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On some Structured Inverse Eigenvalue ProblemsRobert Erra �, Bernard Philippe ��Programme 6 | Calcul scienti�que, mod�elisation et logiciel num�eriqueProjet ALADINRapport de recherche n�2604 | Juin 1995 | 21 pagesAbstract: This work deals with various �nite algorithms that solve two special StructuredInverse Eigenvalue Problem (Siep).The �rst problem we consider is the Jacobi Inverse Eigenvalue Problem (Jiep): givensome constraints on two sets of real, �nd a Jacobi matrix J (real symmetric tridiagonalwith positive nondiagonal entries) that admits as spectrum and principal subspectrum thetwo given sets. Two classes of �nite algorithms are considered. The polynomial algorithmis based on a special Euclid-Sturm algorithm (Householder's terminology) which has beenrediscovered several times. The matrix algorithm is a symmetric Lanczos algorithm with aspecial initial vector. Some characterization of the matrix insures the equivalence of the twoalgorithms in exact arithmetic.The results of the symmetric situation are extended to the non-symmetric case: this isthe second Siep which is considered : the Tridiagonal Inverse Eigenvalue Problem (Tiep).Possible breakdowns may occur in the polynomial algorithm as it may happen with thenon-symmetric Lanczos algorithm. The connection between the two algorithms exhibits asimilarity transformation from the classical Frobenius companion matrix to the tridiagonalmatrix.This result is used to illustrate the fact that, when computing the eigenvalues of a matrix,the non-symmetric Lanczos Algorithm can lead to a slow convergence, even for a symmetricmatrix since an outer eigenvalue of the tridiagonal matrix of order n� 1 can be arbitrarilyfar from the spectrum of the original matrix.Key-words: Jacobi matrix, Euclid algorithm, Sturm sequence, Lanczos algorithm, inverseeigenvalue problems. (R�esum�e : tsvp)�ESIEA 9 rue Vesale, 75005 PARIS FRANCE��INRIA/IRISA Campus de Beaulieu, 35042 RENNES Cedex FRANCE philippe@irisa.fr
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Probl�emes inverses de valeurs propresR�esum�e : Cet article pr�esente di��erents algorithmes directs qui r�esolvent deux probl�emesinverses de valeurs propres structur�es. Le premier probl�eme est le probl�eme inverse de Jacobi :�etant donn�e quelques contraintes sur deux ensembles de r�eels, construire une matrice deJacobi qui admette comme spectre et spectre principal d'ordre imm�ediatement inf�erieurles deux ensembles de nombres. On �etudie deux classes d'algorithmes : un algorithme depolynômes souvent red�ecouvert et l'algorithme de Lanczos sym�etrique avec un vecteur initialappropri�e.La situation pr�ec�edente est ensuite �etendue au cas non sym�etrique : elle correspond audeuxi�eme probl�eme inverse. Dans ce cas l'algorithme de polynômes peut s'arrêter avantla �n, comme cela peut arriver avec l'algorithme de Lanczos non sym�etrique. Dans le cassans �echec, on exhibe une transformation de similitude entre la matrice tridiagonale et lamatrice compagnon de Frobenius qui relie les deux algorithmes. Une cons�equence de cedernier r�esultat permet de montrer que l'algorithme de Lanczos non sym�etrique utilis�e pourcalculer les valeurs propres d'une matrice d'ordre n peut mener �a une matrice d'ordre n�1dont une valeur propre est arbitrairement loin du spectre de la matrice initiale.Mots-cl�e : Matrice de Jacobi, algorithme d'Euclide, suite de Sturm, algorithme de Lanczos,probl�emes inverses de valeurs propres.



