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Abstract

Efficient preconditionners can be defined from domain decompositions with over-
lapping when solving linear systems arising from a PDE discretization. Partitioning
of the domain entails a corresponding block partitionning of the matrix. It is known
that Schwarz’s methods (additive and multiplicative) correspond to given splittings
of the matrix. An explicit formulation of the splitting was only known for the ad-
ditive situation. An explicit splitting associated with the Multiplicative Schwarz
iteration is provided. The advantage of considering the explicit formulation, when
the iteration is used as a preconditioner for a Krylov method, is shown.

Key words: Domain decomposition, Multiplicative Schwarz, preconditionner,
Krylov methods, Red-Black coloring, iterative methods.

1 Introduction

Domain decomposition provides a class of divide-and-conquer methods suit-
able for the solution of linear or nonlinear systems of equations arising from
the discretization of partial differential equations. For linear systems, domain
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decomposition methods can be viewed as preconditioners for Krylov subspace
techniques.

As mentioned in [8], the term domain decomposition has slightly different
meanings to specialists depending on their discipline : in parallel computing,
it often means the process of distributing data from a computational model
among the processors in a distributed memory computer. In numerical anal-
ysis, it means the separation of the physical domain into regions that can be
modeled with different equations, with interfaces between the domains han-
dled by various conditions. In preconditioning methods, which is our interest
in this article, domain decomposition refers to the process of subdividing the
solution of a large linear system into smaller problems whose solutions can be
used to produce a preconditioner (or solver) for the system of equations that
results from discretizing the PDE on the entire domain or more generally from
any sparse matrix. In our work, we consider the latter and we suppose that
the domain decomposition is with overlapping.

Traditionally, there are three classes of iterative methods which derive from
domain decomposition : Additive and Multiplicative Schwarz for overlappings
subdomains and Schur complement methods for non-overlapping subdomains.
When using the Schwarz methods as solvers, the convergence rates are very
slow and the convergence is mainly guarantied for symmetric positive definite
matrices and M-matrices [3]. For that reason, the particular interest of Schwarz
methods is as preconditioner of Krylov subspace methods since they can be
efficient even when they would not converge as a full method.

When used as preconditioners, one is interested in deriving an explicit and use-
ful expression of the preconditioner. For the Additive Schwarz method such
an expression exists. To our knowledge, no explicit expression of the precon-
ditionner is known for the Multiplicative Schwarz method. In this paper we
derive such an expression.

In section 2 we suppose that one graph partitioner is applied resulting in
subdomains with overlaps. If the domain decomposition were without overlap,
it is known [4] that the multiplicative Schwarz algorithm would be equivalent
to a Block Gauss Seidel iteration. In section 3, we derive an explicit formulation
of the Multiplicative Schwarz preconditioner. In section 4, we discuss the use
of such a preconditionner with a Krylov method and in section 5, we illustrate
the behaviour of the preconditionner on some numerical tests.
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2 Domain decomposition of a sparse matrix and notations

Let us consider a sparse matrix A ∈ R
n×n. The pattern of A is the set P =

{(k, l)|ak,l �= 0} which is the set of the edges of the graph G = (W, P) where
W = {1, ..., n} = [1 : n] is the set of vertices.

Definition 2.1 A domain decomposition of matrix A into p subdomains is
defined by a collection of sets of integers Wi ⊂ W = [1 : n], i = 1, ..., p such
that : ⎧⎪⎨

⎪⎩
|i − j| > 1 =⇒ Wi ∩ Wj = ∅,

P ⊂ ⋃p
i=1(Wi × Wi).

Following this definition, a domain decomposition can be considered as result-
ing from a graph partitioner but with potential overlap between domains. It
can be noticed that such a decomposition does not necessarily exist (e.g when
A is a dense matrix in which case there is only one subdomain). For the rest
of our discussion, we shall suppose that a graph partitioner has been applied
and has resulted in p sets Wi whose union is W , W = [1 : n]. The submatrix
of A corresponding to Wi × Wi is denoted by Ai

We shall denote by Li = ⊕j∈Wi
(ej) the vector space of R

n of all the vectors
with zero components for every index j �∈ Wi. Let mi be the dimension of Li.
The orthogonal projector onto Li is defined by the sub-identity matrix Ii of
order n× n whose diagonal elements are set to one if the corresponding node
belongs to Wi and to zero otherwise. We also denote by Ai the extension of
block Ai to the whole space, therefore:

Ai = IiAIi. (1)

Finally, we define the complement sub-identity matrix Īi = I − Ii and the
matrix,

Āi = Ai + Īi. (2)

We assume thereafter that all the matrices Āi, for i = 1, · · · , p are non singular.
The generalized inverse A+

i of Ai satisfies A+
i = IiĀ

−1
i = Ā−1

i Ii.

