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Abstract

Numerical methods related on Krylov subspaces are widely used in large sparse numerical
linear algebra� Vectors in these subspaces are manipulated through their representation onto
orthonormal bases� Nowadays� on serial computers� the method of Arnoldi is considered
as a reliable technique for constructing such bases� Unfortunately� this technique is rather
in�exible to be e�ciently implemented on parallel computers� In this report we examine
several parallel and stable algorithms based on the idea of Reichel et al� ��� �� which retrieve
at their completion the same information as the sequential Arnoldi�s method� We present
timing results obtained from their implementations on the Intel Paragon distributed	memory
multiprocessor machine�
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� Introduction

Background and motivations� The question of obtaining with a stable procedure an or�
thonormal basis

Vm � �v�� v�� ���� vm� ���

of the Krylov subspace
Km � Spanfv� Av� ����Am��vg ���

where A � R
N�N is sparse and v � R

N �N is large and m � N� arises as a crucial problem in
projection methods for approximating�

� solutions of linear systems for which the coe	cient matrix is A �FOM and GMRES like pro�
cedures�


� eigenvalues and eigenvectors of A �Arnoldi procedure�


� functions of the matrix A ��� 
�


In presence of a multiprocessor environment� it becomes hardly di	cult to e	ciently implement
the Arnoldi�s algorithm which is the standard sequential tool for handling the problem


Arnoldi basis� The method of Arnoldi is a stable procedure which is highly valued for the
computation of Vm
 It results from a recursive application of the Modi�ed Gram�Schmidt �MGS�
process on the columns of �v�� Av�� ���� Avm��� and upon its completion� we have the following
fundamental relation

AVm � VmHm � hm���mvm��e
T
m ���
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or more condensely
AVm � Vm��H ���

where Vj � �v�� ���� vj� � R
N�j is an orthonormal basis of Kj � H � R

�m����m is such that
Hm �H�� � m� � � m� � V T

mAVm is upper Hessenberg andH�m� �� � � m� � ��� ���� �� hm���m�
T 


Unfortunately the underlying parallelism within this algorithm is limited only to matrix�vectors
multiplies� dot�products and saxpys
 For this reason� in the aim of increasing the parallelism�
some authors prefer to use Classical Gram�Schmidt �CGS� on supercomputers
 But since this
version can sometimes be unstable� it is more cautious to apply twice over the orthogonalization
process which now� causes a degradation of performances


Scaled monomial basis� With ��� ���� �m�� being scaling coe	cients� we have

Km � Spanf��v� ��Av� ���� �m��A
m��vg� ���

Some authors proposed to adopt this representation and to carry out the QR decomposition
of the columns appearing in ��� via Householder re�ectors
 Unfortunately this approach is
inappropriated because� it is subject to severe rounding errors


Newton basis at Leja points� Another approach recently introduced and� which seems to be
more promising� comes from the relation

Km � Spanf��v� ���A� ��I�v� ���� �m��

m��Y
���

�A� ��I�vg ���

where the stability can be signi�cantly improved by a suitable choice of the ��� ���� �m�� and
the ��� ���� �m��
 The studies of Reichel et al� ��� �� �� show that a suitable set f��gm��

��� which
improved the conditioning of ��� are the �m� ���st Leja points in the convex hull that encloses
the spectrum of A
 In particular the f��gm��

��� can be the �m � ���st eigenvalues of A num�
bered according to Leja order
 Since in practice the spectrum of A is unknown� the considered
eigenvalues are those of the upper Hessenberg matrix Hm obtained from a �rst step by Arnoldi
algorithm
 Moreover if the technique is used for eigenproblems� as soon as the Ritz values are
obtained� they may be used as the new updated set of Leja points
 But in order to avoid complex
arithmetic� the Leja ordering must be somewhat modi�ed
 All the details are described in ��� ��


