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AN ALGORITHM TO IMPROVE NEARLY ORTHONORMAL SETS OF
VECTORS ON A VECTOR PROCESSOR*

BERNARD PHILIPPE’]"

Abstract. The symmetric orthogonalization, which is obtained from the polar decomposition of a matrix,
is optimal. We propose an iterative algorithm to compute this orthogonalization on vector computers. It is
especially efficient when the original matrix is near an orthonormal matrix.
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Introduction. In the computation of the eigenvectors of a Hermitian matrix, it is
necessary to check the orthonormality ofthe computed vectors, since for close eigenvalues
there is an accompanying loss of orthogonality. Usually, especially when the vectors have
been computed by inverse iteration, the Gram-Schmidt orthonormalization is performed
on the groups ofeigenvectors corresponding to close eigenvalues. If the residual is checked
before and after this orthogonalization, a loss of accuracy appears. This should not be
surprising since Gram-Schmidt orthogonalization corresponds to a QR factorization
which depends on the ordering of the vectors. So, instead of a QR factorization, a polar
decomposition seems to be preferred because it leads to an orthonormalization which is
the best in some sense. This process has been called "Symmetric Orthogonalization" by
Lowdin in [LOT0].

In this paper, the optimal properties of symmetric orthogonalization are described
in 1. In this section it is also shown that, to orthonormalize a matrix A, it is sufficient
to compute A (A’A)-/2.

In 2, an iterative scheme, which computes S-l/z, where S is a Hermitian positive
definite matrix, is analyzed and shown to be efficient on vector processors.

In 3, the complete algorithm for the symmetric orthogonalization is given and
experiments are presented.

1. Polar decomposition. In this section, the polar decomposition of a matrix and
its application are described. This decomposition is a well-known factorization and a
satisfactory presentation is given by Higham in [HA84].

THEOREM 1.1. Let A C", n >- p. Then there exists a matrix U C"v and a
unique Hermitian positive semidefinite matrix H Cp such that

A- UH, U*U=Ip.

/frank (A) p then H is positive definite and U is uniquely determined.
Proof See [G59].
This factorization can be obtained directly from the singular value decomposition

of the initial matrix. The SVD insures the existence of unitary matrices P C"" and
Q 6 Cp P such that

(1.1)’ P*AQ=D_
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with D diag (al, ap, 0, 0) e Cnn where 0 -< al --< =< trp. Because
A PD_Q*, then

U _PQ* and H QD’Q* (A*A)I/2,

with D’ e Cpp and D’ diag (al, ap). When the matrix A is of full rank, the
factorization can be performed by using the following theorem.

THEOREM 1.2. Let A Cnp with rank (A) p <= n. Then the polar decomposition
A UH is given by

U=A(A*A)-1/2 and H (A’A) 1/2.

Proof From the SVD (1.1), we have

(A,A)-/2= QD,-IQ
and

A(A*A)-I/2 pD_ Q.(QD,-IQ,)

p_Q*. ff]

There is an algorithm [HB84] that computes (A’A)-1/2 and (A’A) 1/2 simultaneously.
Here, because we are only looking for the matrix U in the polar decomposition, we use
the formulation of Theorem 1.2. Transforming a matrix A into the matrix U is an or-
thonormalization procedure which we call symmetric orthogonalization. This transfor-
mation is different from the usual one which corresponds to the QR factorization. In the
following theorem the optimal properties of this symmetric orthogonalization are de-
scribed.

THEOREM 1.3. Let A Cn with p <= n and let A UH be a polar decomposition.
Then

IIA UII min IIA all
QU

where U is the subset ofall orthonormal matrices ofCnn. This result is truefor both the
Euclidean norm and the Frobenius norm.

Proof Forp n, this result was proved by Fan and Hoffman in [FH55]. Its extension
for p =< n is straightforward.