Proposition 2.1 For any domain decomposition as defined in Definition 2.1
the following property is true.
∀ i, j ∈ {1, ..., p},

|i − j| > 2 ⇒ IiAIj = 0.

Proof. Let (k, l) ∈ Wi × Wj such that ak,l �= 0. Since (k, l) ∈ P, there exists
m ∈ {1...n} such that k ∈ Wm and l ∈ Wm; therefore Wi ∩ Wm �= ∅ and
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Wj ∩Wm �= ∅. Consequently, from Definition 2.1, |i−m| ≤ 1 and |j −m| ≤ 1,
which implies |i − j| ≤ 2. �

Let us introduce a special situation which is often satisfied and which brings
some simplification in the sequel.

Definition 2.2 The domain decomposition is with weak overlap if and only
if, for any i, j ∈ {1, ..., p} the following is true

|i − j| > 1 ⇒ IiAIj = 0.

The set of unknowns which represents the overlap is defined by the set of
integers Ji = Wi ∩ Wi+1, i = 1, ..., p − 1, and let si be the dimension of the
overlap. Similarly to (1) and (2), we define

Ci = OiAOi, (3)

and

C̄i = Ci + Ōi, (4)

where Oi ∈ R
n×n is sub-identity matrix whose diagonal elements are set to one

if the corresponding node belongs to Ji and to zero otherwise, and Ōi = I−Oi.

Example 2.1 Figure 1 displays an example of a domain decomposition for a
matrix in the case where all Wi are intervals of integers (Aij denotes a block).

There is a close connection between a block tridiagonal structure and a domain
decomposition. For instance, in the previous example, if, in order to transform
A into a block tridiagonal matrix, we assume that all the blocks Ai,i+2 and
Ai+2,i are zeros, the domain decomposition is obtained by defining the domains
with three consecutive blocks and the overlaps correspond to only one block.
One can easily verify that such an overlap is a weak overlap. If the domains
were defined with only two blocks and the domain overlaps on one block, the
overlap would not be weak.

In the definitions, the set of integers defining the subdomains are not neces-
sarily intervals although this is often the situation as in the example. However,
when considering other situations like a red-black block ordering, it is impor-
tant to include the general case. Nevertheless, it is always possible to recover
the special case by renumbering the unknowns.

4
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A11 A12

A1

A21 C1 A23 A34

A32 A33 A34 A2

A42 A43 C2 A45 A46

A54 A55 A56 A3

A64 A65 C3 A67

A4

  A  =

A76 A77

Fig. 1. A matrix domain decomposition with block overlaps. W1 = w1 ∪ w2 ∪ w3,
W2 = w3 ∪w4 ∪w5, W3 = w5 ∪w6 ∪w7, W4 = w7 ∪w8 ∪w9, where, for i = 1, · · · , 9,
wi is the set of the row indices of Aii with C1 = A33, C2 = A55 and C3 = A77.

3 Multiplicative Schwarz

The goal of Multiplicative Schwarz methods is to iteratively solve a linear
system

5
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Ax = b (5)

where matrix A is decomposed into overlapping subdomains as described in
the previous section. The iteration consists of solving the original equation in
sequence on each subdomain. This is a well-known method ; for more details,
see for instance [3,4,6–8,10]). In this section, we present the main properties
of the iteration and derive an explicit formulation of the corresponding matrix
splitting.

3.1 Classical formulation

Let xk be the current iterate and rk = b − Axk the corresponding residual.
The classical formulation of multiplicative Schwarz proceeds as follow.

Algorithm 1 : One iteration of the Multiplicative Schwarz Preconditioner
builds p sub-iterates and their corresponding residuals by the following recur-
sion :

input : x := xk ; r := rk ;

for i = 1 : p

x := x + A+
i r ;

r := r − AA+
i r ;

end

output : xk+1 := x ; rk+1 := r ;

It follows that :

rk+1 = (I − AA+
p )...(I − AA+

1 )rk. (6)

This method corresponds to a relaxation iteration defined by some splitting
A = M −N such that the iteration matrices for the residual and the error are
respectively

NM−1 = (I − AA+
p ) · · · (I − AA+

1 ) and (7)

M−1N = A−1NM−1A = (I − A+
p A) · · · (I − A+

1 A). (8)

The convergence of this iteration is proven for M-matrices and s.p.d. matrices
(eg. see [3]).