Instead of focusing on a speci�c�purpose procedure that solves a particular problem as it is done
in ��� �� for the case of GMRES� we would like to develop here ready�to�use high�level parallel
algorithms that retrieve the same information as the Arnoldi�s method� i
e
 the basis Vm�� and
the matrixH 
 Those information should be explicitly or implicitly given
 This way of doing
allows to properly design into parallel environments the wide family of scienti�c applications
that make use of Krylov subspaces
 Right now� it is worth mentioning that the problem of
computing Krylov bases for the same matrix A and di�erent starting vectors v�s arises several
times within an application but the approximated Leja points are computed once and we shall
now admit that the set f��gm��� is known

De�ning the N � j matrix�

bAj �
����v� ���A� ��I�v� ���� �j��

j��Y
���

�A� ��I�v

�� � ���

�We adopt here notations which are sligthly di�erent to those in ��� �	
 Bj is denoted by bAj and eBj by eAj�

�



we set v as the starting vector in ��� Algorithm �
�� and we obtain real matrices eAj � R
N�j andeDj � diag� �d�� ���� �dj� satisfying bAj � eAj

eDj � ���

Therefore it turns out that if the QR decomposition of eAj is computed

eAj � eQj
eRj �
�

then� the desired orthonormal basis of Kj is simply

Vj � eQj � ����

How to recoverH� To be a general�purpose approach� we would like to end up with the unify�
ing relation ���� i
e
� to determineH 
 It was shown in ��� that� going from the QR decomposition
of �Am�� � eQm��

eRm��� one can construct almost straightforwardly an upper Hessenberg matrixbH � R
�m����m such that

A bAm � eQm��
bH� ����

Therefore we can state that

H � bH � eRm
eDm

���
� ����

Indeed by using ������ it comes�

Vm��
bH � A �Am � A bAm

bDm � AVm bRm
bDm�

Step ���� is extremely sensitive and it explains why the set f��gm��� must be chosen in a way
such that the condition number of bAm remains of reasonable magnitude
 In the particular case
of the GMRES implementation�H need not be explicitly form
 Nonetheless in many other areas�
H should be known
 But undoubtely� the most consuming task of the entire computation is the
QR decomposition of eAm��


� Parallelization

In fact the parallel implementation of the approach requires to parallelize�

�a� the operation ��A � �I�v where A � R
N�N is sparse which involves a large amount of

�ops when N is very large


�b� the QR factorization of eAm�� where eAm�� � R
N��m��� is dense and m� N 


The point �a� is almost the same as the sparse matrix vector multiplication problem
 We shall
restrict our study in this report to point �b� and we shall describe parallel algorithms intended
to distributed�memory multiprocessor supercomputers
 We assume that the interconnexion
processor network is physically or logically a bi�directional ring


PPPPP0 kk−1 k+1 r−1
... ...

Figure �� The interconnexion network is a bi�directional ring
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Processors are numbered from � to r � �
 We use three basic functions� myid�� returns the
number of the processor that issues the command
 myright�� and myleft�� return the numbers
of the right and the left neighbors respectively
 We also make use of the fundamental message�
communication functions send�� and receive��
 At this present level� there are important
considerations to highlight


� At the end of the algorithms� the factor eQm�� which constitutes the basis we are looking
for may not be explicitly known and�or may be scattered across the network
 Therefore
we shall supply �parallel� procedures that compute the matrix vector product z � eQm��y

for any given vector y � R
m��
 This point constitutes the major di�erence with usual

parallel least squares solvers in which a product of the form QT b is perform while doing
the factorization �see� e
g
� ��� ��� ��� and references therein�
 Moreover it is unwise to
form explictly Q systematically because the actual obtained Krylov basis is used once �i
e

there is only one product Qy� during the overall running of the application


� The dimension m of the Krylov subspace is such that N � m and even N
r
� m


� Although the algorithms are mathematically equivalent to Arnoldi�s method� their com�
puted values are not rigorously identical because their stability behaviors are di�erent


For the ease of the presentation� we shall denote eAm�� by Am but it should be clear that we are
really looking for the QR factorization of eAm��


� Parallel Algorithms of Reference

��� Modi�ed Gram�Schmidt

Algorithm �
�
�� MGSDEC

initialize
�
N�m�Nloc� Aloc�� � Nloc� ��

�
�

for j �� � � m do

for i �� � � j � � do
s �� Aloc��� i�

TAloc��� j� �
s �� GLOBALSUM�s� �
Aloc��� j� �� Aloc��� j�� s �Aloc��� i� �
Rloc�i� j� �� s �

endfor

s �� Aloc��� j�TAloc��� j� �
s �� GLOBALSUM�s� � s ��

p
s �

Aloc��� j� �� s �Aloc��� j� �
Rloc�j� j� �� s �

endfor

Algorithm �
�
�� MGSVEC

zloc�� � Nloc� �� Aloc�� � Nloc� � �m� � y �

P�

P�

P�

Am����������������������������
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Figure �� Distribution by contiguous rows


Data distribution� Remember that r is the number of processors� the matrix Am is parti�
tionned into r portions of contiguous rows
 If the euclidian division gives N �Nr � �r then� in

�



the kth processor �� 
 k 
 r � ���

Nloc �
�
N � � if k 
 �r � �
N if k � �r � �

����

Aloc�� � Nloc� � �m� �
�

Am�kNloc� � � �k � ��Nloc� � � m� if k 
 �r � �
Am��r� kNloc � � � �r � �k � ��Nloc� � �m� if k � �r � �

����

This distribution insures that jN �k�
loc �N

�k��
loc j � f�� �g for two di�erent processors k and k�
 The

factor R will be available into all processors upon completion
 For MGSVEC� the vector y must
be present into all processors and the resulting product z � Qy is split according to the row
distribution of Am


Description�

MGSDEC Evolves exactly as the standard sequential MGS
 The jth column must be orthogonal�
ized against the previous ones� aj � aj��aTi aj�ai� i � �� ���� j��
 Since each column is
split throughout the network� the dot�products are partial thus� before carrying saxpy�
any processor has to gather the contributions from all the others
 This is done by
means of the system�supply function GLOBALSUM��
 The same reasoning apply for the
normalizing step


MGSVEC At completion the factor Q is explicitly available but is shared in the same fashion that
the original matrix Am at the beginning
 Hence the product z � Qy is trivial


Parallelism� The regularity and the simplicity of these algorithms are attractive compared to
those presented in the following sections
 But when the number of processors increases� one can
rightly ask if multiple calls to GLOBALSUM�� will result on a bottleneck slowing down drastically
the method
 We observe that this is not a crucial point
 However this implementation of MGS
didn�t speed�up and� runs for about � to 
 times slowlier than other sophisticated methods


For areas where the factor Q is explicitly needed� it will constitute the method of choice
 It is
very easy to implement and becomes quite competitive
 This interesting facet is in accordance
with what was already stated in ���


��� Column�oriented Householder Decomposition

Data distribution� The matrix Am � �a�� ���� am� is distributed by columns into a wrap�around

fashion
 If the euclidian division yields m � �mr� �r then� in processor Pk � Aloc � �a
�k�
� � ���� a

�k�
mloc

�
with

mloc �
�

�m� � if k 
 �r � �
�m if k � �r � �

�

�
aj � Pk �� k � �j � ���r �� �j � �� k��r � �

aj � a
�k�
� �� j � ��� ��r � k � �

In our present implementation� the factor R will be available into all processors at the end of the
decomposition
 For the algorithm COLVEC� the vector y and the product Qy belong to a speci�c
processor
 It is the one in possession of the mth column
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Algorithm �
�
�� COLDEC

initialize
�
k � myid��� N�m�mloc� Aloc�� � N� � � r � �mloc � ��r� k � ��

�
�

jright �� last column�index of myright��
j �� � �
� �� � �
while � 
 mloc do

if �j � ��� �� � r � k � �� then faj � a
�k�
� � � � � � � � � � � � � � � � � � � � � � � �g

