomaly and P is a point on
the geoid and @ is its projection on the ellipsoid.
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Application to the geoid determination

[ B0\
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observation vector

o /=Lt+e
e the gravity field parameters :
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egp
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standard error vector

T,N,Ag,&,n,etc., are considered as random
centered and correlated variables

e hence, the problem of the geoid determination becomes a generalized least

squares estimation problem.

—— T he collocation method requires the determination of the empirical covari-
ance function and the analytic associated model.
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Modeling the covariance function

‘The empirical covariance function from Ay

iz AgiAg;
ng Ek

By, = {(F;, Pj); v € [V — A, ¥ + A}

Y. = the kth spherical distance class

COS 1)}, = COS ¢; COS ¢ + Sin ¢; sin ¢; COS(A; — A;)
E;, = set of the couples distant with ¥, + Ad.

An analytic model (Rapp & Tscherning) is given by an approximation in the
exterior of a sphere totally enclosed in the earth (Bjerhammar—sphere) :

Cagng =

Nmax R 7'L+2
cov(Agp,Agg) = « ZafL ( ) Pp(cosypqg)
— rp ’I“Q

RB n+2
+ Z On < ) PR(COS¢PQ)'
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Modeling the covariance function (2)

e Where :
Rp = the Bjerhammer sphere radius,
R = the mean earth radius,
a = the scale factor,
1 = the spherical distance,
P, () = the spatial points,
o = the error degree variances related to the geopotential coefficients,
A(n—-1)
(n—2)(n+ B)

e For a choice of B, a,A and Ry must be computed using the
data within the specified area

and o, =

e We use the program COVFIT (Tscherning and Knudsen)

e [ he other auto-covariances, and cross-covariances are deduced
from the linear expressions and propagation laws of covariance
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Representation of the covariance function

covariances des anomalies de gravité en mgal2
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Representation of the covariance function

covariance du potentiel perturbateur en (m/s)4
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Representation

cross—covariance potentiel T etA g
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Example

36.5

36

35.5

35

33

28

26

24

— 22

20

- 118

16

14

12

10

22



II. Inverse problem.
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Basic description of the problem

The goal is to define a point-mass system which generates a field
of gravitation as close as possible to the actual field on a given
geographical region.

Therefore, from the region a (regular) grid is defined on a burried
spherical surface (centered in the center of the earth, radius R).

In every point (R, )\;,0;) (i=1,.---,M) of the grid a point-mass m;
IS put.

These masses generates a potential which is linear with respect to
the masses.

When considering variable depths for the masses, the potential is
non linear with respect to these unknowns.
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Least Square problems in a subspace of £2(S?)

The normal potential U is defined by a series expansion (spherical
harmonics):
a n

—+ oo n
U(r,0,9) = (1 + ) (—) Y (€nm cos me + Spm sin me) Prpm(cos 9))
n=2 T

m=0

too gNn o
_ (1 + nz::2 <;> > (enmRam + SnmSnm)) :

m=0

The anomalous potential T' is defined on the geoid. By an integral
representation, it is known everywhere in the exterior of the geoid.

Therefore W = U + T can be known on a given sphere S2 centered
at the earth center and containing the geoid in its interior.
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Least Square problems in a subspace of £2(52) (2)

The harmonic functions restricted to S2 are functions

400 n
f(0,0) = Z Z [anm 7_2nm(9,q§) + bnm gnm(eaﬁb)}

n=0 m=0

which are expressed in the orthonormal basis

(Rnm, Snm, 0<m<n).

The goal is to find the mass distribution which minimizes the quan-
tity :

1 N
- / (W — W)2do
2/ /g2

where W is the potential generated by the system of masses.

26



Expressing the least squares problem

Let m € RM the vector of masses and x € R™ the vector of the
unknown position parameters (i.e. the depths).

The potential W is represented by the vector w in the basis on S2.

For all 4, vector a;(x;) represents the potential of a unit mass located
at the :-th position of the grid at a depth «;.

By denoting A(X) = [a1(x1), - - ,apy(xps)], the linear least squares
problem to solve is expressed by
p = minmin|lw— A(X)m||>

X m
— mXin||w—A(x)A(x)+w||2.
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Ongoing work and perspectives

First tests for the linear problem are done.

A theoretical and practical study must be done to measure the
sensitivity of the minimum w.r.t. the depth of the grid.

A gradient algorithm must be defined to ajust the depth of the
Mmasses.

Amine is working hard on that...
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