Inverse Eigenvalue Problems 31 IntroductionIn the last centuries, the computation or localisation of some (or all) the roots of a poly-nomial has received a considerable attention. Another related problem has emerged and,progressively, became of fundamental interest for the community of numerical analysis: thecomputation or localisation of some (or all) of the eigenvalues of a matrix.More precisely, for every matrix algorithm we can look at its polynomial counterpart.For instance, Bernoulli's method (1729) for �nding the largest root of an algebraic equationp(x) = 0 is equivalent to the Von Mises-Geiringer method (1928) applied on the Frobeniuscompanion matrix of p(x) which computes its largest root by the power method. Howeverthe translation is not always obvious.Two algorithms have been the object of a great deal of work: the Routh's Algorithm(1877), based on the Sturm theorem (1835), which computes the number of roots of apolynomial in a given interval and: the Lanczos's Algorithm (1950) which tridiagonalises amatrix. The purpose of this work is to point out and make clear the formal connectionsexisting between these two famous algorithms and to give a relevant bibliography.The link becomes clear with a modi�ed version of Routh's Algorithmwhich we callRouth-Lanczos algorithm and for which we present a brief history. Given a polynomial p(x) withreal and simple roots, these algorithms build a Jacobi matrix (ie. a real irreducible symmetrictridiagonal matrix) whose characteristic polynomial is p(x). For sake of simplicity we willonly consider polynomials with real coe�cients.The fact that we impose the structure of the matrix solution of problems (2.1) and (2.2)explains the denomination structured inverse eigenvalue problems due to Boley and Golub[BG87] that we have declined in Jiep, studied in sect. (2), Biep and Tiep, studied in sect.(4).NotationsIn this work J = [�k; �k; k+1] denotes the tridiagonal matrixJ = 0BBBBBBBB@ �1 2�2 �2 3. . . . . . . . .. . . . . . . . .�n�1 �n�1 n�n �n 1CCCCCCCCA :When J is real symmetric, we always suppose that we have �i = i � 0.RR n�2604



4 R. Erra & B. PhilippeIf p(x) is a polynomial with real coe�cients p(x) = Pni=0 aixi the classical Frobenius'scompanion matrix associed to p is:C(p) = 0BBBBBB@ 0 1 00 0 1 00 0 .. . 0. . . . . . . . . ...� a0an � a1an � � � �an�1an 1CCCCCCA (1)For every matrix J of order n, we call upper principal submatrix the matrix of ordern � 1 obtained by deleting the last row and the last column of J . Similarly the matrix oforder n� 1 obtained by deleting the �rst row and the �rst column of J is called the lowerprincipal submatrix, and the spectra of these matrices are called principal subspectra. In isthe identity matrix of order n.For a matrix A we note AP = In �AT � In whereIn = 0BBBBB@ 0 � � � 0 10 � � � 0 1 0...0 1 0 � � �1 0 � � � 0 1CCCCCA (2)In is the reversal matrix of order n, and AP is the pertransposition of A. A n-th ordermatrix A such that AP = In �AT � In = A is called a persymmetric matrix.2 Jacobi Inverse Eigenvalue ProblemsDiscrete Inverse Eigenvalue Problems have �rst been proposed by Downing and Householder[DH56] (see [Fri77, FNO87] for newer references).We limit our attention, in this section, to the following situations which we de�ne asthe upper Jacobi Inverse Eigenvalue Problems (an upper Jiep), that has been raised byHochstadt ([Hoc67]):Problem 2.1 Let � = f�igi=1���n and 
 = f!igi=1���n�1 be two sets of real, satisfying thestrict interlacing property�1 < !1 < �2 < !2 � � � < !n�1 < �n (3)Find a Jacobi matrix Jn such that:sp(Jn) = f�igi=1���n and sp(Jn�1) = f!igi=1���n�1 (4)where sp(A) denotes the spectrum of A and Jn�1 the upper principal submatrix of ordern � 1 of Jn. INRIA



Inverse Eigenvalue Problems 5Problem 2.2 Let pn(x) and pn�1(x) be two monic polynomials of degree n and n� 1 res-pectively which are assumed to have strictly interlaced real roots.Find a Jacobi matrix Jn such thatdet(xIn � Jn) = pn(x) and det(xIn�1 � Jn�1) = pn�1(x) (5)where Jn�1 is the upper principal submatrix of order n� 1 of Jn .We can also de�ne the lower (Jiep), where Jn�1 is replaced by the lower principalsubmatrix of order n � 1 of Jn. We must point out that, if Jn is a solution of the upper(Jiep) with data � and 
 then JPn = I � Jn � I is a solution of the lower (Jiep) with data� and 
, see also [BG78].Another related problem is the following persymmetric (Jiep):Problem 2.3 Let � = f�igi=1���n be a set of real increasing. Find a persymmetric Jacobimatrix Jn having � as spectrum.Problems (2.1) and (2.3) come �rst from the discretisation of continuous inverse Sturm-Liouville problems. The problem of computing Gauss quadrature formula gives also (Sieps):for example computing the Gauss quadrature formula of order 2n, knowing the Gauss qua-drature formula of order n can be interpreted as the followingProblem 2.4 Let Jn be a Jacobi matrix of order n and let �2n be a set of 2n realsf�igi=1���2n strictly increasing. Find a Jacobi matrix J2n having �2n as spectrum and whoseprincipal upper submatrix of order n is Jn (problem DD in [BG87]).References and other exemples of (Sieps) can be found in [GK60, Hal76, BG87]. Theseproblems can be seen as particular cases of the more general following problem: the BandedInverse Eigenvalue Problem (Biep): i.e the problem of the reconstruction of a symmetricp-banded n � n matrix from the spectral data with additional interlacing conditions. See[BK81, BG87, MH81] for the case 2p + 1 < n and [Fri79] for the special case 2p + 1 = n(reconstruction of the complete symmetric matrix) with methods di�erent from those thatwe will discuss here.Hald ([Hal76]) proved that the �rst problem is well-posed :Theorem 2.1 Let J and ~J be solutions of Problem (2.1) with respective data�1 < !1 < �2 < !2 � � �< !n�1 < �nand ~�1 < ~!1 < ~�2 < ~!2 � � �< ~!n�1 < ~�nThere exists a constant K such thatjjJ � ~J jjE � K[ nXi=1(�i � ~�i)2 + nXi=1(!j � ~!j)2] 1=2 (6)RR n�2604