6
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Now, let us suppose that the goal is to consider another iterative method but
preconditioned by one step of the Multiplicative Schwarz method. For that
purpose, it is necessary to define

y = M−1Ax or y = AM−1x

depending on the side of the preconditionning, for any vector x and where M
is the matrix characterized by the previous splitting. From the expression of
M−1N and NM−1 we can derive an expression of M−1A or AM−1 as follows :

M−1A = I − (I − A+
p A) · · · (I − A+

1 A), (9)

or

AM−1 = I − (I − AA+
p ) · · · (I − AA+

1 ). (10)

3.2 Embedding in a system of larger dimension

If the subdomains do not overlap, it can be shown [4] that the Multiplicative
Schwarz is equivalent to a Block Gauss-Seidel method applied on an extended
system. In this section, following [9], we present an extended system which
embeds the original system (5) into a larger one with no overlapping between
subdomains.

For that purpose, we define the prolongation mapping and the restriction
mapping. We assume for the whole section that the set of indices defining the
domains are intervals. As mentioned before, this does not limit the scope of the
study since a preliminary symmetric permutation of the matrix, corresponding
to the same renumbering of the unknowns and the equations, can always end
up with such a system.

Definition 3.1 The prolongation mapping which injects R
n into a space R

m

where m =
∑p

i=1 mi = n +
∑p−1

i=1 si is defined as follows :

D : R
n → R

m

x �→ x̃,

where x̃ is obtained from vector x by duplicating all the blocks of entries cor-
responding to overlapping blocks.

The restriction mapping consists of projecting a vector x̃ ∈ R
m onto R

n, which
consists of deleting the subvectors corresponding to the first appearence of each

7
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overlapping blocks

P : R
m → R

n

x̃ �→ x.

Embedding the original system in a larger one is done for instance in [4,9].
We present here a special case. In order to avoid a tedious formal presentation
of the augmented system, we present its construction on an example which is
generic enough to understand the definition of Ã. In Figure 2, is displayed an
example with four domains. Mapping D builds x̃ by duplicating some entries
in vector x : mapping x → x̃ = Dx expands vector x to include subvectors y3,
y5 and y7. The equalities y3 = x3, y5 = x5 and y7 = x7 define a subspace J
of R

m. This subspace is the range of mapping D. These equalities combined
with the definition of matrix Ã show that J is an invariant subspace of Ã :
ÃJ ⊂ J . Therefore solving system Ax = b is equivalent to solving system
Ãx̃ = b̃ where b̃ = Db. Operator P deletes entries x3, x5 and x7 from vector
x̃.

Fig. 2. Definition of Ã (Extension of Matrix displayed in Fig 1).

Remark 3.1 The following properties are straightforward consequences of
the previous definitions :

(1) Ax = PÃDx,
(2) J = R(D) ⊂ R

m is an invariant subspace of Ã,
(3) PD = In and DP is a projection onto J ,
(4) ∀x, y ∈ R

n, (y = Ax ⇔ Dy = ÃDx).

This can be illustrated by diagram (11) :

8
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R
n A→ R

n

D ↓ ↑ P

R
m Ã→ R

m .

(11)

One iteration of the Multiplicative Schwarz method on the original system (5)
corresponds to one Block-Seidel iteration on the enhanced system

Ãx̃ =Db, (12)

where the diagonal blocks are the blocks defined by the p subdomains. More
precisely, denoting by M̃ the block lower triangular part of Ã, the iteration
defined in Algorithm 1 can be expressed as follows :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃k = Dxk,

r̃k = Drk,

x̃k+1 = x̃k + M̃−1r̃k,

xk+1 = Px̃k+1.

(13)

To prove it, let us partition Ã = M̃ − Ñ , where Ñ is the strictly upper
block triangular part of (−Ã). Matrices M̃ and Ñ are partitioned by blocks
accordingly to the domain definition. One iteration of the Block Gauss-Seidel
method can then be expressed by

x̃k+1 = x̃k + M̃−1r̃k.

The resulting block triangular system is solved successively for each diagonal
block. To derive the iteration, we partition x̃k and x̃k+1 accordingly. At the
first step, we obtain

x̃k+1
1 = x̃k

1 + A−1
1 r̃k

1 , (14)

which is identical to the first step of the Multiplicative Schwarz xk+1/p =
xk + A+

1 rk. The i-th step (i = 2, · · · , p)

x̃k+1
i = x̃k

i + A−1
i

(
b̃i − M̃i,1:i−1 x̃k+1

1:i−1 − Aix̃
k
i + Ñi,i+1:p x̃k

i+1:p

)
, (15)

is equivalent to its counterpart xk+(i+1)/p = xk+i/p + A+
i rk+i/p in the Multi-

plicative Schwarz algorithm.

9
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Therefore, we have the following diagram

R
n M−1

→ R
n

D ↓ ↑ P

R
m M̃−1

→ R
m

and we conclude that M−1 = PM̃−1D.

We must remark that there is an abuse in the notation, in the sense that the
matrix denoted by M−1 can be singular even when M̃−1 is non singular.