create the j�th re�ector and send it to myright��

� �� �� � �
else

receive the j�th re�ector from myleft��

if its creator is not myright�� and �j � jright� send it to myright��

endif

update my local columns
j �� j � � �

endwhile

Algorithm �
�
�� COLVEC

k �� myid�� � km �� �m� ���r �
q �� k � km � if �q 
 �� q �� q � r �
if �k � km� z �� �y� �� ���� ��T �
j ��m �
� �� mloc �
while �� � �� do

if ��j � ���r � km� then faj � Pkm � � � � � � � � � � � � � � � � � � � � � � � � � � � � �g
reflector �� Aloc��� �� �
if �k � km� then

apply the reflector on z

p �� � �
else

p �� � �
endif

fre��t if some processors have �nished � � � � � � � � � � � � � � � � � � � � � � � g
if �� � � and k 
 �r � �� q �� q � �r� �r� �

else

p �� p� � �
if �k 
� km and p 
 q� send� reflector� myright�� � �
if �k � km or p � q� receive� reflector� myleft�� � �
if �k � km� apply the reflector on z

endif

if �p � q� � �� �� � �
j �� j � � �

endwhile

�



Description�

COLDEC At the jth step� the Householder re�ector is constructed by the processor in possession
of the jth column
 Then� this re�ector is sent in transit within the ring in order to
enable the other processors to update their columns
 The conditional statement
hhif its creator is not myright�� and �j � jright� send it to myright��ii

is crucial for a proper termination of the processes


COLVEC The logic behind this algorithm is somewhat arduous but the principle is simple
 At the
end of COLDEC the lower trapezoidal part of Am is overwritten by Householder vectors
�see� e
g
� ��� chap
 ���� hence the re�ectors are distributed in the ring exactly like the
matrix Am at the beginning
 So if km denotes the index of the processor in possession
of the mth re�ector� we assign to Pkm the computation of

Qmy � H� 	 	 	Hm

	
Im
�



y� ����

The way the proposed algorithm achieves this is better illustrated throughout an ex�
ample
 We consider a ring of r � � processors and a matrix of m � �� columns�
Am � �a�� ���� a���� �m � �� �r � �� km � � and Qmy � H� 	 	 	H���y� ��

T 
 We assume that
Pkm owns y
 At the end of COLDEC we have the following distribution�

P� P� P�
H�

H�

H�

H��

H�

H	

H


H�

H�

H


The �rst thing we do is to roll up the ring in order to hhseeii Pkm in the tail end
 This is
done by means of the �local� variable q which keeps trace of the new position of each
processor
 We obtain�

q � � q � � q � �
P� P� P�

H�

H	

H


H�

H�

H


H�

H�

H�

H��

The problem now comes down to a production�line work
 We must manage to let the
re�ectors reach processor Pkm in the correct order
 The crucial observation to make at
this juncture is that� by unrolling the entire communication pattern� we came across
a problem consisting of moving data along the rows of an upper triangular grid
 To
proceed further� we introduce some notations �Table ��
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command action

Cj Copy the jth re�ector into the transit�bu�er called reflector

This corresponds to the statement hhreflector �� Aloc��� ��ii

Sj Send the transit�bu�er to myright��

The jth re�ector is sent

Rj Receive into the transit�bu�er from myleft��

The jth re�ector is received

Hj Apply the Householder re�ector in the transit�bu�er on z
The jth re�ector was there

Table �� Meaning of commands


Moreover two commands which are executed one after the other are written on the
same line and are separated by a semicolon
 For instance S��R� means perform in
sequence S� and R�


head�����������������tail
P� P� P��

�

�
�
�

H�

H	

H


�

�
�
�

H�

H�

H


�
�
�
�

H�

H�

H�

H��

j
q

p � � �

�� � C� C
 C��� H��

slice � � S� S
�R� R
�H

� � � S� R��H�

� � C� C� C��H�
�slice � � S� S�� R� R��H�
� � � S� R��H�

� � C� C� C��H�
�slice � � S� S�� R� R��H�
� � � S� R��H�

�slice � � C�� H�

Figure �� COLVEC
 Time�space diagram


The diagram in Figure � represents the entire set of commands involved in our example

