
SIAM J. ScI. STAT. COMPUT.
Vol. 8, No. 2, March 1987

1987 Society for Industrial and Applied Mathematics
0O2

A MULTIPROCESSOR ALGORITHM FOR THE SYMMETRIC
TRIDIAGONAL EIGENVALUE PROBLEM*

SY-SHIN LOt, BERNARD PHILIPPEt AND AHMED SAMEHt

Abstract. A multiprocessor algorithm for finding few or all eigenvalues and the corresponding eigenvec-
tors of a symmetric tridiagonal matrix is presented. It is a pipelined variation of EISPACK routinesmBISECT
and TINVIT which consists ofthe three steps: isolation, extraction-inverse iteration, and partial orthogonaliz-
ation. Multisections are performed for isolating the eigenvalues in a given interval, while bisection or the
Zeroin method is used to extract these isolated eigenvalues. After the corresponding eigenvectors have been
computed by inverse iteration, the modified Gram-Schmidt method is used to orthogonalize certain groups
of these vectors. Experiments on the Alliant FX/8 and CRAY X-MP/48 multiprocessors show that this
algorithm achieves high speed-up over BISECT and TINVIT; in fact it is much faster than TQL2 when all
the eigenvalues and eigenvectors are required.

Key words, eigenvalues, multiprocessors, tridiagonal matrices

AMS(MOS) subject classification. 65F15

1. Introduction. This paper deals with solving the real symmetric tridiagonal
eigenvalue problem on a multiprocessor. The main purpose of this study is solving for
a few of the eigenvalues and the corresponding eigenvectors of large tridiagonal
symmetric matrices such as those resulting from the Lanczos tridiagonalization of a
sparse symmetric matrix. In fact, we show that our scheme, the origins of which date
back to the Illiac IV [8] and [7], is equally or more effective than other multiprocessor
schemes for obtaining either all the eigenvalues, or all the eigenvalues and eigenvectors
of a symmetric tridiagonal matrix.

Two kinds of methods are usually used for solving this problem on a uniprocessor.
When only a part of the spectrum is desired, the combination of bisection and inverse
iteration is the method of choice. For the whole eigenvalue problem, the QR (or QL)
method is more effective [2]. These methods are implemented in EISPACK" BISECT
and TINVIT for the partial eigenvalue problem, and TQL1 (eigenvalues only) and
TQL2 (eigenvalues and eigenvectors) for the whole problem. A multiprocessor version
of TQL2 has already been designed [4] using a divide and conquer technique.

In 2 we give a brief description of the method, in 3 we analyze the various
steps of the computation with respect to efficient use of the parallelism offered by the
multiprocessor. In 4, we compare our scheme with all of the above schemes on the
Alliant FX/8 and the CRAY X-MP/48 multiprocessors.

2. Description of the method. Let T be a symmetric tridiagonal matrix of order n
with di and ei as the diagonal and subdiagonal elements, respectively,

T e, d, e,/l].

Let p,(A) be its characteristic polynomial:

Pn (A) det (T- hi).

* Received by the editors December 23, 1985; accepted for publication (in revised form) May 12, 1986.
This work was supported in part by the National Science Foundation under Grants US NSF DCR84-10110
and US NSF DCR85-09970, the U.S. Department of Energy under Grant US DOE DE-FG02-85ER25001,
the IBM Donation, and the French Ministry of Defense under Grant DRET No. 84-823. This paper was
submitted to the Second SIAM Conference on Parallel Processing for Scientific Computing that was held
in Norfolk, Virginia during November 18-21, 1985.

t Center for Supercomputing Research and Development, University of Illinois, Urbana, Illinois 61801.

s155

s156 s.-s. LO, B. PHILIPPE AND A. SAMEH

The sequence of the principal minors of the matrix can be built using the following
recursion:

po(h) 1,

(2.1) pl(h) dl-h,

p,(h (d,- h)p,_l(h eEp,_2(h), 2, , n.