We shall prove in the following theorem that this happens when one overlap-
ping block is singular. Nevertheless, we keep the notation for its meaning in
the general case.

3.3 Explicit formulation of the Multiplicative Schwarz preconditionner

Theorem 3.1 Let A ∈ R
n×n be decomposed into p subdomains as described

in section 2 such that all the matrices Āi, for i = 1, · · · , p, and all the ma-
trices Ci, for i = 1, · · · , p − 1, are non singular. The Multiplicative Schwarz
preconditionner matrix M−1 can be explicitly expressed by :

M−1 = Āp
−1

C̄p−1Ā
−1
p−1C̄p−2 · · · Ā2

−1
C̄1Ā1

−1
(16)

where matrices Āi and C̄i are defined in section 2.

Proof. The Richardson iteration corresponding to the Multiplicative Schwarz
preconditionner is expressed by the relation xk+1 = xk + M−1rk. When we
inject it in the augmented dimension we have the following iteration:
x̃k+1 = x̃k + M̃−1r̃k, where x̃k = Dxk , r̃k = Drk and M̃−1 represents the
Block Gauss-Seidel preconditionner built from Ã. Let us set M̃−1r̃k = t̃k ;
then x̃k+1 = x̃k + t̃k and therefore, xk+1 = Px̃k+1 = xk + P t̃k.

In order to compute P t̃k, we eliminate, within the system r̃k = M̃ t̃k, the
unknowns which must be discarded by the projection P. For that purpose, we
partition the diagonal block (Ai) of Ã as follows:

Ai =

⎛
⎜⎝ Bi Fi

Ei Ci

⎞
⎟⎠ and accordingly the vectors t̃ik =

⎛
⎜⎝ f i

k

gi
k

⎞
⎟⎠ and r̃i

k =

⎛
⎜⎝ ui

k

vi
k

⎞
⎟⎠ for

i = 1, ..., p−1 and t̃k
p

= f p
k , r̃k

p = up
k. We can observe from this representation

10
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that

rk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
k

...

up−1
k

up
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and tk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f 1
k

...

f p−1
k

f p
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We now form the reduced system by only keeping the components of tk:

(B1 − F1C
−1
1 E1)f

1
k =u1

k − F1C
−1
1 v1

k, (17)⎛
⎜⎝ Ei−1f

i−1
k

0

⎞
⎟⎠ + (Bi − FiC

−1
i Ei)f

i
k =ui

k − FiC
−1
i vi

k, i = 2, ..., p − 1 (18)

Apt̃
p
k +

⎛
⎜⎝ Ep−1f

p−1
k

0

⎞
⎟⎠ = r̃p

k. (19)

Note that, since r̃k = Drk, we have vi
k = Ri+1u

i+1
k where Ri+1u

i+1
k consists of

selecting the first si components of block vector ui+1. Remember that si is the
dimension of the overlap Ci.

Let Si = (Bi − FiC
−1
i Ei) for i = 1, ..., p − 1 be the local Schur complements

associated to variable f i
k and Sp = Ap. The reduced system becomes Btk = zk

where the structure of B is defined in Figure 3.

S1

S3

A4

S2

E1

E2

E3

0

0

0
B=

Fig. 3. Matrix of reduced system (for p=4)

The right hand side of the reduced system zk can be written as zk = Trk

where :

11
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zk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1
k − F1C

−1
1 R2u

2
k

u2
k − F2C

−1
2 R3u

3
k

...

up−1
k − Fp−1C

−1
p−1Rpr̃

p
k

r̃p
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and therefore zk = Trk where

Trk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I1

(
−F1C

−1
1 0

)
0 0

0 I2

(
−F2C

−1
2 0

)
0

0 0 I3

(
−F3C

−1
3 0

)
0 0 0 I4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1
k

u2
k

u3
k

r̃4
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

(displayed for p = 4). Matrix M , defined by the Multiplicative Schwarz split-
ting, is therefore characterized by the relation

TM = B.

We now prove that M = Ā1C̄1
−1

... ¯Cp−1
−1

Āp satisfies that relation. We first
express the structure of the following matrix with the block structure defined
by B and T :

ĀiC̄i
−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

I
. . .

I

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Bi Gi⎡
⎢⎣ Ei

0

⎤
⎥⎦ I

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

I
. . .

I

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ith row block

(i + 1)th row block

for i = 1, · · · , p − 1. It is easy to prove by induction that for i = 1, ..., p − 2

12
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Ξi =T (Ā1C̄1
−1

)(Ā2C̄2
−1

)...(Ā1C̄1
−1

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1⎡
⎢⎣ E1

0

⎤
⎥⎦ S2

. . .
. . .