6 R. Erra & B. Philippewhere jj jjE is the Frobenius norm. The constant K is bounded in terms of n and �0 (K =O(n; �0)) de�ned by: �0 = �0r �02�0 + �0where �0 = 1d minj;k (j�j � !kj; j ~�j � ~!kj)and �0 = 12d minj 6=k (j�j � �kj; j!j � !kj; j ~�j � ~�kj; j ~!j � ~!kj)with d = max(�n; ~�n)�min(�1; ~�1):Obviously, Problems (2.1) and (2.2) are equivalent and, therefore this theorem impliesthat Problem (2.2) is well-posed as well.3 Existing algorithms for JiepFor sake of completeness, we �rst outline two families of algorithms that can be used tosolve (Jiep), namely the Lanczos algorithm and the Euclid-Sturm algorithm with a specialemphasis on Routh's algorithm. We point out that we only consider direct or �nite algo-rithms, i.e algorithms that terminate in a �nite number of steps. See [FNO87] for a surveyof iterative algorithms for inverse eigenvalue problems.3.1 Euclid-Sturm AlgorithmsThe integer Euclid's algorithm is one of the oldest \nontrivial" algorithms. For a full des-cription see [Knu81] and for a survey see [Bar74].De�nition 3.1 Let f and g be two polynomials of degree n and m respectively. We call ageneralised Euclid algorithm ([Knu81]), any algorithm based on the following recursion:� pn = f and pn�1 = g;�k � pk = qk � pk�1 + sign(�k) � k � pk�2 for k = n; n� 1; � � � (7)where (sign(�k) � k � pk�2) is the remainder of the polynomial division of (�k � pk) by pk�1.It is often used for computing a G.C.D of f and g: if pk�2 � 0 then pk�1 is a G.C.Dof f and g. Traditionnally, the sequence fpn; pn�1; � � �g is called a polynomial remaindersequence (p.r.s). We remark that the terms of the remainder sequence are unique up to ascalar multiplication.Classical choices for �k, sign(�k) and k are: INRIA



Inverse Eigenvalue Problems 71. �k = 1, �k = 1 and k = 1 which corresponds to the classical Euclid algorithm.2. �k 6= 1, sign(�k) = 1, and k = 1, for polynomials over a unique factorisation domain(polynomials with integer coe�cients for example).3. �k = 1, �k = �1, and k = 1 which corresponds to the classical Sturm algorithm([Stu35]). If pn and pn�1 satisfy the assumptions of Problem (2.2), then the p.r.sobtained stops with the constant polynomial p0 � 1 and is a Sturm sequence [Jac74].4. �k = 1, �k = �1 and k chosen in order to obtain a monic polynomial for pk�2.The latter case has been proposed several times (with minor modi�cations) :� Schwarz can be considered as the �rst who proposed an algorithm that builds a tridia-gonal (eventually complex) matrix admitting f as characteristic polynomial and g asthe characteristic polynomial of the upper principal submatrix. His procedure can beexpressed in the formalism of (7), with a special choice of g [Sch56], called the alter-nant, g is de�ned by g(z) = 1=2 � [f(z)�(�1)nf�(�z)], where f� is a polynomial whosecoe�cients are the conjugate of the coe�cients of f . This work follows Wall's workwho studied connections between in�nite Jacobi matrices, submatrices of �nite orderof such matrices and the associated continued fractions, see chapters IX;X;XI;XIIin ([Wal48]).� Collins proposed it as an attempt to keep small the magnitude of the coe�cients inthe polynomial G.C.D. computation [Col67]. He chose g = f 0 which is not a monicpolynomial and �k = 1. This algorithm is often used in computer algebra systems[Mig91].� Householder studied the same recurrence and provided relationships between the co-e�cients of the p.r.s. [Hou74].� Hald seems to be the �rst to have introduced it for solving Problem (2.1). He provedthat, by taking pn and pn�1 satisfying the assumptions of Problem (2.2), the p.r.sobtained is still a Sturm sequence but with monic polynomials [Hal76].� Ben-Or and al [BOFKT88, BOT90], following Collins's idea, used that algorithm forcomputing the roots of a given polynomial which has only real roots. They also proposea parallel version of their algorithm.� More recently, Schmeisser has rediscovered Hald's algorithm, see [Sch93]. He proposedthis algorithm to solve a problem posed by Fiedler at the International Colloqium onApplications of Mathematics in Hamburg in july 1990 (see also [Fie90]): Given a monicpolynomial p(x) with only real roots, construct a real symmetric matrix for which p(x)is the caracteristic polynomial.RR n�2604



