On correction equations
and domain decomposition

for computing invariant subspaces

Bernard Philippe

INRIA/IRISA, Rennes

Yousef Saad

University of Minnesota, Minneapolis

M2AO07, Luminy, October 15-19, 2007



Introduction
How to correct bases of invariant subspaces ?
Case of real symmetric matrices (or complex hermitian)

Matrices obtained from discretized operators on partitioned domains
(domain decomposition).

Matrices are large, sparse and block structured (for adequate un-
known numberings)

We search methods which manipulate the considered matrix as an

operator : A : R* — R"
r —> Ax.



Approximate invariant subspace

Let us assume that U C R™"*k is an orthonormal basis of an approx-
imate invariant subspace U of R™ of dimension k: AU g U.

Projecting onto U @ U+ -

AU = UUT(AU) + (1 —uUut)AD)
— UD + R,
where
D e Matrix of the restricted
A ol = | P operator : D = UTAU
o e Residual :
R AU —UD

(I —UUT)(AU)
(lack of invariance)



Backward error and residual bounds
Since AU=UD+R=(A-—RUNDU=UD :

Theorem : The subspace U is invariant by the matrix A = A — RUT.
The correction A = —RU?L is minimum (for the 2-norm) within all
corrections A for which U is invariant by (A 4+ A).

Theorem : A is symmetric with eigenvalues (\;);=1,....n-
Let (ui)i=1.. be the eigenvalues of D = U'AU, then there exist k
eigenvalues of A, numbered (Aij)jzl,...,k, such that

[Ai; = mgl < [[R]2,
where R = AU — UD.
For:=1,.---,k, the eigenvalues u; of D are called Ritz values of A

obtained from U. The vectors xz; = Uy;, where y,; is the eigenvector
of D corresponding to u;, is called Ritz vector .



The problem

Let A be an operator defined on a domain 2 = Ule €2; and A; the
restriction of the operator on £2;.

The simplest case of two subdomains
€21, 2> and an interface I'.

How to build an approximation of the spectrum of A from the knowl-
edge of the spectra of (A;)1, 7



General block correction

U e R**™ - orthonormal basis of an approximate invariant subspace
and D =UTAU.
R = AU-UD=({I-U0UMNAU = UTR =0.
Goal : Obtain (W, A) such that
AU+W) = (U+W)(D+ A). (1)

But mn equations and mn + m?2 unknowns - the system is closed
by the condition :

ul'w = o. (2)
Two possible algorithms:

e Solving (1-2) by Newton.

e Iterating on the first order expression of (1-2).



First order correction

Neglecting second order terms from the system (1-2) yields the
equations:

AW — WD —-UA = —R (3)
Ul'w = o.

By multiplying the first equation on the left side by U?, and using

relation UTR=0: A =UT AW.

Therefore, system (3) is equivalent to computing W in the correc-
tion equation

(I —-UUDHYAW - WD = —R (4)

and then computing A = UL AW . The obtained solution W satis-
fies UTW = 0 as required.

Equation (4) is a Sylvester equation
KW —WD = —R with K € R**" D ¢ RM™X™ and W &€ R**X™,



Newton method for solving System 1-2

After the change of unknowns Up41 =U + Wy, = Ui + Zj, :

Algorithm : Newton-Sylvester iteration (Quadratic convergence)
0. Select Ug s.t. USU =1 (e.g., Up=U)

For k= 0,.--, until convergence Do:
Compute D, = UT AU, and Ry, = AUy, — U, Dy,
Solve (for Z,): (I — U UY)AZ, — Z,, D), = —R;,
Set Uk—l—l = Uk -+ Zk

EndDO

Ok Wb

Line 2 : matrix multiplications (dense and sparse).

Line 3 : Sylvester equation (diagonalization of D;, change of basis,
m sparse linear n X n-systems.



Non linear correction

At each step, reevaluate D and compute U in (5):

(I —UUNYAW —WD = —R with U'W =o. (5)

Algorithm : Iterative correction (Cubic convergence)

0. Select Ug (e.g., Ug =U)

1. For k= 0,---, until convergence Do:

2. Compute Dy = UL’ AUy, and R, = AUy — Uy Dy
3. Solve (for W): (I — U UL)AW, — WDy, = —Ry,
4. Orthogonalize : [Ugg1,S;] = ar(Ug + Wy).