. . .

Si⎡
⎢⎣ Ei

0

⎤
⎥⎦ I −Gi+1

0
. . .

. . .
. . .

−Gp−1

0 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and therefore

Ξp−1 =T (Ā1C̄1
−1

)(Ā2C̄2
−1

)...( ¯Ap−1
¯Cp−1

−1
),

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1⎡
⎢⎣ E1

0

⎤
⎥⎦ S2

. . .
. . .

Sp−1⎡
⎢⎣ Ep−1

0

⎤
⎥⎦

⎡
⎢⎣ I 0

0 I

⎤
⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Clearly we have

Ξp−1Āp = B

which ends the proof. �

Remark 3.2 Let us describe more precisely the situation when one of the
overlapping blocks Ci is singular. With this assumption, matrix
S = Āp

−1
C̄p−1Ā

−1
p−1C̄p−2 · · · Ā2

−1
C̄1Ā1

−1
is singular and therefore it cannot be

considered as being the inverse of a matrix M . In that situation, S cannot
be used as preconditionner to solve system Ax = b : a left application of
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the preconditionner would lead to solve SAx = SB which does not have a
unique solution and a right application is impossible. It can be noticed that
the singularity of one of the blocks Ci implies the singularity of the mapping
Ã since the spectrum of Ã is equal to the union of the spectrum of A and the
spectra of all the blocks Ci (i = 1, · · · , p − 1) [9].

Proposition 3.1 The matrix N defined by the multiplicative Schwarz split-
ting A = M − N can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Nij = Gi · · ·Gj−1Bj , when j > i + 1

Nii+1 = GiBi+1 − [Fi 0],

Nij = 0 otherwise,

(21)

where Gi = (FiC
−1
i 0) for i , j = 1, ..., p − 1.

When the domain decomposition is with weak overlap, expression (21) becomes:

⎧⎪⎨
⎪⎩

Nii+1 = GiBi+1 − [Fi 0], for i = 1, ..., p − 1,

Nij = 0 otherwise.
(22)

Proof. It follows from equation 20 that the inverse of matrix T = I − U is:

T−1 =
p−1∑
i=0

U i

where :

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 G1 0
. . .

. . .

Gp−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, the matrix M can be expressed by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mii = Bi,

Mii+1 = GiBi+1,

Mi+1i =

⎡
⎢⎣ Ei

0

⎤
⎥⎦ , for i , j = 1 · · · p − 1

Mij = Gi · · ·Gj−1Bj , if j > i + 1

Mij = 0, otherwise.
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By expressing matrix A in the same structure as the structure of M , we deduce
that, N = M − A satisfies relation (21). When the decomposition is of weak
overlap, relation (22) follows from the fact that GiGi+1 = 0. �

Corollary 3.1 In the splitting A = M −N associated with the Multiplicative
Schwarz method, matrix N is of rank r ≤ ∑p−1

i=1 si.

Proof. The proof is obvious when the decomposition is with weak overlap.
For the general case, we have to prove that the rank of row block i of matrix
N is less than si. The structure of row block Ni, for i = 1, ..., p− 1, of matrix
N is:

Ni =

⎡
⎢⎣ 0 , · · · 0 , [Fi 0]

⎡
⎢⎣ 0 C−1

i Bi+1(1, 2)

0 −I

⎤
⎥⎦ , GiGi+1Bi+2 , · · · , Gi · · ·Gp−1Bp

⎤
⎥⎦ .

Therefore, the rank of row block of Ni is limited by the rank of factor [Fi 0]
which cannot exceed si. This implies r ≤ ∑p−1

i=1 si. �

3.4 Symmetrization of M

Even when matrix A is symmetric, the preconditioned conjugate gradient
method cannot be used directly since the Multiplicative Schwarz precondi-
tioner is not symmetric. However, it can easily be symmetrized by including
a second sweep corresponding to apply M−T to current residual rk+1. It can
be written as follows : ⎧⎪⎨

⎪⎩
xk+1 = xk + M−1rk,

xk+2 = xk+1 + M−T rk+1.

Using that rk+1 = NM−1rk, we have

xk+2 =xk + M−1rk + M−T NM−1rk,

=xk + M−T (MT + N)M−1rk,

=xk + M−T (MT + M − A)M−1rk.

We deduce that the new preconditioning matrix (the one corresponding to
two sweeps up and down) is such that:

M−1 = M−T (MT + N)M−1 = M−T (MT + M − A)M−1.

