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Abstract - We present an explicit formulation of the splitting
associated with the Mutiplicative Schwartz iteration. We give
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I. INTRODUCTION

Domain decomposition provides a class of divide-and-
conquer methods suitable for the solution of linear or non-
linear systems of equations arising from the discretization
of partial differential equations. For linear systems, domain
decomposition methods can be viewed as preconditioners
for Krylov subspace techniques.
In preconditioning methods, which is our interest in this
article, domain decomposition refers to the process of sub-
dividing the solution of a large linear system into smaller
problems whose solutions can be used to produce a precon-
ditioner (or solver) for the system of equations that results
from discretizing the PDE on the entire domain or more
generally from any sparse matrix. In our work, we consid-
er the latter and we suppose that the domain decomposition
is with overlapping.
Traditionally, there are two classes of iterative methods that
derive from domain decomposition with overlapping : Ad-
ditive Schwarz and Multiplicative Schwarz. When using
these two methods as solvers, the convergence rates are
often slow and convergence is mainly guarantied for sym-
metric positive definite matrices and M-matrices [BEN 99].

For that reason, the particular interest of Schwarz method-
s is as preconditioner of Krylov subspace methods since
they can be efficient even when they would not converge as
a full method.
When used as preconditioners, one is interested in deriving
an explicit and useful expression of the preconditioner. For
the Additive Schwarz method such an expression exists. To
our knowledge, no explicit expression of the precondition-
ner for the Multiplicative Schwarz method exists. In a pre-
vious work we derived such an explicit formulation. In this
paper, we discuss the implementation of the new formula-
tion on a parallel computer.

II. DOMAIN DECOMPOSITION OF A SPARSE MATRIX AND
NOTATIONS

Let us consider a sparse matrix � � ����. The pattern of
� is the set � � ���� ������� �� �� which is the set of the
edges of the graph � � ���� � where � � ��� 			� 
� �
�� � 
� is the set of vertices.
Definition II.1: A domain decomposition of matrix � into
p subdomains is defined by a collection of sets of integers
�� �� � �� � 
�, � � �� 			� � such that :

�
��� 
� � � ���� ��� � 	
� �

��
������ 
���

Following this definition, a domain decomposition can be
considered as resulting from a graph partitioner but with
potential overlap between domains. For the rest of our dis-
cussion, we shall suppose that a graph partitioner has been
applied and has resulted in � sets �� whose union is � ,



� � �� � 
�.
We shall denote by �� � �����

���� the vector space of
�� of all the vectors with zero components for every index

 �� ��. Let �� be the dimension of ��. The orthogonal
projector onto �� is defined by the sub-identity matrix �� of
order 
 
 
 whose diagonal elements are set to one if the
corresponding node belongs to � � and to zero otherwise.
We define the matrix,

��
� � ������ (1)

which is an extension to the whole space, of the restriction
of � to ��. We also define the complement sub-identity
matrix ��� � � � �� and the matrix,

��� � ��
� 	 ���	 (2)

We assume thereafter that all the matrices ���, for � �
�� � � � � � are non singular. The generalized inverse ��

� of
��
� satisfies ��

� � �� ��
��
� � ����� ��.

Proposition II.1: Definition II.1 implies that for any �� 
 �
��� 			� ��, the following is true :

��� 
� � 
� ����� � �	
Proof: Let ��� �� ���
�� such that ���� �� �. Since

��� �� � � , there exists � � ��			
� such that � � ��

and � � ��; therefore �� ��� �� 	 and �� ��� ��
	. Consequently, from Definition II.1, �� � �� 
 � and
�
 ��� 
 �, which implies ��� 
� 
 
.
Let us introduce a special situation which is often satisfied
and which wil bring some simplification in the sequel.
Definition II.2: The domain decomposition is with weak
overlap if and only if, for any �� 
 � ��� 			� �� the fol-
lowing is true