8 R. Erra & B. PhilippeHouseholder calls Euclid-Sturm algorithms the algorithms based on the fourth recursion.We propose to call Euclid-Sturm algorithms all algorithms based on the third and fourthrecursions.For completeness, we must point out that Rutishauser's QD algorithm, proposed in 1954,can be used to compute a tridiagonal matrix Jn of order n which satis�esdet(x � In � Jn) = p(x)when p(x) is a polynomial of degree n with distinct roots. This algorithm can be viewed asa special case (and at the origin) of the matrix LR algorithm.Wendro� ([Wen61]) has studied a variant of problem (2.2): the construction of a sequenceof orthogonal polynomials fg0; g1; �; gn�1; gng, given gn�1 = pn�1 and gn = pn. He provedthat under the assumptions of problem (2.2) this problem has a unique solution, which is aSturm sequence, but his demonstration doesn't use explicitly an Euclid-Sturm scheme andhe doesn't mention problem (2.1). We can point out that problem (2.3) has been studied byHald ([Hal76]), and has initially been studied by Gantmacher-Krein in the book ([GK60])published in German in 1960 (but published in russian in 1950).A well-known Euclid-SturmAlgorithm is the Routh's Algorithm.Routh stated his famousalgorithm to compute the number of roots of a real polynomial, which lie in the left-halfcomplex plane. We follow here the presentation of Barnett and Siljak's extensive survey[BS77] which was published for the centennial of the algorithm.Given two polynomials f and g such that:f(x) = �0 � xn + �1 � xn�1 + � � �+ �n (8)g(x) = �0xn�1 + �1xn�2 + � � �+ �n�1 (9)with �0 6= 0 and �0 6= 0.Then the Routh Array is the set of rows:r0;1 r0;2 � � � r0;n+1r1;1 r1;2 � � � r0;nr2;1 � � �� � � � � �where r0;j = �j�1 and r1;j = �j�1 for corresponding j. The array is generated by the rule:ri;j = � ���� ri�2;1 ri�2;j+1ri�1;1 ri�1;j+1 ����ri�1;1 (10)This is the so-called determinantal form of the Routh's algorithm. It avoids the need ofa polynomial division. The relation between the Sturm sequence f0(x); f1(x); � � � ; fn(x),obtained from (7) which correponds to the second case for �k and k, and the �rst columnof the Routh's array is the following : INRIA



Inverse Eigenvalue Problems 9� f0(x) = f(x)� f1(x) = g(x)� fi(x) = �i � (Pn�ij=0 r2�i�1;m�i+j�1 � xj), where �i = sign(Q2�i�21 rj;1).See also [Gan59] and [BS77] for newer references.From the Routh's array one can construct the Schwarz matrix, which is a tridiagonalreal matrix, but is generally non symmetric:S = 0BBBBBBB@ 0 1 0 0�rn 0 1�rn�1 0 1.. . . . . . . . 0�r3 0 1�r2 �r1 1CCCCCCCA (11)where r1 = r11, r2 = r21 and ri = ri1=ri�2;1 for i > 2, see [Sch56]. A similar result is implicitin Wall's book. The tridiagonal matrix R, similar to S, de�ned byR = 0BBBBBBBB@ 0 �(rn)1=2 0 0(rn)1=2 0 �(rn�1)1=2(rn�1)1=2 0.. . . . . . . . 00 �r1=22r1=22 �r1 1CCCCCCCCA (12)where the square roots can be complex, is called the Routh's matrix, see [BS77]. The numberof positive terms in the sequence r1; r1r2; � � � ; r1r2 � � �rn is equal to the number of roots ofp(x) with negative real parts [BS77].3.2 The symmetric Routh-Lanczos algorithmTo solve Problem (2.2), one can compute the p.r.s. by the fourth case of recurrence presentedin subsection (3.1). Hald proved then that all the quotient polynomials are monic and ofdegree 1 and all the coe�cients k are positive [Hal76]. Then the recurrence can be written :pk(x) = (x� �k)pk�1(x) � �k2pk�2(x) k = n; � � � ; 2 (13)which is the well-known three-term recurrence for computing the characteristic polynomialof the Jacobi matrix Jn = [�k; �k; �k+1], but computed in a reverse way. We note that thepolynomials p0(x); � � � ; pn(x) are called Lanczos Polynomials by Householder in [Hou64].RR n�2604