We assume that no subdiagonal element is zero, since if some ei is equal to 0, the
problem can be partitioned into two smaller problems. The sequence {pi(h)} is called
the Sturm sequence of T in h. It is well known [11] that the number of eigenvalues
smaller than a given h is equal to the number of sign variations in the Sturm sequence
(2.1). Hence one can find the number of eigenvalues lying in a given interval [a, b] by
computing the Sturm sequences at a and b. The linear recurrence (2.1), however, suffers
from the possibility of over- or underflow. This is remedied by replacing the Sturm
sequence pi(A) by the sequence

q,(h)=
p,(h)

i= 1, n.
Pi-I(A)’

The second order linear recurrence (2.1) is then replaced by the nonlinear recurrence
2

(2.2) ql(h) dl-h, q,(h) d,-h i=2,...,n.
qi-l(A)’

Here, the number of eigenvalues that are smaller fhan h is equal to the number of
negative terms in the sequence {q(h)}.

Therefore, given an initial interval, we can find the eigenvalues lying in it by
repeated bisection or multisection of the interval. This partitioning process can be
performed until we obtain each eigenvalue to a given accuracy. On the other hand,
we can stop the process once we have isolated each eigenvalue. In the latter case the
eigenvalues may be extracted using a faster method. Several methods are available for
extracting an isolated eigenvalue:

-Bisection (linear convergence);
-Newton’s method (quadratic convergence);
-The Zeroin scheme, which is based on the secant and bisection methods (conver-
gence of order (x/ 4-1)/2).

Ostrowski [10] defines an efficiency index which links the amount of computation to
be done at each step and the order of the convergence. The respective indices of the
three methods are 1, 1.414 and 1.618. This index, however, is not the only aspect to
be considered here. Both Zeroin and Newton methods require the use of the linear
recurrence (2.1) in order to obtain the value of det (T-hl), or its derivative as well,
for a given h. Hence, if the possibility of over- or underflow is small we select the
Zeroin method; otherwise we select the bisection method. After the computation of
an eigenvalue, the corresponding eigenvector can be found by inverse iteration [6].
This is a very fast process where one iteration is often sufficient to achieve convergence.

It is possible that some eigenvalues are computationally coincident; hence, the
isolation process actually performs "isolation of clusters," where a cluster is defined
as a single eigenvalue or a number of computationally coincident eigenvalues. If such
a cluster of coincident eigenvalues is isolated the extraction step is skipped, since
convergence has been reached. Observing that, there can be loss of orthogonality for
those eigenvectors corresponding to close eigenvalues; orthonormalization of such
eigenvectors via the Modified Gram-Schmidt method is necessary.

A PARALLEL SYMMETRIC TRIDIAGONAL EIGENVALUE SOLVER S157

In summary, the whole computation consists of the following five steps:
1) Isolation by partitioning;
2) Extraction of a cluster by bisection or by the Zeroin method;
3) Computation of the eigenvectors of the cluster by inverse iteration;
4) Grouping of close eigenvalues;
5) Orthogonalization of the corresponding groups of vectors by the Modified

Gram-Schmidt process.

3. The parallel algorithm.
3.1. The partitioning process. Obviously, the parallelism in this process is achieved

by performing simultaneously the computation of several Sturm sequences. However,
there are several ways for achieving this; two options are

-Performing bisection on several intervals;
-Performing a partition of one interval into several subintervals.
A multisection of order k splits the interval I [a, b] into k+ 1 subintervals

Ii=[xi, xi+l], where xi=a+ i((b-a)/(k+ 1)) for i=O,..., k+ 1. If there exists only
one eigenvalue in the interval I and if we wish to compute it with an absolute error
e, then it is necessary to perform

(2e} log (k+ 1)

multisections of order k. Thus, the efficiency of the multisection of order k compared
to bisection (multisection of order 1) is

Ef rll/(k r/k) (log2 (k + 1))/k.

Hence, for extraction of eigenvalues, we prefer to perform parallel bisections rather
than one multisection of high order. On the other hand, during the isolation step, the
efficiency of multisectioning is higher because" (i) a multisection creates more tasks
than bisection, and (ii) there are several eigenvalues in one interval. The way we
propose to use bisections or multisections is almost the same as that stated in [1].