��� 
� � �� ����� � �	
The set of unknowns which represents the overlap is de-
fined by the set of integers �� � �������� � � �� 			� ���,
and size this overlap by �� . Similarly to (1) and (2), we de-
fine

��
� � ������ (3)

and

��� � ��
� 	 ���� (4)

where �� � ���� is sub-identity matrix whose diagonal
elements are set to one if the corresponding node belongs
to �� and to zero otherwise, and ��� � � ���.
Example II.1: Figure 1 displays an example of a domain
decomposition for a matrix in the case where all � � are
intervals of integers.
There is a close connection between a block tridiagonal
structure and a domain decomposition. For instance, in this
example, if, in order to transform� into a block tridiagonal
matrix, we assume that all the blocks ������ and ������ are
zeros, the domain decomposition is obtained by defining
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Fig. 1. A matrix domain decomposition with block overlaps

the domains with three consecutive blocks and the overlaps
correspond to only one block. One can easily verify that
such an overlap is a weak overlap. If the domains were de-
fined with only two blocks and the domains overlap on one
block, the overlap would not be a weak overlap.

In the definitions, the set of integers defining the subdo-
mains are not assumed to be intervals although this is often
the case as in the example. However, when considering
other cases like a red-black ordering of blocks, it is impor-
tant to include the general case. Nevertheless, it is always
possible to recover a special case by renumbering the un-
knowns.

III. MULTIPLICATIVE SCHWARZ : CLASSICAL
FORMULATION

The goal of Multiplicative Schwarz methods is to iterative-
ly solve a linear system

�� � � (5)

where matrix � is decomposed into overlapping subdo-
mains as described in the previous section. The iteration
consists of solving the original equation in sequence on
each subdomain. This is a well-known method ; for more
details, see for instance [BEN 99], [HAC 99], [MEU 99],
[SAA 03], [SMI 96]). In this section, we present the main
properties of the iteration and exhibit an explicit formula-
tion of the corresponding matrix splitting.

Let �� be the current iterate and �� � � � ��� the corre-
sponding residual; the method proceeds as follows.

It builds � sub-iterates ����	��� � �� 			� �� and their corre-
sponding residuals ����	� � �������	� by the following



recursion

�����������
����������

����	� � �� 	��
� �

�

and ����	� � �� ����
� �

��

����	� � ����	� 	��
� �

���	�

and ����	� � ����	� � ���
� �

���	��
...
���� � ��������	� 	��

� �
�������	�

and ���� � ��������	� ����
� �

�������	�	

(6)

It follows that :

���� � �� ����
� �			�� ����

� ��
� 	 (7)

This method corresponds to a relaxation iteration defined
by some splitting � � � �� such that the matrices iter-
ating on the residuals and on the errors are respectively

���� � �� ����
� � � � � �� ����

� ��

and

���� � ��������

� �� ���
� �� � � � �� ���

� ��	

The convergence of this iteration is proven for M-matrices
and for symmetric positive definite matrices (eg. see
[BEN 99]).
Now, let us suppose that the goal is to consider another iter-
ative method but preconditioned by one step of the Multi-
plicative Schwarz method. For that purpose, it is necessary
to define

� � ����� or � � �����

depending on the side of the preconditionning, for any vec-
tor � and where � is the matrix characterized by the previ-
ous splitting. From the expression of ���� and ����

we can derive an expression of ���� or ���� as fol-
lows :

���� � � � �� ���
� �� � � � �� ���

� ��� (8)

or

���� � � � �� ����
� � � � � �� ����

� �	 (9)

IV. MULTIPLICATIVE SCHWARZ PRECONDITIONNER

A. Explicit formulation

Theorem IV.1: Let � � ���� be decomposed into � sub-
domains as described in section II such that all the matrices
���, and the matrix �� for � � �� � � � � � are non singular.
The Multiplicative Schwarz preconditionner matrix � ��

can be explicitly expressed by :

��� � ���
�� �����

�������
����� � � � ���

�� ���
���
��

(10)

where for � � �� � � � � � matrix ��� correspond to the block
�� and for � � �� � � � � � � � matrix ��� to the overlap ��

when completed by identity in both cases (see the notations
introduced in section II).