2. Computation of the inverse of a square-root.
2.1. Scalar schemes. When Newton’s method is used to find the positive root of

the polynomial f(x) sx 1, where s > 0, the iterative scheme obtained is

(I) given XO, Xm + (1/2)(Xm + 1/(SXm)),

whereas if Newton’s method is applied to the function f(x) 1/x s the scheme
becomes

(II) given Xo, Xm + Xm + Xm(1 SX2m)/2.

When they are convergent, these schemes are quadratically convergent; let em
Xm S-/2 be the error at step m. For (I) and (II) this quantity satisfies the following:

era+ Ki e2m, I, II

with K 1/(2Xm) and KII --S1]2(S1/2Xm -]- 2)/2. Hence, close to the solution, the ratio
of the convergence rates of the two schemes is equal to

KI/KI - 3.

The domains of convergence for the two schemes are exhibited in the next result.
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PROPOSITION 2.1. For any positive numbers Xo and s, the sequence {xm} defined by
scheme (I) converges quadratically to s-/2.

For any positive number s, the condition 0 < Xo < s-/2 insures that the sequence
{Xm) defined by scheme (II) converges quadratically to s-1/2.

Proof Let us consider the quantity Um Sl/2Xm; the convergence of the sequence
{Xm} to s-/2 is then equivalent to the convergence of the sequence { urn} to 1. So, the
schemes become

(I’)

and

(II’)

given u0 XOS1/2, Um +l (Urn "]-1

given Uo XoS /2, Um +1 =Um + Urn(1 U2m)/2.

The function u -,. g(u) (u + 1/u)/2 transforms the interval (0, +) into the interval
[1, +) and satisfies the following:

u > implies 0 < g(u) (u 1)2/(2u) < (u 1)/2.

The last inequality proves that scheme (I’) is always convergent.
The function u --; g(u) u + u(1 u2)/2 transforms the interval (0, V) into the

interval (0, ]. If we consider u such that 0 < u < then

0 < g(u) (u + 2)(1 u)2/2 < u.

So if 0 < u0 < V scheme (II’) converges.
In this situation it appears that scheme (I) must be preferred to scheme (II). The

generalization of scheme (II) to the matrix situation is much more interesting, since its
computation is expressed with matrix multiplications. Moreover, the differences in con-
vergence between (I) and (II) are not as great as in the scalar case.

2.2. Matrix schemes. Let S be a Hermitian positive definite matrix of order p and
let 0 < Sl <- -< s be its eigenvalues. First of all we remark that the only schemes to
be considered are those which correspond to the application of the scalar schemes in
every eigendirection when the initial guess commutes with S. Because we are only in-
terested in polynomial schemes, we consider the following schemes that are based on (II)
of the scalar case:

(a) given To, Tm + Tm + aTm(I- TmSTm) + (I- TmSTm)Tm

where a and/3 are two nonnegative parameters satisfying/3 1/2 a. The quantity
Zm I- TmSTm is called the residual at step m.

THEOREM 2.2. Let K(S) > be the condition number ofS (ratio of the extremal
eigenvalues). If K(S) < 17 + 6V then S-/2 is a point of attraction of the iteration
(2;/4); this condition becomes K(S) < 9 for the iterations (Y,o) or (Y,/2).

Proof. V S-/ is a fixed point of the polynomial

Fa" T’- T+ aT(l- TST) + (I- TST)T.

Let us compute its differential application at V. If T V + Wthen

I- TST VSW- WSV+ O(W)

V-1 W- WV-1 + O(W2).
Hence

T(I- TST)=-IV- VWV- + O(W2), (I- TST)T -V-WV- W+ O(W2).
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So, for every matrix W

Fa(V+ W)- Fa(V) (1/2)W- aVWV- V-WV+ O(W2).
Hence the differential application is given at V by

F’a(V)W= (1/2)W- aVWV-1 V-1WV.