3.2. The computation of the Sturm sequence. The recurrence (2.2) is intrinsically
serial, so parallelism is not possible in this computation. The algorithm in [3] may be
used, however, to vectorize the linear recurrence (2.1). Here, the computation of the
regular Sturm sequence (2.1) is equivalent to solving a lower-triangular system of order
n + 1 consisting of three diagonals,

1

-a 1 0

--bE --a_ 1

2where a=di-A, and bi=-e. For a vector length k<n/2 the total number of
arithmetic operations in the parallel algorithm is roughly I0n + 11 k while it is only 4n
for the serial algorithm (we do not consider the operation that computes e,2., since this
quantity can be provided by the user); resulting into an arithmetic redundancy which
varies between 2.5 and 4.

This algorithm, therefore, is efficient only when vector operations are at least 4
times faster than sequential operations, which excludes the FX/8. The results on one
processor of a CRAY X-MP are displayed in Fig. 1. In this figure, three methods are
compared:

s158 s.-s. LO, B. PHILIPPE AND A. SAMEH

SN

200 600 1000

N
FIG. |. Computation ofSturm sequence on CRAY X-MP, speed-up over SN. N is the order oftest matrices

ofi-,2,-].

Sequential computation of the linear recurrence (2.1) (SL);
Vector computation of the linear recurrence (2.1) (VL);
Sequential computation of the nonlinear recurrence (2.2) (SN).

Using 64 bit arithmetic on the test matrix [-1, 2,-1], we have evaluated elements of
the Sturm sequence (2.1) with no over- or underfiow. The (SL) method is always faster
than the (SN) method. The method (VL) (coded in FORTRAN) can reach a speed-up
of 2.1 over the (SL) method and of 5.7 over the (SN) method.

3.3. Computation of the eigenvectors and orthonormalization. The computation of
an eigenvector can be started as soon as the corresponding eigenvalue is computed.
So, we consider the extraction of an eigenvalue and the computation of its eigenvector
as two parts of the same task, with the order of potential parallelism being dependent
on the number of desired eigenvalues.

Orthonormalization is only performed on eigenvectors whose corresponding eigen-
values meet a predefined grouping criterion. The modified Gram-Schmidt method is
used to orthonormalize each group. The algorithm is as follows:

dok=l,p
normalize (Zk)
doj=k+l,p

z z z z, z,
od

od

where zj and Zk are vectors, and (zj. Zk) denotes their inner product. The statement in
the inner loop is a vector instruction which updates the vector zj with respect to the
base vector Zk. Considering the dependency of the variables, we see that the inner loop
is a doall loop, since all the iterations j are independent of one another for a particular
k. On the other hand, the outer loop is a doaeross loop, since any iteration k cannot
start before vector Zk has been updated with respect to vectors Zl,’", Zk-1 and as
soon as it has been updated it is ready to be used as base vector for gk+l, gp" These
dependency relations are shown in Fig. 2.

Two schemes have been designed to perform the above process. One is a doall-
inner-sequential-outer algorithm (called PS); the second, with some synchronization

A PARALLEL SYMMETRIC TRIDIAGONAL EIGENVALUE SOLVER S159

1,2
1,3 2,3

[-1’4 2-’4 3.’4
1,5 2,5 3,5
1,6 2,6 3,6
1,7 2,7 3,7
1,8 2,8 3,8

1,p 2,p 3,p

4,5
4,6
4,7
4,8

i4,P

5,6
5,7 6,7
5,8 6,8 7,8

5,p 6,p 7,p p-l,p

FIG. 2. Diagram of dependencies.

mechanisms, is a doall-inner-pipelined-outer algorithm (called PP). Because of the
synchronization overhead, the second method is to be preferred only when the order
of the matrix and the size of the group are large. Table 1 shows a comparison of the
two algorithms on the CRAY X-MP/48. The efficiency of the pipelined method in this
case is the consequence of the low overhead of the synchronization mechanisms on
the CRAY multiprocessor.

TABLE
Two implementations for the modified Gram-Schmidt Method.