Proof: See [ATE 05].
Let us define the following partition of matrix � �

�� �

�
�� ��
�� ��

�
�

which allows us to characterize the matrix � � � ��.
Proposition IV.1: The matrix � defined by the multiplica-
tive Schwarz splitting � � � � � can be expressed as
follows:

��
�

��� � �� � � ������� � 
 � �	 �
����� � ������ � ��� ��
��� � � !"#��$���

(11)

where �� � ����
��
� �� for � � 
 � �� 			� �� �.

When the domain decomposition is with weak overlap, ex-
pression (11) becomes:

�
����� � ������ � ��� ��
��� � � !"#��$���

(12)

where �� � ����
��
� �� for � � 
 � �� 			� �� �.

Proof: See [ATE 05].
From, this expression, we can claim that � is rank defi-
cient. Actually it is nilpotent.
Corollary IV.1: In the splitting � � � � � associated
with the Multiplicative Schwarz method, matrix � is of
rank � 


����
��� ��.

Proof: The proof is obvious when the decomposition
is with weak overlap. For general case, see [ATE 05].
That property implies that, in exact arithmetic, a Krylov
method, preconditioned by the Multiplicative Schwarz iter-
ation, computes the exact solution at the ��	��
� iteration,
at the latest [ATE 05].

B. Symmetrization of M

Even when matrix � is symmetric, the preconditioned con-
jugate gradient method cannot be used directly since the
Multiplicative Schwarz preconditioner is not symmetric.
However, it can easily be symmetrized by including a sec-
ond sweep corresponding to apply� �� to current residual
����. It can be written as follows :

�
���� � �� 	�����
���� � ���� 	��� ����



Since ���� � ������, we have

���� � �� 	����� 	���������

� �� 	��� ��� 	�������

� �� 	��� ��� 	� ��������	

We deduce that the new preconditioning matrix (the one
corresponding to two sweeps up and down) is such that:

��� � ��� ���	����� � ��� ���	�������

It can be shown [BEN 99] that when � is s.p.d., the pre-
conditionner � is s.p.d. as well.

C. Advantages of the explicit formulation

In the classical expression (6) of the Multiplicative
Schwarz iteration the computation of the two steps

���� � �� 	����� and

���� � ��������

is carried out recursively through the domains whereas the
explicit formulation decouples the two computations. The
computation of the residual is therefore more easily paral-
lelized since it is withdrawn from the recursion. Another
advantage of the explicit expression arises when it is used
as a preconditioner of a method already coded in a library.
In such a case, the user is supposed to provide a code for
the procedure ������. Since the method computes the
residual, the classical algorithm computes it once more.
We now show that the number of operations involved in
both approaches remains roughly the same, although with
a slight advantage to the explicit formulation.
Let us denote by ����
�� the cost of one iteration using the
classical formulation. One can verify that

����
�� �

�	
���

�"� 	 ���� (13)

where

����
���

"� � # of flops for solving in subdomain i :
����	� � ��������	� 	��

� �
�������	��

�� � # flops for multiplying by � in subdomain i :
����	� � ��������	� �����

� �
�������	��	

Let us also denote by ������� the number of operations
for computing � � ����, using the explicit form of the
Multiplicative Schwarz preconditionner :

������� �

���	
���

�"� 	 %�� 	 "�� (14)

where %� is the number of flops for multiplying a vector
in subdomain i by ��. The number of operations ����
in the computation of a residual, which involves the mul-
tiplication by matrix �, satisfies the relation ���� �

��
��� &� �

����
��� %� where &� is the number of operations

involved in the multiplication by block � �. Since &� ' ��
(they are usually close numbers), we obtain that

����
�� � ������� 	 ����	 (15)