5. EndDO

Line 4 : Additional computation w.r.t. Newton-Sylvester.

Remark : The correction (5) is used in Jacobi-Davidson and in
TRACMIN (Trace Minimization).



Test matrix 1
5-Point discretized Laplacian on a 14 x 17 mesh : n = 238.

T7 and 15 of order 112 and C' of order 14 :

Permuted Laplacian n=238

v O By
T = O 1> B»o 201
T T
B B C 1007 .
Initial guess : N\
U(l) O 150
Up = o U® 2007
0 0
where UM ¢ R112x10 gre the 0 S N E—

nz = 1128

eigenvectors of the 10 smallest

eigenvalues of 7. _
Pattern of the matrix
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Convergence

Newton-Sylvester
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Computing interior eigenvalues

Test matrix 2: PLAT1919 (From Matrix Market) ; n = 19109.

Computing m = 6 eigenvalues the closet to o = 0.995.

Spectrum of PLAT1919

10°
Pattern of PLAT1919 Permuted PLAT1919
10° e | 0
K’f 200 2000 N
AN
- 400 400
10" b
600 600
N
800 800 N
10
107g 7 1000 1000 N
1200 1200 “\Sx‘.‘
N
108} i 1400 1400 3
1600 1600
20 1800 1800
10 - v - . . . . h N .
0 500 ~ 1000 1500 2000 0 500 1000 1500 500 1000 1500
Indices of the eigenvalues of PLAT1919 nz = 32399 nz = 32399

Spectrum Original matrix Rearranged matrix

12



Results

Computed eigenvalues :

Newton-Sylvester Non Linear Corr.
After kK = 10 iterations After k = 6 iterations
Residual : 5 x 1072 Residual : 3 x 10~11
eigenvalue | index error eigenvalue | index error

0.91576 | 1771 | 4x 1073 | 0.96497 | 1782 | 1 x 10 1°

0.97367 1785 | 2 x 1073 0.99000 1786 | 1 x 10~ 1°

0.98842 | 1786 | 2x 1073 | 0.99359 | 1788 | 2 x 10~ *°

0.99213 | 1788 | 1 x 103 0.99515 | 1791 | 2 x 10715

0.09964 | 1791 | 4x 1073 | 1.0053 | 1793 | 4 x 10~ 15

1.0866 1812 | 2 x 1073 1.0113 1794 | 2 x 10~1°




Location in the spectrum

1.15

11
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Eigenvalues of PLAT1919
O  Computed eigenvalues

1760 1770 1780 1790 1800 1810
Indices of the eigenvalues of PLAT1919

Newton-Sylvester

= There are missing eigenvalues.

1820

1.025¢

1.000

0.975¢

0.950

Eigenvalues of PLAT1919
O  Computed eigenvalues

1770 1775 1780 1785 1790 1795 1800
Indices of the eigenvalues of PLAT1919

Non Linear Correction

Use of Sturm sequences to determine intervals of missing eigenvalues.

Need of pursuing with a deflating technique and Inverse iteration.
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Back to Domain Decomposition

B FE
= c)
where B € R(»—p)x(n=p) B is a block diagonal matrix correspond-

ing to the inner nodes of each subdomain and E and C' correspond
to the interactions between the domains.

_ (1 -B7lE ) . . 1T (B O
LetU_<O 7 ),therefore.UAU_<OS>

where S = C — ETB~1E is the Schur complement.
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The CMS approximation (one level of AMLS)

The standard initial problem

B FE u ) _ [ v
ET C y ) y )’
becomes the transformed generalized eigenvalue problem
B 0 u) I —B7lE u
0o S y | = —ETB~! Mg y )’
where Mg =1+ ETB2E.

CMS (*) consists of neglecting the coupling matrices and coupling in the RHS.
An uncoupled problem is therefore obtained :

B v J Y,
S s = n Mg s,

from which the desired approximations are computed to be used in a Rayleigh-Ritz
estimation.