Pipelined outer loop (PP)
Sequential outer loop (PS)
Speed-Up (PS/PP)

processor 2 processors 4 processors

26:13 13.61 8.20
23.18 15.60 11.97

.89 1.15 1.46

Test performed on the CRAY X-MP for a matrix of order 1000.

If we consider processing several groups of vectors in parallel, then we have three
levels of parallelism:

1) Concurrent processing of the groups;
2) Concurrent updating of vectors;
3) Vectorizing the updating step of each vector.

It is necessary to select the algorithm depending on the levels of parallelism in the
architecture. For example, to orthonormalize large groups of eigenvectors, Level 2 and
Level 3 can be adopted on multiprocessors like the CRAY X-MP/48 and the Alliant
FX/8; whereas all three levels of parallelism can be adopted on a hierarchical structured
system such as the Cedar machine [9], which contains several "clusters" of multipro-
cessors, each processor having vector capability.

4. Implementation and experiments
4.1. Implementation. In this section, we describe the specific implementations of

our algorithm TREPS on the multiprocessors Alliant FX/8 (consisting of 8 processors)
and the CRAY X-MP/48 (consisting of 4 processors). The implementation on the
Alliant is slightly different from the implementation on the CRAY.

s160 s.-s. LO, B. PHILIPPE AND A. SAMEH

During the orthogonalization process on the CRAY, the groups of eigenvectors
to be orthonormalized are split into two classes depending on their sizes: the small
groups are processed, one per processor, in parallel; and the large groups are processed
one group at a time, using all the processors with the parallel-inner pipelined-outer
loop algorithm. With 4 processors, a group of more than 10 eigenvalues is regarded
as large.

For both implementations, the repartitioning of the intervals containing an isolated
cluster is dynamic. These intervals are stored in a stack. As soon as one processor is
ready, it fetches a new task (i.e., a new subinterval) from the stack. The updating of
the pointer to the top of the stack is protected as a critical section by locks. It has to
be pointed out that multitasking on the Alliant FX/8 is easier and less costly than that
on the CRAY X-MP/48, since on the former system the creation of tasks is automatic.
Moreover, on the CRAY we have used the usual trick, which consists of declaring as
many tasks as there are processors, and making them active or idle depending on the
number ofprocesses involved so as to reduce the cost oftask creation. This manipulation
adds some complexity to the code, but it is the price to be paid if one is to obtain
good performance on the CRAY X-MP/48.

4.2. Performance. To analyze the speed of this program, we start by comparing
TREPS1, a version of the program which performs the extraction stage via bisection,
with the EISPACK subroutines BISECT and TINVIT on the sequential machine VAX
785. For several runs with different tridiagonal matrices, we found that, even on a
VAX 785, TREPS1 is no more than 20% slower than BISECT+TINVIT. In Table 2
we show such an experiment for the matrix [-1, 2, -1] (unless otherwise stated, all
test matrices are of this form). On the FX/8, with some synchronization directives,
TREPS ran in vector-concurrent mode, with high speed-ups when the number of
desired eigenvalues exceeds the number of processors. All experiments on the Alliant
FX/8 are performed in double precision. In Table 3, we show the performance of
TREPS1 when all the eigenvalues and vectors are obtained on the FX/8. In Table 4,

TABLE 2
Timings for TREPS and BISECT+TINVIT Subroutines on VAX 785.

N

100

300

Time (seconds)
Ratio
Time (seconds)
Ratio

TREPS1 BISC +TINV

4.03 3.6
1.11

34.13 31.58
1.08

Computations are in single precision. N is the order of the test
matrix.

TABLE 3
Time and speed-up for TREPS1 on Alliant FX/8.

CE’s Time (second)

115.59
57.12
28.89
14.78

Speed-Up

1.0
2.0
4.0
7.8

Test matrices are of order 500.

A PARALLEL SYMMETRIC TRIDIAGONAL EIGENVALUE SOLVER S161

TABLE 4
Speed-up for TREPS1 as function of number of eigenvalues

and vectors.