One by one� the re�ectors are brought to Pkm 
 The steps can be linked together into
slices
 Speci�cally� a slice is the set of steps necessary to bring a re�ector from head
to tail
 Therefore the size of the slice is simply the number of processors
 In a slice�
for reasons of consistency� a processor becomes idle just after sending the re�ector
coming from the head
 In the algorithm� this is detected when p � q and therefore by
decreasing their �� the processors insure that they will copy in their transit�bu�er the
appropriated re�ector for the continuation


At the jth step� the behavior of a processor other than Pkm can be summarized by� hhif
the jth re�ector belongs to Pkm then I copy my current re�ector into my transit�bu�er

�



otherwise I send my transit�bu�er to right� if there is a re�ector coming from left then
I receive it
ii The behavior of Pkm is particular since it does not send any message but
it must apply all the re�ectors


There remains the question of consistent termination
 We distinguish two cases
 When
�r 
� �� no all processors will be involved in the very last slice so a re��tting must be
done
 When �r � �� no problem occurs


Parallelism� Although these algorithms may be suitable for some cases ���� we do not achieve
interesting speed�ups in our context and even sometimes no speed�up at all
 This comes from
the fact that� when N is very large and m � N there are only a few columns per processor so
that the Householder vectors which are in transit across the ring are very long but are not used
intensively
 Performances are valuable only for moderate N when we increase su	ciently m


Since N
r
� m� simpler versions based on row partitionning as in MGSDEC could have been

considered
 There� processor P� would hold the factor R
 The Householder vectors would then
be split according to the row distribution of Am so that their use at each stage� would necessitate
global operations involving the contribution of the entire set of processors
 However since the
QR decomposition via MGS is cheaper than via Householder re�ectors� we do not expect to go�
with these row oriented versions� as fast as the former presented MGS implementations do


� Parallel Hybrid Algorithms

The algorithms we examine here avoid global operations and relies upon two basic tasks�

� Elimination through Householder elementary transformations

� Elimination through Givens rotations


We consider two algorithms
 In the �rst one �x�
�� we allow the basic tasks to overlap whereas in
the second one �x �
�� the code�sections in which these tasks are involved are completely broken
up


��� Row�partitionning Column�oriented Decomposition

Algorithm �
�
�� ROCDEC

initialize
�
N�m�Nloc� Aloc�� � Nloc� ��

�
�

for j �� � � m do

create my reflector�j� and update my local columns
if myid�� � � then

send row Aloc�j� j �m� to myright��

else

receive row�j�m� from myleft��

create my rotation���j� to annihilate Aloc��� j�
if myid�� 
� r � � update and send row�j�m� to myright��

endif

endfor






Algorithm �
�
�� ROCVEC

k �� myid�� �
zloc �� � �
fapply orthogonal transformations in reverse order � � � � � � � � � � � g
for j �� m � � step �� do

if �k � �� then
receive zloc�j� from myright��

i �� j �
else

if �k � r � �� then
apply my rotation��� j� on �y�j�� zloc����
send the updated y�j� to myleft��

else

receive yj from myright��

apply my rotation��� j� on �yj � zloc����
send the updated yj to myleft��

endif

i �� � �
endif

apply my reflector�j� on zloc�i � Nloc�
endfor

Data distribution� Contiguous rows as in MGSDEC �x �
�� Figure ��
 The factor R goes to Pr��
upon completion
 For ROCVEC which computes the product z � Qy� the vector y � R

m must be
at the beginning in processor Pr�� but the resulting vector z � R

N is split at completion


P�

P�

P�

j��

�����������������������������
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Figure �� ROCDEC� Factorization in progress


Description�

ROCDEC At the jth step� processeur P� applies the Householder re�ector that annihilates on its

��



jth column the elements below its main diagonal whereas any other processor applies
the re�ector that annihilates on its jth column the elements below its �rst row �this
is illustrated is Figure � when j � ��
 Then the non null portion of the jth row of
processor P� is passed round the ring and on the way� in each processor� this row is used
to apply the Givens rotation that zero�out the unique element of the column which was
not eliminated by the Householder transformation