(*) CMS=Component Mode Synthesis = one step of AMLS (Multilevel ap-
proach).
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Two equivalent approaches

Applying the RR procedure defined by the transformed problem and
the basis

: 0
J

IS equivalent to apply the RR procedure on the original problem and
the basis

. _B—lE .
{ﬁz:(qg> 1=1,...,mp; ﬂjz< . SJ) j:]-)"°7m5}7

S
J
where (s;) are eigenvectors of the pencil (S, Mg).

Drawback of the CMS correction : thisis a “one shot” approxima-
tion.
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Second approach : the Newton-Sylvester iteration

Let V7 € RP*X™ (1 < m < p < n) an orthogonal basis of an invariant
subspace of B, so that BV; = V1D, where D = diag(p1, -+, tm) and

we let U = (‘(/)1> c RXm

Applying the Newton-Sylvester iteration amounts to solve the Sylvester

0
equation : (I-UUY)AZ—ZD = —-Rwhere R=AU-UD=| . |.
E-Vy
Since D is diagonal this system decouples into the m distinct linear
systems,

O
(I - UUN) Az — pizi = —rj = — (ET,Ui>
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The final expression of the first correction
Let P =1V V{.

In the end, the column-vectors of the new matrix U™%" are given by
vi — P1(B — u;I)1P Es,

Si

u, Y = w4z = < > with  s; = —Ss(u;) " TE v,

where Sx(u;) = C — u;I — ET'P{(B — p,I)TPLE is the projected Schur
complement.

_VaVIEs.
The residuals satisfy (A — p;Dul? = ( 1M1 SZ)

O

It is, of course possible to apply additional steps of this correc-
tion process. However, these additional steps will require expensive
Sylvester-like equations to be solved at each step with different
shifts.
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Iterative CMS

To make easier the correction, the following is proposed :

Algorithm : Iterative CMS

0. Select Up s.t. UgUo = [ from eigenvectors in each subdomain.
1. For k= 0,---, until convergence Do:

2. Compute Ry = AU, — U, (UL AUY)

3. Solve (for Zy): (I — U, UL)AZ, = —R,,

4. Set V = [Uka Zk]

5. Compute Ug4q using RR on A with V.

6. EndDo

Step 3 can be solved by solving

(fa Z2)(7)=(7")
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Numerical tests

Schrodinger operator ©: H = —A + V on a rectangular domain in 2-D with
Dirichlet boundary conditions.

V is the Gaussian V(z,y) = —Be~(@2)°~(4=v)* in which (z., y.) is the center of the
domain and g = 100.

The domain is a rectangle of dimension
(ny +1) xh=1and (n, + 1) x h.

The domain is then split in two horizontally , in the middle of the domain.

Nney €igenvalues are sought.

Tested methods :
* No correction : RR with W composed of ne,/2 eigenvectors of each domain.
* CMS : the previous basis is augmented by Z = (_B_IG) where G is matrix of

G
eigenvectors of S associated with the smallest n., eigenvalues (dimension of the

basis : 2ney).
* Newton-CMS : as before but G = S 'ETW (obtained from one inverse
iteration with A).
* Correction : one iteration of the Iterative CMS.
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Numerical tests (2)

Test 1

Avrtificial Hamiltonian of size n = 1155

_2,
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_16,
' No correction
18l =-==CMS
—— Newton—-CMS
-20 ] |
-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

Exact eigenvalues

ng = 35, ny = 33 (n = 1155).
Ney — 12.

0.1

Log10 (Error)

Test 2

Avrtificial Hamiltonian of size n = 1935

_5 —
_10 | -
_15 | -
_20 | -
_25 | -
_30 | -
'\_{‘ = = Newt-CMS
-8- 1st corr.
= 2nd corr.
_35 1 1 1 1 1 1 1 J
20.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

Exact eigenvalues

ng = 45, ny = 43 (n = 1935).

Ney — 20.
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Conclusion

Block variants of the correction equation were derived by viewing
the eigenvalue problem as a system of nonlinear equations.

Resulting algorithms converge cubically or quadratically but they
require the solution of a different Sylvester equation at each step.

In the case of CMS, experiments show that it is possible to obtain
good improvements by adaptations of these algorithms which do
not require to refactor the matrix at each step.
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