2
4
8
10
20
5O

100
200
300

Time in seconds

CE

.15

.25

.51
1.03
1.29
2.59
6.67

13.33
27.09
40.85

8 CEs

.15

.12

.14

.14

.26

.42

.97
1.86
3.74
5.46

Speed-Up

2.1
3.6
7.4
5.0
6.2
6.9
7.2
7.2
7.5

Test matrix [- 1, 2, is of order 300. p is the number
of desired eigenvalues and eigenvectors.

TABLE 5
Time for steps in TREPS1 and TREPS2.

N

5OO

1000

TREPS1

TREPS2

TREPS1

TREPS2

Total

14.78
100

3.71
100
67.68
100
24.47
100

Isolation Extr+ Inv. Orthonorm.

.62 13.78 .38 (sec)
4.2 93.2 2.6 (%)
.62 2.71 .38 (sec)
4.9 79.8 15.3 (%)
3.35 54.0 10.33 (sec)

16.7 73.1 10.2 (%)
3.39 11.02 10.06 (sec)

13.9 45.0 41.1 (%)

Computing all the eigenvalues and eigenvectors. Computations are done on Alliant FX/8 in double
precision.

we measure the speed-up of TREPS1 on the FX/8 as a function of the desired p
smallest eigenvalues for a matrix of order 300. On one processor, the time to compute
p eigenvalues is proportional to p (in this situation the multisections become bisections,
and our program is essentially equivalent to BISECT+ TINVIT). On 8 processors, the
speed-up over one processor increases from 1 to 5.0 when the number of desired
eigenvalues and vectors varies from 1 to 10. It increases from 6.9 (for 30 eigenvalues)
to 7.5 (for all of the 300 eigenvalues). Similar results are obtained with the version
TREPS2, in which we use the Zeroin method (see [5]) for extraction of the eigenvalues.

Let us now look at the percentage of the computational time involved in each
stage. We consider the time for grouping close eigenvalues as negligible. The step for
extracting the eigenvalues and computing the eigenvectors is more time-consuming
than the isolation process for TREPS1. The orthonormalization time depends heavily
on the problem; in the extreme case when orthogonalization of all n vectors is necessary,
the elapsed time can reach up to 50% of the whole time needed to solve the problem.
Some examples are given in Table 5.

4.3. Comparison with other subroutines. In this section we compare the perform-
ance of our algorithm with BISECT+TINVIT, TQL2, and that in [4] when all the

s162 s.-s. LO, B. PHILIPPE AND A. SAMEH

eigenvalues and eigenvectors are required. We also compare our algorithm with BISECT
and TQL1 when only the eigenvalues are needed. To evaluate the numerical perform-
ance, we compare the norm of the residuals, max/II Tz/-A/Z/lIE for the computed
eigenvalues and eigenvectors for TREPS, BISECT+TINVIT, TQL2, and SESUPD
[4]. Orthogonality of the eigenvectors is also checked by computing the max/,j IzTz
I1,,, where Z [Zl," , z.]. Table 6 shows the results on the FX/8, machine precision
of 1.11 x 10-16, for the test matrix [-1, 2, -1] of order 500. We see that for the above
test matrix both the residuals and the quality of the eigenvectors and orthogonality of

TABLE 6
Residual and orthonormality of computed eigenvalues and eigenvectors.

TREPS1
TREPS2
TQL2
BISECT+TINVIT
SESUPD

1.00 x 10-12

4.12 x 10-13

3.88 x 10-14

9.75 x 10-13

5.87 x 10-15

ma.x IzTz- lli,
l,J

1.69 x 10-12

1.31 x 10-12

2.66 x 10-14

2.77x 10-12

6.61 x 10-s

Test matrices are of order 500.

TABLE 7a
Time and speed-up for computing all the eigenvalues and eigenvectors.

TREPS1

TREPS2

TQL2

BISECT+ TINVIT

SESUPD

time (sec)
speed-up
time (sec)
speed-up
time (sec)
speed-up
time (sec)
speed-up
time (sec)
speed-up

Alliant

CE 8 CE

115.6 14.8
7.8

25.7 3.7
6.9

486.4 103.1
4.7

140.6 136.2
1.0

17.91

CRAY X-MP

CPU 4 CPU

11.06 3.04
3.6

1.72 .64
2.7

6.68

12.98"*

Test matrix is of order 500.
** Probably has full orthonormalization due to the different grouping criterion used in the version of

TINVIT on the Cray X-MP.