ROCVEC We explain the principle of this algorithm by using the matrix formulation of the
problem
 At the end of ROCDEC we can write

z � Qmy

� H�G� 	 	 	HmGm

	
y

�



where

z �

�������
z���

z���






z�r���

������� � Hj �

�������
H

���
j

H
���
j


 
 


H
�r���
j

������� � Gj � G
���
�j 	 	 	G�r���

�j �

H
�k�
j is the Householder transformation constructed by Pk for column j and G

�k�
�j is

its Givens rotation used to annihilate element ��� j�
 To get rid of size mismatch we
presently assume that the rotations are augmented with the identity matrix and are
of consistent sizes
 If at step j the current value of z consists already of the previous
accumulated products� the current computation z � Gjz is done as follow
 Processor
Pr�� starts by applying its rotation and this a�ects only the component z����j� and
z�r������
 An interesting simpli�cation arises here because the jth component of z
satis�es at this stage� z����j� � z�j� � y�j�
 Then the updated component y�j� is
passed round the ring and this allows the other processors to apply their rotation

When this component reached P�� its value is �Gjz�j and is then stored in the suitable
entry
 Finally the operation z � Hjz is complete when each processor applies its own
re�ector


Parallelism� The application of Householder re�ectors is a completely independent stage

However to annihilate the remaining non zero elements via Givens rotations� it is necessary to
transport a row portion along r processors
 But as soon as that portion is passed through a
processor� the latter applies its next re�ector so that there is an overlapping of its computations
and the transition of that row portion in the other processors
 Since there will be a total of m
transfers of this sort during the whole factorization� communication overheads will be masked if
m� r
 To summarize all� we expect an interesting speed�up when N

r
� m and m� r


�that is why the vector y is into Pr�� at the beginning�

��



��� Row�partitionning Diagonal�oriented Decomposition

Algorithm �
�
�� RODDEC

initialize
�
k � myid��� N�m�Nloc� Aloc�� � Nloc� ��

�
�

flocal QR factorization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � g
�Qloc� Rloc� �� QR�Aloc� �
fannihilate undesirable Rloc diagonal by diagonal � � � � � � � � � � � � �g
for d �� � �m do

if �k � �� then
send row Rloc�d� d �m� to myright��

else

receive row�d�m� from myleft��

create rotation to annihilate my element Rloc��� d�
if �k 
� r � �� send the updated row�d�m� to myright��

create rotations to annihilate my d�th diagonal of Rloc

endif

endfor

Algorithm �
�
�� RODVEC

fapply Givens rotations in reverse order � � � � � � � � � � � � � � � � � � � � � �g
for d ��m � � step �� do

if �k��� then
receive zloc�d� from myright��

else

for j �� m � d� � step �� do
i �� j � d� � �
apply rotation�i� �� i� on �zloc�i� ��� zloc�i��

endfor

if �k � r � �� then
apply rotation��� d� on �y�d�� zloc����
send the updated y�d� to myleft��

else

receive yd from myright��

apply rotation��� d� on �yd� zloc����
send the updated yd to myleft��

endif

endif

endfor

fapply Householder re�ectors in reverse order � � � � � � � � � � � � � � � � g
for j �� m � � step �� do

apply reflector�j� on zloc�� � Nloc�
endfor

Data distribution� Contiguous rows as in MGSDEC �x �
�� Figure ��
 The factor R goes to Pr��

To compute the product z � Qy the vector y � R

m must be at the beginning in processor Pr��


��



The resulting vector z � R
N is split at completion
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Figure �� RODDEC� Factorization in progress
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Figure �� RODVEC� Rotations are applied
in the order ��


Description�

RODDEC The processors begin by carrying out completely in parallel the QR decomposition of
their local blocks
 After that� it is necessary to zero�out the factors R belonging to
processors di�erent from P�
 This is done diagonal by diagonal
 At the dth step�
the non null portion of the dth row of processor P� is passed round the ring and in

each processor Pk � this portion is used to apply the Givens rotation G
�k�
��d� necessary to

eliminate the �rst non null element of its �rst row
 Then� by applying consecutively a

sequence of internal rotations� G�k�
��d��� ���� G

�k�
d�m

� each de�ned by the two appropriated
local rows� they set to zero the remaining part of their dth diagonal