D. Red-Black ordering (M and N)

The Multiplicative Schwarz method clearly is not suitable
for parallelism since the recursion between blocks prevents
independent calculations. The classical way to overcome
the drawback is to relax part of the recursion by a Red-
Black coloring. If we remember our assumption that over-
lap only occurs between consecutive blocks, like in Fig-
ure 1, all the blocks of odd numbers can be used in par-
allel and then the update is performed with all the blocks
of even numbers. If we consider a reordering of the un-
knowns which labels first the components corresponding
to the odd domains and then the even ones, it can easily be
shown that the new preconditioner is still a Multiplicative
Schwarz method but with only two domains ; the method
becomes an Alternative Schwarz method. In such a situa-
tion the overlap is the union of all the elementary overlaps
and therefore the total dimension of the overlap does not
change.

V. PARALLEL IMPLEMENTATION

A. Expressing parallelism

The parallel architecture in mind is a network of � proces-
sors ������� which communicate through message passing
primitives. Let us consider that � blocks are determined
in the matrix � so that their order is approximatively the
same. Block �� is stored in the memory of processor ��.
The vectors are stored accordingly ; it is therefore neces-
sary to maintain the consistency between the two copies of
the components corresponding to the overlaps.
Matrix � may be considered as a sum of � blocks � � (� �
�� � � � � �) where �� � �� and any other block �� is the
block �� from which the overlapping block � � is zeroed as
shown in Figure 2.

 
 

A i 
 

  0 
B i =   

Fig. 2. Elementary block for the matrix multiplication

Therefore the matrix-vector multiplication � ��
�� �

��
���

���� can be performed by the following algo-
rithm :



Code for Processor ��

� processor �� owns �� and �� �
�� �� ���� ;
if � � �,

send ��� to processor ���� ;
end ;
if � � �,

send ��� to processor ���� ;
end ;
if � � �,

receive 	 from processor ���� ;
��� �� ��� � 	

end ;
if � � �,

receive 
 from processor ���� ;
��� �� ��� � 


end ;
� processor �� owns �� �

Parallel application of the operator.

where �� is the subvector of � corresponding to the �-
block limits and where vector (� is partitioned into (�� �



(��

�
� (��

�
� (��

�
�

accordingly to the overlap with the neigh-

boring blocks.
The application of the preconditionner, corresponding to
one iteration of the Multiplicative Schwarz method, in-
volves a recursion which harms the parallel behaviour. One
remedy, as mentioned in Section IV-D is the Red-Black
adaptation. Nevertheless, since the blocks are individual-
ly stored on the processors, the parallel expression allows
to handle large problems. By partitionning the vectors ac-
cordingly to the block structure, the procedure on Processor
� (� � �� � � � � �) is expressed by :

Code for Processor ��

� processor �� owns �� and �� �
if � � �,

receive ����� from processor ���� ;
��� �� ����� ;

end ;
Sove ���� � �� ;
if � � �,
��� �� ���

�
� ;

send ��� to processor ���� ;
end ;
if � � �,

send ��� to processor ���� ;
end ;
if � � �,

receive ����� from processor ���� ;
��� �� ����� ;

end ;
� processor �� owns �� �

Preconditioning step : Solve 
� � �.

The use of the preconditionner requires being able to solve
linear systems for every matrix��. When feasible, the sim-
plest approach consists in LU-factorizing all the matrices.

This can be done in a parallel pre-processing step by invok-
ing on each processor a sparse solver such as SuperLU
[LI 99] or MUMPS [AME 00].