TABLE 7b
Speed-up over TQL2 on the Alliant for computing all the eigenvalues and eigenvectors.

Algorithm

TREPS1
TREPS2
TQL2
BISECT+TINVIT
SESUPD

Time (TQL2 on CE)
Time (algorithm on 8 CEs)

32.9
131.5

4.7
3.6

27.1

Time (TQL2 on 8 CEs)
Time (algorithm on 8 CEs)

7
28

.8
5.8

Test matrix is of order 500.

A PARALLEL SYMMETRIC TRIDIAGONAL EIGENVALUE SOLVER S163

TREPS1 and TREPS2 are close to that of BISECT/TINVIT but not as good as those
of TQL2 and SESUPD [4].

In Tables 7a and 7b we give timing results comparing the performance of the
above algorithms on both the FX/8 and the CRAY X-MP. Note that the time for
TQL2 on one CE is 131 times slower than the time required by TREPS2 on 8 CE’s,
and that the time for TQL2 on 8 CE’s is 28 times slower than that of TREPS2.
Furthermore, TREPS2 is 4.8 times faster than SESUPD. In Tables 8a and 8b we
compare both versions of our algorithm with TQL1 and BISECT for obtaining all the
eigenvalues only. In Table 9 we show timing results for obtaining all the eigenvalues
and eigenvectors of a random tridiagonal matrix on the Alliant FX/8.

TABLE 8a
Time and speed-up for computing all the eigenvalues.

TREPS1

TREPS2

TQL1

BISECT

time (sec)
speed-up
time (sec)
speed-up
time (sec)
speed-up
time (sec)
speed-up

Alliant

CE 8 CE

105.3 13.2
8.0

16.6 2.1
7.9

10.5 8.8
1.2

128.1 126.1
1.0

CRAY X-MP

CPU 4 CPU

10.45 2.67
3.9

1.09 .4
2.7

.87

9.88

Test matrix is of ord.er 500.

TABLE 8b
Speed-up over TQL1 on the Alliant for computing all the eigenvalues.

Algorithm

TREPS1
TREPS2
TQL1
BISECT

Time (TQL1 on CE)
Time (algorithm on 8 CEs)

.8
5
1.2
.08

Time (TQL1 on 8 CEs)
Time (algorithm on 8 CEs)

.7
4.2

.07

Test matrix is of order 500.

TABLE 9
Computing all the eigenvalues and vectors of a random tridiagonal matrix on the Alliant FX/8.

TREPS1
TREPS2
TQL2
BISECT+TINVIT
SESUPD

Time
(second)

15.04
4.14

120.54
134.89

6.65

5.6 x 10-13

4.6 x 10-13

2.8 x 10-14

5.2 x 10-13

2.5 x 10-14

ma.x IzTz- II,
t,J

5.1 x 10-12

1.3 x 10-11

1.6 x 10-14

6.4 x 10-12

3.0 x 10-14

Speed-up
over TQL2

8
29

.9
18

Test matrices are of order 500.

s164 s.-s. LO, B. PHILIPPE AND A. SAMEH

Test
matrix

TABLE 10
Results for full symmetric matrices on the Alliant FX/8.

TREPS1
TREPS2
TREPS1
TREPS2

Time (second)

24.59
38.64
23.96
12.64

ma.x Iz’rz II,j
l,J

3.1 x 10-13

3.1 x 10-13

1.1 x 10-2

5.7 x 10-3

Test matrices are of order 500. R is full random symmetric matrix. A
(I 2uua’)T(l 2uu’r), where T [- 1, 2,].