RODVEC As in ROCVEC this algorithm is better understood through a matrix formulation
 Let

��



us assume that in entrance of step d� the current value of z � �z���� ���� z�r����T comes
from the previous accumulated rotations and is correct
 Then each processor Pk except
P� applies independently its internal sequence of rotations �in reverse order of their
generations�

z�k� � G
�k�
��d�� 	 	 	G�k�

d�mz
�k��

To carry out the remaining rotation G
�k�
��d which involves the contribution of the right

neighbor except for Pr�� since� z����d� � z�d� � y�d�� the updated value of y�d� is
passed round the ring from processor Pr�� to P�
 When it reached P� it has the actual
value of z�d� and is then stored in the suitable entry
 Once all the rotations have been
applied� the independent Householder transformations used in the local blocks are on
their turn applied


Parallelism� During the individual QR factorization� we achieve the perfect parallelism
 But
after that� the whole factor R of P� must be transferred �and updated� around the ring to enable

the cancellation of m�m���
� elements per any other processor
 Since there are r processors to

cross� this strategy will be e	cient if m� r otherwise� the amount of communications will not
be su	ciently covered by the computations


� Additional Remarks

We can state here some observations which should have been eclipsed by the technicalities if
they were mentioned earlier in the previous sections


� At the end of all theses algorithms �except MGSDEC and MGSVEC�� there has been roughly
m revolutions of messages around the ring
 For algorithm COLDEC the revolutions involve
messages of length N whereas in ROCDEC and RODDEC� they have an average length of m��

� 

In their associated joint algorithms for the product Qy� the messages are of length N for
COLVEC but are simply scalars for ROCVEC and RODVEC


� There is an underlying pipeline chain
 However this chain e�ect disappears within algo�
rithms ROCDEC and RODDEC if one considers a programming scheme of the style�

� � �
if �myid�� � �� then

send Aloc�d� d �m� to myright��J���������� receive Aloc�d� d � m� from myleft��

else

receive row�d�m� from myleft��

� � �
send the updated row�d�m� to myright��

� � �
endif

The processor P� will have to wait until the end of the revolution and as a consequence
of the interruption of the production�line work� all the other intermediate processors will
also have to wait
 We have avoided this side�e�ect in our implementations� and that is
why the factor R is in the last processor Pr�� at the termination of the processes


�that is also why� as in ROCVEC� the vector y must belong to Pr�� at the beginning�

��



� Practically� the extra storage which is used in the real implementations is negligible
 The
so�called hhessential partsii of Householder vectors are in the lower trapezoidal part of Am

whereas the Givens rotations are in the place of the elements to zero as it is preconised by
Stewart�s technique ����


� The factors Qm and Rm as obtained� may have elements of di�erent signs from a method to
another
 To recover the unique QR decomposition� i
e
 the one in which the diagonal of R
is positive� it is necessary to �implicitly� apply the transformation Am � �QmDm��DmRm�
where Dm � diag�sign�r���� ���� sign�rmm��


� When building up Am by formulas ��� and ��� before the QR factorization step� the
eventuality that the columns may be linearly dependent is not considered
 However this
situation� which is known as a breakdown� must be reported
 Therefore if the case of linear
dependence of columns is detected within the QR step� an ad�hoc action should be issued


� Numerical Tests

��� The Intel Paragon
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Figure �� Network topology
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Figure 
� Mapping a ring on the grid


The Paragon on which we carry out our experiments is a distributed�memory meshgrid of size
�� � � � �� nodes
 Each node consists in ��MB of RAM and two i��� ���bit microprocessor
chips
 One chip among the two is dedicated to communications but is not operating yet� at
this date� on the actual Paragon XP�S i��� model
 At this date also� a large part of the RAM
is occupied by the system so that the main memory remaining for application purposes �code�
data� message�bu�ers� is about �MB only
 Since in this ���Node model �as well as in the others��
� nodes are reserved for the system management �the root partition�� we are able to use up to ��
processors�
 A ring is obtained by a logical mapping
 However there is no prede�ned functions