In the case of weak overlap, the matrix � � � � � has
a very simple shape as indicated in relation (12). In such
case, the matrix-vector multiplication " � �� is easily par-
allelized. To be more specific, let us partition block � � and
the corresponding vectors �� and "� as follows :

�� �

�

 �� ���

� �
���
� ���

� � �
�

� ��
� ����

�
� �

�� �

�

 ���

���
���

�
� and "� �

�

 "��

"��
"��

�
� �

for � � � �� � � � � �� �. Notice the zero sub-blocks which
appear in that decomposition because of the weak overlap.
Block �� is accordingly defined by omiting the third index
since �� does not exist. In that situation, it is easy to prove
that the multiplication of vector � by matrix � is imple-
mented by the following program :

Code for Processor ��

� processor �� owns �� and �� �
�� �� ���

� ��� ;
if � � �,

send �� to processor ���� ;
end ;
if � � �,

receive ���� from processor ���� ;
solve ��� � ���� ;
��� �� � �

� � ;
��� �� � ;
��� �� � ;

else
�� �� � ;

end ;
� processor �� owns �� �

Parallel Multiplication � � � � �
(weak overlap).

Since ���� � � ����� , it can be of interest to com-
pare the CPU-times of the multiplication of a vector by ma-
trix � and of the multiplication by matrix � .

B. Test problem

The test matrix is obtained from the discretization of a 3-D
flow fracture network [MUS 05]. Each fracture is regarded
as a medium 2D and the domain is a collection of such
fractures as shown in Figure 3. The mathematical model is



Fig. 3. Example of Network of fractures

the flow expressed with the Darcy’s law :

�
�	 & � ��

& � �)	�#�
(16)

where & and ) are respectively the flow and the transitivity
integrated upon the thickness of the fracture and # is the
load. The system (16) is discretized by the Mixed Hybrid
Finite Element method which ends up as a linear system
with a sparse symmetric positive definite matrix of order

 � ��� 
�� with 
�� � �
�� ��� non-zero entries. The
pattern of the matrix is displayed in Figure 4. The un-

Fig. 4. Pattern of the matrix (original ordering)

knowns are then renumbered with the Symmetric Reverse
Cuthill-McKee permutation which reduces the bandwidth
of the matrix (half-bandwidth is � � ���). We consider
three block partitions on the permuted matrix which all sa-
tatisfy the property of weak overlap.
The first and the second partition are based on ten domain-
s. The dimension of the overlaps are respectively 700 and
2001. The partitions are defined in the Tables I) and II)

Block # 1 2 3 4 5
First row 1 8000 16000 24000 32000
Last row 10000 18000 26000 34000 42000

Block # 6 7 8 9 10
First row 40000 48000 56000 64000 72000
Last row 50000 58000 66000 74000 80231

TABLE I
BLOCK PARTITION # 1

Block # 1 2 3 4 5
First row 1 8701 17401 26101 34801
Last row 9400 18100 26800 35500 44200

Block # 6 7 8 9 10
First row 43501 52201 60901 69601 78301
Last row 52900 61600 70300 79000 80231

TABLE II
BLOCK PARTITION # 2

The third partition is based on 4 blocks with an overlap
equal to 701.

C. Experiments

The experiments were run on a network of nodes connect-
ed through a Giga-bit Ethernet switch. Each node is a bi-
processor Sun Fire V20z (Opteron at 2.2GHz) with a 2 Gi-
gaByte local memory. The tested primitives are :

A) Factor ������� : This pre-processing step is entirely
parallel. On each processor, the step assembles first ��

from the two blocks �� and �� (see Figure 2) ; then, the
block �� is factorized by the SuperLU routine.

B) Factor ��������� : This pre-processing step is parallel
but run on �� � processors. It includes the factorization of
the overlapping block �� by the SuperLU routine and the
extraction of block �� from block ��.

C) � �� �� : This step is parallel.

D) � �� ���� : This step is almost sequential (recursion
on the blocks).

E) � �� �� : This step is parallel but on ��� processors.
It must be compared to step C).

F) � �� ����� : This step corresponds to pipelining
steps D) and C). Step D) is dominant and therefore the over-
all is poorly parallelized.