10 R. Erra & B. PhilippeThe obtained tridiagonal matrix JnJn = 0BBBBBBBB@ �1 �2�2 �2 �3. . . . . . . . .. . . . . . . . .�n�1 �n�1 �n�n �n 1CCCCCCCCA :which is, by construction, a Jacobi matrix and is solution of Problem (2.2). We call thisprocedure the symmetric Routh-Lanczos Algorithm. Jn is characterized by the following :Theorem 3.1 (Hald) Let f�igi=1���n and f!igi=1���n�1 be two sets of real, satisfying thestrict interlacing property 3. There exists a unique Jacobi matrix of order n such that itseigenvalues are f�ig1;n and the eigenvalues of Jn�1 are f!ig1;n�1.Proof : See [Hal76] for a complete proof. 2Hochstadt ([Hoc67, Hoc74]) proved that there exists at most one solution to problem(2.1) and Gary-Wilson ([GW76]) proved that there exists at least one solution. Hald ([Hal76])seems to be the �rst who explicitely proved that problem (2.1) has a unique solution (usingan Euclid-Sturm scheme).3.3 The Lanczos algorithmThe algorithm, which was called p-q algorithm by Lanczos ([Lan50]), is well known, fre-quently used and has been thoroughly studied. It has been initially proposed by Lanczoscirca 1950 for computing the minimal polynomial of a matrix.The use of Lanczos Algorithm to solve Problem (2.1) has been �rst proposed in [BG78]and [BG77] (see [BG87] for more information and references). The goal is to choose thestarting vector from the given eigenvalues data :Proposition 3.1 Let f�igi=1���n, f!igi=1���n�1 be two sets of strictly interlaced real. If� is the diagonal matrix of which diagonal entries are f�igi=1���n and if the vector q =(q1; � � � ; qn)T is de�ned by: qk2 = Qn�1j=1 (!j � �k)Qnj=1; j 6=k (�j � �k) (14)then, the symmetric Lanczos Algorithm applied on �, with a starting vector q satisfying(14), generates the Jacobi matrix [�k; �k; �k+1] which is solution of Problem (2.1). INRIA



Inverse Eigenvalue Problems 11A straight application of Hald's Theorem [Hal76] insures that, in exact arithmetic, theJacobi matrix obtained here is equal to the matrix JPn = I � Jn � I obtained in the previoussection with the Routh-Lanczos algorithm. The fact that we must use the pertranspositionof Jn comes from the fact that the Routh-Lanczos Algorithm solves an upper (Jiep) whilethe symmetric Lanczos Algorithm used in 3.1 solves a lower (Jiep).Such a result can be used for proving Scott's result about the fact that even symmetricLanczos can converge slowly in the sense of the Kaniel-Paige-Saad's theory [Sco79] :Corollary 3.1 Let A be a real symmetric matrix of order n, with sp(A) = f�1; �2; � � � ; �ng.For every set of reals f!1; � � � ; !n�1g which strictly interlaces sp(A) , there exists a realvector p0 such that, if Jn is the Jacobi matrix obtained by the symmetric Lanczos algorithmwith starting vector p0, and Jn�1 it's principal submatrix, then we havesp(Jn�1) = f!1; � � � ; !2gIn particular we can choose p0 such that!i = �i + �i+12 8i = 1; � � � ; n� 13.4 Other Algorithms for solving a (Jiep)We have seen that constructing a Jacobi matrix is equivalent to construct a sequence oforthogonal polynomials. We must point out that the two oldest known procedures for ge-nerating orthogonal polynomials, are the Stieltjes procedure ( [Sti84]) and the Chebyschevprocedure ([Che58, Che59]). Both algorithms compute a sequence of orthogonal polynomialswith a forward process, i.e they compute pk before pk+1. The Stieltjes procedure has beenstudied by Gautschi [Gau82, Gau85], and the Chebyshev procedure has been also advocatedby Gautschi [Gau82] and by Gutknecht and Gragg ([GG94]) ; the two algorithms have aO(n2) complexity . Both algorithms can be used to solve a (Jiep).In [Rei91] Reichel compares the Stieltjes procedure and an algorithm proposed by Graggand Harrod ([GH84]) for solving a (Jiep). This last algorithm belongs to another class ofalgorithms that can be used to solve a Jiep: they are based on a modi�cation of a Ruti-shauser's algorithm ([Rut63]). For example, the Rutishauser-Kahan-Pal-Walker algorithm,proposed by Gragg and Harrod ([GH84, BG87]), consists in applying a sequence of carefullychosen orthogonal plane rotations in a given order onto an arrowheaded matrix (also calleddiagonal bordered matrix). A similar algorithm has been �rst proposed by Biegler-Konig([BK81]). These algorithms are O(n3) algorithms and, evidently, they compute, in exactarithmetic, the same Jacobi matrix Jn constructed by the Routh-Lanczos and the Lanczosalgorithms.Finally, we must point out that an algorithm of the same class has been recently proposedby Ammar and Gragg ([AG91]) for solving a (Biep). It uses an e�cient pattern of rotationswhich provides a stableO(n2) algorithm. It seems to be the �rst numerically stable algorithmthat can solve a (Jiep) in O(n2) arithmetic operations.RR n�2604