It can be shown [3] that when A is s.p.d., the preconditionner M is s.p.d. as
well.
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3.5 Red-Black ordering (M and N)

The Multiplicative Schwarz method, as described in Algorithm 1, clearly is
not suitable for parallelism since the recursion between blocks prevents inde-
pendent calculations. The classical way to overpass the drawback is to relax
part of the recursion by a Red-Black coloring. Recalling our assumption that
overlap only occurs between consecutive blocks, like in Figure 1, all the blocks
of odd numbers can be used in parallel and then the update is performed with
all the blocks of even numbers. If we consider a reordering of the unknowns
which labels first the components corresponding to the odd subdomains and
then the even ones, it can easily be shown that the new preconditioner is still
a Multiplicative Schwarz method but with only two subdomains ; the method
becomes an Alternative Schwarz method. In such a situation the overlap is
the union of all the elementary overlaps and therefore the total dimension of
the overlap does not change.

4 Multiplicative Schwarz as preconditionner of Krylov methods

4.1 Early termination

When preconditioning a Krylov method, we consider in this section the ad-
vantage to consider a splitting A = M −N in which N is rank deficient which
is the case for the Multiplicative Schwarz preconditioner.

For solving the original system Ax = b, we define a Krylov method, as being an
iterative method which builds, from an initial guess x0, a sequence of iterates
xk = x0+yk such that yk ∈ Kk(A, r0) where Kk(A, r0) is the Krylov subspace of
degree k, built from the residual r0 of the initial guess : Kk(A, r0) = Pk−1(A)r0

where Pk−1(R) is the set of polynomials of degree k − 1 or less. The vector yk

is obtained by a characteristic property which depends on the method ; this
property may be minimizing the error xk − x for a given norm, or projecting
the initial error onto the subspace Kk(A, r0) in a given direction. Nevertheless,
we consider that, for a given k, when the property x ∈ x0 +Kk(A, r0) holds, it
implies that xk = x. This last property is satisfied when the Krylov subspace
sequence becomes stationary :

(Kk(A, r0) = Kk+1(A, r0)) ⇒ (x ∈ Kk(A, r0)).

When a Krylov method is left preconditioned by the operator M , the Krylov
subspaces to consider are : Kk(M

−1A, M−1r0). For a right preconditioning
with the same operator, the subspace of interest becomes : Kk(AM−1, r0).
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Proposition 4.1 When rank(N) = r < n, then any Krylov method reaches
the exact solution in at most r + 1 iterations.

Proof. In M−1A = I −M−1N the matrix M−1N is of rank r. For any degree
k, the following inclusion Kk(M

−1A, M−1r0) ⊂ (r0) + R(M−1N) guarantees
that the dimension of Kk(M

−1A, M−1r0) is at most r + 1. Therefore, the
method is stationnary from k = r + 1 at the latest. The proof is identical for
the right preconditioning. �

For a general non singular matrix, this result is applicable to the methods
BiCG and QMR, preconditioned by the Multiplicative Schwarz method. In
exact arithmetic, the number of iterations cannot exceed the total dimension
s of the overlap by more than 1. The same result applies to GMRES(m) when
m is greater than s.

For a symmetric positive definite matrix, the relevant method is PCG and
it requires a s.p.d preconditionner. It is therefore necessary to symmetrize
the basic multiplicative Schwarz preconditioner as done in section 3.4. When,
the matrix is symmetric non definite, the symmetric preconditioner might
also be non definite, and the method to consider is SQMR. However in these
situations, the rank deficiency property is much less attractive than with the
non symmetric basic case.

The previous remarks hold in exact arithmetic, but, as we shall see in the nu-
merical tests, roundoff errors darken the picture especially for methods which
rely on non orthonormal basis and for ill conditioned matrices.

4.2 Advantages of the explicit formulation

In the classical expression of the Multiplicative Schwarz iteration (Algorithm
1) the computation of the two steps

xk+1 =xk + M−1rk and rk+1 = b − Axk+1,

is carried out recursively through the domains whereas the explicit formulation
decouples the two computations. The computation of the residual is therefore
more easily parallelized since it is withdrawn from the recursion. Another
advantage of the explicit expression arises when it is used as a preconditioner
of a method already coded in a library. In such a case, the user is supposed to
provide a code for the procedure x → M−1x. Since the method computes the
residual, the classical algorithm implies a double calculation of the residual.

We now show that the number of operations involved in both approaches
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remains roughly the same, although with a slight advantage to the explicit
formulation.

Let us denote by C(p)cla the cost of one iteration of Algorithm 1. One can
verify that

C(p)cla =
p∑

i=1

(ti + pi), (23)

where

⎧⎪⎨
⎪⎩

ti = # of flops for processing on subdomain i : x := x + A+
i r,

pi = # of flops for processing on subdomain i : r := r − A(A+
i r).