	This is true on the present releases but may not be true in the future versions where some nodes in the root

��



for such a mapping and the user must simulate the ring by himself
 In our mapping we have
insured that the right and the left neighbors of a processor are also physically its neighbors
�Figure 
�
 The computations are in double precision and we make use of the scienti�c library
BLAS available in its optimized version for the machine
 We intensively use the vector�vector
operations DDOT� DAXPY and DNRM�


��� Timing results

In this section� for several values ofN � we present the time spent in running the Paragon Fortran
code corresponding to the algorithms
 The values indicated on the tables represent the time
spent in the obtention of the decomposition augmented by the time spent in computing one
product Qy
 We use the following abbreviations�

MGS� MGSDEC follows by MGSVEC

COL� COLDEC follows by COLVEC

ROC� ROCDEC follows by ROCVEC

ROD� RODDEC follows by RODVEC�

Legend�

The graphic on the right represents the drawing
symbols adopted in our curves

The plain line will always represent the perfect speedup
 ROD

ROC

COL

MGS

During our experiments� we have to face lack of memory when attempting to run very large
problems on few nodes
 As a consequence� the times obtained were perturbed by memory swaps

That is why we decide to consider speed�ups with respect to the number of nodes in which little
memory misses occur
 More speci�cally� if n is the smallest number of nodes for which the main
matrix Am � R

N�m �ts in the distributed�memory without performance overheads� the speed�
up with respect to �w
r
t� n processors is T �r��T �n�
 Those numbers are indicated by arrows
on the tables
 Our timing does not take into consideration the time used to load the matrix
 In
fact� we use dynamic space allocation to reserve exactly the su	cient memory storage needed
within each processor for the problem in hand
 Then the data were randomly generated


partition could be used like any other node of the application partition� The system is evolving quite rapidly so
that all the information mentioned here could be out�of�date at the time you read this�

��
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Figure ��� Time in seconds and speed�up w
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t � processor


This is a problem of moderate size
 MGS and COL are the more slowest methods
 In addition
their speed�ups are very poor
 ROC and ROD perform slightly better
 They achieve a speed�up of
about � with �� processors but they didn�t go further with more processors
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Figure ��� Time in seconds and speed�up w
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t � processors


Here once again MGS and COL are the slowest
 No speedup is achieved for MGS while COL becomes
more and more poorer
 The behaviors of ROC and ROD are almost identical
 After achieving a
speedup of about �
� for �� processors� they are about to stagnate
 This problem comes from
the fact that from there� m is no more large when compared to r
 Hence this observation is
in accordance to what we were expecting in advance �see the discussions about their potentiel
parallelism�


��
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With this large problem we can de�nitively conclude that MGS and COL are not competitive in
our context
 However in contrast� ROC are ROD appear to be nicely scalable


In the following series of examples� we present the time behavior of the algorithms when we �x a
constant load for each processor whatever is the total number of processors
 If for reference� we
consider that the complexity of these algorithms is about O��Nm��� we can clearly see with the
very last example that we cross a rate performance of ��
M�ops for �� nodes� i
e
 ��

M�ops
per processor
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The results show that algorithms ROC and ROD are much more scalable that the two others

Actually the global sum function involved by MGS prevents a valuable e	ciency as long as the
local vector length in any processor is shorter than a few thousands


� Conclusion

We have described parallel algorithms for which to construct orthonormal bases of Krylov sub�
spaces
 Algorithms to access the computed bases thanks to their multiplication by a vector were
also presented
 All these algorithms have been designed in the context of a distributed�memory
multiprocessor environment
 Several tests have been carried out on a ���Node Intel Paragon
XP�S i��� and it appears that� as far as parallelism is concerned� this way of constructing Krylov
bases is suitable
 Alternative versions for shared�memory machines can be directly designed

In fact� according to the technological details of a given architecture one can take into account
several considerations during their implementation as done in ���
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