12 R. Erra & B. Philippe4 General polynomials4.1 Complete and incomplete p.r.s.An interesting question arises when polynomials are not anymore assumed to have realinterlacing roots.Problem (2.2) becomesProblem 4.1 Let pn(x) and pn�1(x) be two real monic polynomials of degree n and n� 1respectively.Find a tridiagonal matrix Jn such thatdet(xIn � Jn) = pn(x) and det(xIn�1 � Jn�1) = pn�1(x) (15)where Jn�1 is the principal submatrix of order n� 1 of Jn.We call this second structured inverse eigenvalue problem a (Tiep) ( for TridiagonalInverse Eigenvalue Problem).We can still try to compute the p.r.s. fpk(x)gk=n;���;0 with the Routh-Lanczos algorithmwhich corresponds to the fourth choice of Section 3.1 :pk = (x� �k)pk�1(x)� kpk�2(x) k = n; � � � ; 2 (16)In contrast to (Jiep), the process (7) computing the p.r.s. can stop before reaching theremainder of degree one. Before exhibiting such situations, let us consider the followingde�nition :De�nition 4.1 Let pn(x) and pn�1(x) be the two starting polynomials. We say that the p.r.sis complete when the degree of polynomial pk is equal to k and the last computed polynomialis of degree 1.A necessary condition to have a complete p.r.s is to start with two relative prime po-lymomials pn and pn�1, since the last remainder of the sequence is their monic G.C.D. Ifthe polynomials are not prime the algorithm stops after having computed a multiple ofthe G.C.D.(pn,pn�1). This situation is the �rst case where an incomplete p.r.s is computedinstead of the complete p.r.s expected.But G:C:D:(pn; pn�1) = 1 is not a su�cient condition to insure a complete p.r.s. Forexample : the sequence de�ned by pn(x) = xn�1 and pn�1 = xn�1 gives pn�2(x) = 1 and theprocess stops immediately for any n > 2. This situation is the second case of computationof an incomplete p.r.s. This fact was known during the 19-th century but it's not clearif Sturm knew that his algorithm could su�er from breakdown (for further references, see[KN81], english translation of a work published in Russian in 1936).The preceeding example shows that Problem 4.1 contrasts drastically with the Jiep. Wecan point out the fact that the matrix C(p3), when p3(x) = x3 � 1 is exactly the examplechosen in [PTL85] to show that Nonsymmetrix Lanczos Algorithms may breakdown. INRIA



Inverse Eigenvalue Problems 13Similarly to the non-symmetric Lanczos Algorithm, we call happy breakdown the �rstcase and serious breakdown the second. It is as hard to overcome this situation by choosinganother polynomial pn�1 as it is for the selection of a \good" pair of initial vectors in theLanczos process.4.2 A non-symmetric Routh-Lanczos AlgorithmIf the recurrence (16) gives a complete p.r.s, it allows us to de�ne the tridiagonal matrixJ = 0BBBBBBBB@ �1 12 �2 1.. . . . . . . .. . . . . . . . .n�1 �n�1 1n �n 1CCCCCCCCA (17)which is, by construction, solution of (4.1). This is the non-symmetric Routh-Lanczos algo-rithm.We establish now the connection between this algorithm and the non-symmetric Lanczosalgorithm.We obtained a result, which has been suggested by a similar relation between the Fro-benius companion matrix and the Comrade Matrix in [Bar75], and a Pury and Weygandt'sresult which states that a Frobenius companion matrix C is similar to the Routh canonicaltridiagonal matrix R (12) through a tranformation matrix which is triangular[BS77].If pn(x) and pn�1 are polynomials with real coe�cients, we denote by T the lowertriangular matrice T , composed of the coe�cients of the p.r.s. p0(x); � � � ; pn�1(x) producedby the Routh-Lanczos algorithm when there is no breakdown:T = 0BBBBBBBBB@ 1 0 0 � � � 0a[1]0 1 0 � � � 0a[2]0 a[2]1 1 0 0 ...... ... ... ... . . . ...a[n�2]0 � � � 1 0a[n�1]0 a[n�1]1 � � � a[n�1]n�2 1 1CCCCCCCCCA (18)where pk(x) = xk + k�1Xj=0 a[k]j � xj 8k = 0; � � � ; nLet J = [k; �k; 1] be the tridiagonal matrix obtained in (17).We have the followingRR n�2604