Let us also denote by C(p)exp the number of operations for computing x →
M−1x, by using the explicit form of the Multiplicative Schwarz precondition-
ner :

C(p)exp =
p−1∑
i=1

(ti + τi) + tp, (24)

where τi is the number of flops for multiplying a vector in subdomain i
by Ci. The number of operations C(A) involved in the computation of a
residual, which involves the multiplication by matrix A, satisfies the relation
C(A) =

∑p
i=1 qi −

∑p−1
i=1 τi where qi is the number of operations involved in the

multiplication by block Ai. Since qi < pi (they are usually close numbers), we
obtain that

C(p)cla > C(p)exp + C(A). (25)

5 Numerical experiments

In this section we illustrate the numerical behaviour of the Multiplicative
Schwarz preconditionner for Krylov subspace methods. The test matrices are
taken from the Matrix Market suite [1]. The tests were carried out in MAT-
LAB, and they were chosen to illustrate the property of early termination.

We denode by MS the Multiplicative Schwarz preconditioner and by SMS its
Symmetrized Multiplicative Schwarz counterpart. For each method, the right-
hand side is a fixed random vector, the initial guess is the nul vector and the
tolerance for convergence is set to 10−8.
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Test1: Matrix: S3RMT3M3 shifted as A := A + 10−3‖A‖I

Symmetric Reverse Cuthill Mackee reordering is applied on the matrix to
reduce the bandwidth.
Source of S3RMT3M3 : Finite element analysis of Cylindrical Shells

• Order: 5357

• Type: Real Symmetric positive definite

• Condition number: 60.99

Domain decomposition

Block number 1 2 3 4 5 6

1st row index 1 875 1830 2810 3860 4700

last row index 1000 2000 3000 4000 4800 5357

• rank(N) ≤
∑

(rank(Fi)) = 92 + 144 + 164 + 131 + 89 = 620

• Spectral radius of the iteration matrix: ρ(M−1N) = 0.4583

Table 1 and Figure 4 show a nice convergence of methods since the spectral
radius of the iteration matrix M−1N is small.

Test2: Matrix: BCCSTK20

Source of BCCSTK20 : Structural Engineering.

• Order: 485

• Type: Real Symmetric indefinite

• Condition number: 7.5 × 1012

Domain decomposition

Block number: 1 2 3 4

1st row index 1 45 285 390

last row index 50 300 400 485

• rank(N) ≤
∑

(rank(Fi)) = 2 + 14 + 8 = 24

• Spectral radius of the iteration matrix: ρ(M−1N) = 1

That matrix is close to being singular and this is a difficult problem (see
convergence in Table 2 and figure 5) when compared to the first one. Only
GMRES succeeds. In BICG and QMR, a near-breakdown occurs [2].
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Test3: Matrix: SHERMAN5

Symmetric Reverse Cuthill Mackee reordering on the matrix is applied to
reduce the bandwidth.
Source of SHERMAN5 : Oil Reservoir simulation challenge matrices.

• Order: 3312

• Type: Real Unsymmetric

• Condition number: 3.9 × 105

Domain decomposition

Block number 1 2 3 4

1st row index 1 450 900 2495

last row index 500 970 2500 3312

• rank(N) ≤
∑

(rank(Fi)) = 31 + 61 + 0 = 92

• Spectral radius of the iteration matrix: ρ(M−1N) = 0.8769.

This is an unsymmetric problem and therefore, we only consider the methods
GMRES, QMR and BiCG. Table 3 and Figure 6 show a good convergence for
all the three methods. QMR and BiCG performs identically, which is the case
when BiCG works well.

Test4: Matrix: GRE 1107

Source of GRE 1107 : Simulation of Computer System.

• Order: 1107

• Type: Real Unsymmetric

• Condition number: 9.7 × 107

Domain decomposition

Block number 1 2 3 4

1st row index 1 130 400 875

last row index 200 510 950 1107

• rank(N) ≤
∑

(rank(Fi)) = 38 + 73 + 49 + 0 = 160

• Spectral radius of the iteration matrix: ρ(M−1N) = 5.3028 × 104.

This is another difficult problem. The matrix is almost singular. Table 4 and
Figure 5 show the convergence of GMRES. It is interesting to note that the
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MS method would diverge since ρ(M−1N) > 1. The last point in the residual
of the graph reported in Figure 5 is surprizing since the 2-norm of the residual
should define a non increasing sequence. It can easily be explained by the fact
that during the inner iterations, the norm of the residual is computed by a
formula which is not robust with respect to the loss of orthogonality of the
basis whereas the residual is effectively computed at the basis restart. In BICG
and QMR, near breakdown occurs which prevents convergence.