Table 10 compares the times consumed by both versions of our algorithm on full
symmetric matrices. The times indicated do not take into account the reduction to the
tridiagonal form. For the matrix A (l-2uu’r)T(l-2uu’r), where T [-1, 2,-1] and
u’ru 1, TREPS2 is very fast; but for a full symmetric random matrix R, TREPS2 is
slower than TREPS1. This leads us to recall the implementation of the extraction
algorithm. As mentioned earlier, although the Zeroin method is much faster than
bisection, it may suffer from under- or overflow. Such problems are heralded by lack
of convergence in the computation of some of the eigenvectors. To remedy this problem
in TREPS2, we switch to bisection whenever the inverse iteration does not converge.
The matrix R used in this experiment is an extreme case, where every single eigenvalue
has first been computed by the Zeroin method, then recomputed by bisection; this
explains the poor performance of TREPS2.

5. Conclusion. The algorithms TREPS1 and TREPS2 which have been presented
in this paper are well suited for multiprocessors. A speed-up which is almost equal to
the number of processors can be obtained as long as the number of desired eigenvalues
is several times larger than the number of processors. They also achieve high efficiency
because the amount of arithmetic operations for each element of data (a total of O(n)
elements) is high, thus avoiding the traditional bottleneck of memory bandwidth.

TREPS2, which extracts the eigenvalues using the Zeroin method, is much faster
than the combination of EISPACK’s BISECT and TINVIT, as well as TQL2. It can
also be faster than SESUPD [4], on a multiprocessor such as the FX/8, especially
when the linear recurrence (2.1) is well behaved. In fact we consider TREPS2 to be
the algorithm of choice for obtaining either all the eigenvalues (it is faster than TQL1),
or few of the eigenvalues and the corresponding eigenvectors of a tridiagonal matrix.
Furthermore, comparisons with [4] indicate that TREPS2 is equally competitive with
other multiprocessor algorithms that seek all the eigenvalues and vectors of full
symmetric matrices. This is especially true since the back-transformation involved, in
the full case, can be performed by matrix multiplication routines which are very efficient
on both the FX/8 and the CRAY X-MP/48.

Acknowledgment. The authors would like to thank John Larson at CRAY Research
for his valuable help in performing the experiments on the CRAY X-MP.

REFERENCES

1] H. J. BERNSTEIN AND M. GOLDSTEIN, Parallel implementation of bisection for the calculation of
eigenvalues of tridiagonal symmetric matrices, Courant Institute of Mathematical Sciences Report,
New York University, New York, 1985.

A PARALLEL SYMMETRIC TRIDIAGONAL EIGENVALUE SOLVER S165

[2] H.BOWDLER, R. MARTIN, C. REINSCH AND J. H. WILKINSON, The QR and QL algorithms for
symmetric matrices, Contribution II/3, in Handbook for automatic computation, Vol. II, Linear
Algebra, Springer-edag, Berlin, New York, 1971, pp. 227-240.

[3] S. C. CHEN, D. J. KUCK AND A. H. SAMEH, Practical parallel band triangular system solvers, ACM
Trans. Math. Software, 4 (1978), pp. 270-277.

[4] J. J. DONGARRA AND O. C. SORENSEN, A fast algorithm for the symmetric eigenvalue problem, IEEE
Proc. 7th Symposium on Computer Arithmetic, Urbana, IL, 1985, pp. 338-342, this Journal, 8
(1987), to appear.

[5] G. E. FORSYTHE, M. A. MALCOM AND C. B. MOLER, Computer Methodsfor Mathematical Computa-
tions, Prentice-Hall, Englewood Cliffs, NJ, 1977.

[6] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins University Press,
Baltimore, 1983.

[7] H.-M. HUANG, A Parallel Algorithm for Symmetric Tridiagonal Eigenvalue Problems, CAC Document
No. 109, Center for Advanced Computation, Univ. Illinois at Urbana-Champaign, February 1974.

[8] O. KUCK AND A. SAMEH, Parallel computation of eigenvalues of real matrices, IFIP Congress 1971, 2
(1972), pp. 1266-1272.

[9] D. KUCK, O. LAWRIE, A. SAMEH AND E. DAVIDSON, Construction of a large-scale multiprocessor,
Cedar Document No. 45, Univ. Illinois at Urbana-Champaign, 1984.

[10] A. OSTROWSKI, Solution of Equations and Systems of Equations, Academic Press, New York, 1966.
11] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford Univ. Press, Oxford, 1965.