14 R. Erra & B. PhilippeTheorem 4.1 Let pn(x) and pn�1 be polynomials of degree n with real coe�cients. If theRouth-Lanczos's Algorithm produces a complete p.r.s, the matrices J and T de�ned as aboveare related by the following similarity transformation:J = TCT�1 (19)where C is the companion matrix C(pn).Proof : We follow the proof given in [Bar75] for a similar result. Let fxjgj=1;n be a setof n distinct and nonzero real numbers. The matrix X , de�ned by Xij = xji�1, is thereforea nonsingular Vandermonde matrix.We de�ne, for any nonzero real x, the vectorP(x) = 0BBB@ p0(x)p1(x)...pn�1(x) 1CCCA (20)A direct computation gives:JP(x) = xP(x) +0BBB@ 0...0�pn(x) 1CCCA (21)and P(x) = TX (22)where X = (1; x; x2; � � � ; xn�1)t. Similarly,C(pn)X = xX +0BBB@ 0...0�pn(x) 1CCCAand therefore from (21)TC(pn)X = xP(x) + T 0BBB@ 0...0�pn(x) 1CCCA = JP(x) = JTXsince (0; � � � ; 0; pn(x))t is invariant under T . INRIA



Inverse Eigenvalue Problems 15This is true for any nonzero real x, and hence:JTX = TCX (23)which ends the proof. 2To describe the connections of the Routh-Hurwitz algorithmwith the Lanczos algorithm,we consider here the version of the non-symmetric Lanczos Algorithm which produces thereal tridiagonal matrix with entries set to one on the upper diagonal.Corollary 4.1 The relation (19) shows that the matrix J is also obtained by applying theLanczos algorithm on the matrix C when taking as left and right initial vectors respectivelythe �rst row of T and the �rst column of T�1 and for which no breakdown occurs.4.3 Ill convergence for the Lanczos algorithmWe can state a result for the non-symmetric case which is much worse than for its symmetricversion :Theorem 4.2 Let A be a real matrix with real eigenvalues f�igi=1;���;n. For every real ! 6= 0such that ! < �1 (or ! > �n), there exist two initial vectors p0 and q0 such that, if Jn isthe real tridiagonal matrix obtained by the non-symmetric Lanczos Algorithm (with initialvectors p0 q0), we have ! 2 sp(Jn�1)where Jn�1 is the principal submatrix of JnLet us �rst state a lemma.Lemma 4.1 Let p and q be two real monic polynomials. We assume that� p is of degree n and its roots f�igi=1;���;n, are simple and real,� q is of degree n� 1 and its roots f!igi=1;���;n�1 are simple and real,� !1 < �1 < !2 < � � � < !n�1 < �n�1 < �n ( we call this property the shifted interlacingassumption).Then, if r is de�ned as the third polynomial in the sequence obtained by the Routh-Lanczosalgorithm applied on (p; q), i.ep(x) = (x� a)q(x)� cr(x) with degree(r) � n� 2then we havei) r is of degree n� 2 and its roots are simple and realRR n�2604