G) � �� ������� : This step corresponds to pipelin-

Block # 1 2 3 4
First row 1 19291 38591 57891
Last row 19991 39291 58591 80231

TABLE III
BLOCK PARTITION # 3



Partition # # 1 # 2 # 3
Number of processors 10 10 4
A) Factor ������� 4.3157 1.3738 3.3079
B) Factor ��������� 0.0193 0.0087 0.0116
C) � �� �� 0.0023 0.0016 0.0024
D) � ��
��� 0.0676 0.0830 0.0658
E) � �� �� 0.0022 0.0017 0.0022
F) � �� �
��� 0.0688 0.0545 0.0676
G) � �� ���
��� 0.0693 0.0548 0.0804

TABLE IV
TIMINGS (S)

Partition # # 1 # 2 # 3
Number of iterations 41 32 23
Time (s) 3.74 2.49 2.64

TABLE V
CONVERGENCE FOR GMRES

ing steps D) and E). Step D) is dominant and therefore the
overall is poorly parallelized.

The programs are C-coded and are written under the stan-
dard of the library PETSc [BAL 04]. Timings are reported
in Table IV.
It can be first noticed that the pre-processing step A) is time
consuming and very dependent on the block partitionning.
For instance, the block definition of Test # 1 is much less
efficient than the block definition of Test # 2. Moreover, the
assembly part becomes important for large overlappings.
The timings of Steps C) to G) show that the precondition-
ing step D) is dominant. This is the effect of the recursion
between the blocks which slows down the computation. In
the tests, for each block a preliminary reordering by nested
dissection was considered.
The last information which can be drawn for the table of
timings is that Steps C) and E) are very much equivalen-
t. Therefore Steps F) and G) are also close. These tests
are not sufficient to decide if there are situations where the
formulation corresponding to Step G) can be more efficient
than the direct approach of Step F) when the partition is of
weak overlap.
To illustrate the behaviour of the preconditionner, the last
test embeds the procedures in the GMRES solver of the
PETSc library. The condition number of the solved sys-
tem is of order ���. The maximum size of the basis is
chosen as 40 and the tolerance for the precision is fixed as
�����. When no precondionner is used, the method stag-
nates. When the Multiplicative Schwarz preconditionner
is used, we report in Table V the number of iterations to
reach the convergence for the already defined three block
partitions. Times are also reported ; they do not include the
pre-processing step. In these tests, we replaced the nest-
ed dissection reordering on each block by the minimum
degree reordering ; this decreases the time spent in each
iteration.

It appears that the tests give similar results. The fastest is
the test corresponding to the smallest blocks and smallest
overlaps since that decreases the time spent in each itera-
tion and while it does not deteriorate too much the conver-
gence. The convergence evolution is displayed in Figure 5.
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Fig. 5. Convergence of GMRES (Partition # 2)

These tests provide a preliminary study. To obtain a more
precise picture, tuning of the codes is mandatory ; tests
on bigger matrices must also be considered. Nevertheless,
they prove that the explicit expression of the Multiplicative
Schwarz allows an easy use of the preconditionner in the
framework of the library PETSc.

VI. CONCLUSION

The Multiplicative Schwarz is a very efficient precondition-
ner especially for Krylov methods.

In this work we have shown how the explicit formulation of
the Multiplicative Schwarz preconditionner, previously de-
scribed in [ATE 05], can be implemented on a parallel com-
puter. By decoupling the application of the preconditioner
and the computation of the residual, we obtain an algorith-
m which is better suited for parallelism and for black-box
solvers.

The first experiments exhibited in this paper prove that this
approach is of interest. A common situation of block par-
titionning, which is called of weak overlap, provides an al-
ternative expression of the combination of the two steps of
the operator and preconditionner application. A fine tuning
of the implementation is necessary to have a better analysis
of the advantages of this new formulation. We expect to
characterize cases where this formulation is superior.

Although the Additive Schwarz preconditioner is often pre-
ferred for its ability to be parallelized, it has a slower con-
vergence rate. We have worked on an alternative expres-
sion of the multiplicative version which might change the
conclusion.
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