We can conclude from the sequence of tests that early termination property is
not sufficient for obtaining convergence in floating point arithmetic. However
GMRES, which appears to be much more robust, is clearly superior. In most
of the cases, convergence was obtained even much earlier than what could be
expected. However, GMRES suffers for the limitation on the size of the basis
since a too large basis would imply a too high level of storage and a too large
number of operations. Moreover, the loss of orthogonality within the basis
may end up with a singular Hessenberg matrix which provokes a restart.

Preconditionner Number of Iteration ‖rk‖/‖r0‖

GMRES MS 7 2.9095e-09

PCG SMS 10 1.0679e-09

MINRES SMS 11 9.8125e-09

QMR MS 12 1.7088e-09

BICG MS 9 1.0584e-09
Table 1
Convergence of the iterative methods on matrix S3RMT3M shifted and permuted

Preconditionner Number of Iteration ‖rk‖/‖r0‖

GMRES MS 8 9.3112e-09

QMR MS no convergence 1

BICG MS no convergence 1
Table 2
Convergence of the iterative methods on matrix BCCSTK20

Preconditionner Number of Iteration ‖rk‖/‖r0‖

GMRES MS 8 9.3112e-09

QMR MS 12 1.1845e-09

BICG MS 12 0 1.1910e-09
Table 3
Convergence of the iterative methods on matrix SHERMAN5 permuted
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Preconditionner Number of Iteration ‖rk‖/‖r0‖

GMRES MS 166 6.2627e-07

QMR MS no convergence 1

BICG MS no convergence 1
Table 4
Convergence of the iterative methods on matrix GRE 1107
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Fig. 4. Convergence of the iterative methods on matrix S3RMT3M shifted and
permuted

6 Conclusion

The Multiplicative Schwarz is a very efficient preconditionner especially for Krylov
methods. We have established its early termination property which can reduce the
number of iterations, depending on the amount of overlap.

In this work we have exhibited an explicit formulation of the Multiplicative Schwarz
preconditionner. By decoupling the application of the preconditioner and the com-
putation of the residual, we expect to be able to parallelize successive iterations.
Such an approach is presently being developped on the GMRES method. A first
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Fig. 5. Convergence of the iterative methods on matrix GRE 1107
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Fig. 6. Convergence of the iterative methods on matrix Sherman5 permuted

basic parallel version of the codes is studied in [5]. Although the Additive Schwarz
preconditioner is often prefered for its ability to be parallelized, it has a slower
convergence rate. An efficient parallelized multiplicative version might change con-
clusion.

7 Appendix: Alternative proof of Theorem 3.1

Notation: For 1 ≤ i ≤ j ≤ p, Ii:j is the identity on the union of the domains
Wk, (i ≤ k ≤ j) and Īi:j = I − Ii:j.

Lemma 7.1 For any i ∈ {1, · · · , p − 1},

Āi+1Ii + Ii+1Āi − Ii+1AIi = C̄iIi:i+1,
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and for any i ∈ {1, · · · , p},

A+
i = Ā−1

i Ii = IiĀ
−1
i .

Straightforward (See figure 7)

I

I+1

Ci

Fig. 7. Subdomains of A

Proof of theorem 3.1 : Let us prove by induction that:

M−1 = Āp
−1

C̄p−1...C̄1Ā1
−1

Since xk+1 = xk + M−1rk and since xk+1 is obtained as result of successive steps,
for i = 1...p: xi+1 = xi + A+

i ri where xi denotes xk+i/p and ri denotes rk+i/p, we
shall prove by reverse induction on i = p − 1, · · · , 0 that:

xp = xi + Āp
−1

C̄p−1...C̄i+1Ā
−1
i+1Ii+1:p ri (26)

For i = p − 1, the relation xp = xp−1 + Ā−1
p Iprp is obviously true.

Let us assume that (26) is valid for i and let us prove it for i − 1.

xp = xi−1 + A+
i ri−1 + A−1

p + ... + C̄i+1Ā
−1
i+1Ii+1:p(I − AA+

i )ri−1

= xi−1 + Ā−1
p ...C̄i+1(A+

i + A+
i+1Ii+1:p − Ā−1

i+1Ii+1:pAA+
i )ri−1.

The last transformation was possible since the supports of Ap, Cp−1, Cp−1, ..., Ci+1

are disjoint from domain i. Let us transform the matrix expression:
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B = A+
i + A+

i+1Ii+1:p − Ā−1
i+1Ii+1:pAA+

i

= Ā−1
i+1(A

+
i+1Ii + Ii+1:pĀi − Ii+1:pAIi)Ā−1

i

Lemma 7.1 and elementary calculations imply that:

B = Ā−1
i+1(C̄iIi:i+1 + Ii+2:p − Oi+1)Ā−1

i

= Ā−1
i+1C̄iĀ

−1
i Ii:p

which proves that relation (26) is valid for i − 1. This ends the proof.
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