16 R. Erra & B. Philippeii) the roots f�ig1;n�2 of r strictly interlace the roots of q.Proof : A computation similar to [Hal76] (pp. 67-68) insures thatc = n�1Xj=1 "(�j+1 � !j) � jXk=1(!k � �k)#which proves that c is negative and cannot vanish. Moreover, since the polynomials p and�cr are coincident on f!ig1;n�1 and since fp(!j)g1;j�1 is an alternate sequence, the rootsof r strictly interlace the roots of q. 2Proof (theorem)Let us de�ne the polynomials pn(x) = det(xI � A) and pn�1(x) = Qn�1i=1 (x � !i) wheref!ig1;n�1 is any set of reals satisfying the shifted interlacing assumption:!1 < �1 < !2 < � � � < !n�1 < �n�1 < �nand where !1 = !. Therefore by applying the previous lemma,we can claim that the �rst stepof the Routh-Lanczos algorithm de�nes a polynomial pn�2 of which roots strictly interleavethe set f!ig1;n�1. We are now in the situation where the Routh-Lanczos algorithm with thepolynomials pn�1 and pn�2 computes a complete p.r.s pn�1; pn�2; � � � ; p1; p0 of order n� 1which is a Sturm sequence. We notice that the p.r.s pn; pn�1; � � � ; p1; p0 of order n�1 is alsocomplete, but is not a Sturm sequence. Let Jn the obtained tridiagonal matrix and T thetriangular matrix containing the coe�cients of the polynomials of the sequence. Theorem(4.1) insures that the matrices satisfy Jn = TC(pn)T�1.Let X be a matrix such that XAX�1 = C(pn). The last two equalities imply thatJn = (TX)A(TX)�1 .Now, we can conclude by de�ning the two vectors p0 and q0 equal to, respectively, the �rstcolumn of TX and the �rst row of (TX)�1 as the starting vectors for the Lanczos process. 2This result illustrates that, when computing the eigenvalues of a matrix, the non-symmetricLanczos Algorithm can lead to a slow convergence, even for a symmetric matrix since a per-ipherical eigenvalue of the tridiagonal matrix of order n� 1 can be arbitrarily far from thespectrum of the original matrix. This poor behavior of the non-symmetric Lanczos algo-rithm is not shared by the Arnoldi algorithm since for the latter the �eld of values of theHessenberg matrices are always included in the �eld of values of the original matrix. Despiteof that, Lanczos algorithms are still attractive for their very cheap computational cost.5 Parametric Representations of a Jacobi matrixAll the previous results lead to the problem of parametric representations of a Jacobi matrixand, more generally, of a tridiagonal matrix. This problem is de�ned and studied in [Par92].We summarise here some of the results. INRIA



Inverse Eigenvalue Problems 17Theorem 5.1 Let Jn = [�k; �k; �k+1] a real Jacobi matrix of order n.1. Given the n eigenvalues f�igi=1���n of Jn and the n � 1 eigenvalues f!igi=1���n�1 , ofJn�1, principal submatrix of Jn ( or those of any principal submatrix or order n� 1),if the eigenvalues of Jn�1 interlace those of Jn, then Jn is uniquely determinated.2. Given the polynomials pn = det(x � I � Jn) and pn�1 = det(xIn�1� Jn�1), if the rootsof pn�1 interlace strictly the roots of pn, then Jn is uniquely determinated.3. Let B a matrix similar to the Jacobi matrix Jn de�ned byQ�1BQ = Jn:Then Q and Jn are determinated, to within diagonal scaling by the �rst (or last) columnof Q and the �rst (or last) row of Q�1.4. Given the n eigenvalues f�igi=1J���n of Jn and the last row of its orthogonal matrix ofeigenvectors, then Jn is uniquely determinated.5. Given the n eigenvalues f�igi=1���n of Jn and the n � 1 values feT1 Jkne1gn�1k=1 , whereeT1 = (1; 0; � � � ; 0)T , then Jn is uniquely determinated.The �rst three determinations are consequences of the previous sections, the fourth determi-nation is cited in [HP99], and the last is a special case of theorem 1 in [MH81]. We can pointout the fact that the �ve results involve 2n � 1 free parameters by considering appropriatenormalisations.6 ConclusionThis paper deals with two classes of �nite algorithms that solve a special structured inverseeigenvalue problem(Siep) : given some constraints on a set of real eigenvalues, �nd a Jacobimatrix J (real symmetric tridiagonal) that admits eigenvalues satisfying the constraints. Wehave called Jiep (Jacobi Inverse Eigenvalue Problem) the case where the two sets of giveneigenvalues satisfy the interlacing property (3) and Tiep (Tridiagonal Inverse EigenvalueProblem) the problem obtained when the interlacing property is relaxed.The two classes of �nite algorithms that have been considered are:� a polynomial algorithm, based on a special Euclid-Sturm algorithm (Householder'sterminology) which has been rediscovered several times.� a matrix algorithm, which is a symmetric Lanczos algorithm with a special choice ofthe starting vector.Hald's theorem insures the equivalence of the two algorithms in exact arithmetic.We have extended the results of the symmetric situation to the non-symmetric caseby considering general real polynomials. Possible breakdowns may occur in the polynomialRR n�2604
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Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY
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