To use Ostrowsky’s Theorem [OR70], it is necessary to prove that the spectral radius of
F(V) is smaller than 1. By using a similarity transformation, we may assume that the
matrix V is diagonal:

V- diag /s, ..., /Sp).
Then it can be proved that the spectrum ofF(V) is the set

a(F’a(V)) {#ij[/zij= 1/2-a si/s-[3%/si, i,j 1,n}.
Let , be any sfs//sj. We look for the largest interval I such that if X e I and 1/, e I then
I1/2 aX -/3/X] < 1. It is easy to see that this is equivalent to solving the system

(2.1) a2--3/2+fl<O, fl,2--3/2+a<O.
If a =/3 1/4 then (2.1) is equivalent to

X2-6X + <0

and then I =A1/X0, 0) with 0 3 + f. Hence tr(F’/4(V))cI is equivalent to
K(S) < (3 + V8)2 17 + 6f.

If a 1/2 and/3 0 then (2.1) is equivalent to

2- 3<0, -3<0

and then I (1/3, 3). Hence tr(F’/2(V)) c I is equivalent to K(S) < 9.
In the same way, the reader can prove that r(F’o(V)) I is equivalent to

K(S) < 9. V1

Remark 2.3. (i) If To is Hermitian, then scheme (ZI/4) can be expressed in a better
way by

given To,
T;. + Tm k- 1/2)Tm(I TmSTm),
Tm+, (1/2)(T+ + T,+).

This expression proves that (1/4) is actually equivalent to using (1/2) and adding a
symmetrization at every step. This formulation is cheaper in terms of operation count
than the original one.

(ii) Considering the scheme

given To, Tm + (1 + (STm)-)
which is based on the scalar scheme (I), the associated function G defined by

G: T-- (1/2)(T+ (ST)-’)
has the same differential application as the (F0)’. So, the local convergence ofthis scheme
is only insured if K(S) < 9. This scheme has been studied by Laasonen in [LA58].

THEOREM 2.4. Let o(S) be the spectral radius ofS. Ift < (3/(S))1/2 then the scheme

(Z) To #1, Tm + Tm + (1/2)Tm(I TmSTm)

is quadratically convergent.
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Moreover, if K(S) < 9 then this scheme is locally stable. This condition can be
weakened into K(S) < 17 + 6f ifa symmetrization is performed at every step on Tm.

Proof By induction, it is clear that every iterate Tm is Hermitian and commutes
with S. Because the subspace ofthe matrices commuting with S is included in the kernel
of the differential application which is defined in Theorem 2.2 then scheme (Z) has a
quadratic convergence as soon as it is convergent. In this situation, the scheme is equivalent
to using the scalar scheme (II) in every eigendirection. Using the initial guess to compute
s71/2, 1, p with the scalar scheme (II) the conditions

< fs1/2, 1,p

must be true to insure convergence. These are also sufficient conditions (see Proposition
2.1). So, the first result of the theorem is proved.

Ifwe assume now that this scheme is perturbed by rounding errors, we can no longer
insure that Tm commutes with S. The condition K(S) < 9 (or K(S) < 17 + 6 if a
symmetrization of Tm occurs at every step) is sufficient to insure that a perturbation due
to rounding errors will decrease in the succeeding steps at least in a neighborhood ofthe
solution, since S-1]2 is a point of attraction of the iteration (Theorem 2.2).

PROPOSITION 2.5. The residual of scheme (,), not considering rounding errors,
satisfies

(2.2)

Proof

Hence

Zm+ (3/4)ZZm + (1/4)Z3m.

T2m + Tm + (1/2)TmZm)2

T2m+(1/4) 2 2TmZm "t- T2mZm.

Zm +, I- ST2m (1/4)ST2mZ2m ST2mZm.
When we use -STEm Zm I the result of the proposition follows. [3

Remark 2.6. Formula 2.2 appears to be of interest because it can split the com-
putation of Tm + into two tasks since Zm + can be evaluated from Zm only. However,
this formula cannot be used repeatedly without updating the residual from its definition
Zm= I TmSTm.

3. Computation of the symmetric orthogonalization.
3.1. Application of scheme (2). Let us come back to the matrix .4 e C P, assuming

rank (.4) p _-< n. To orthogonalize this matrix with a symmetric orthogonalization, it
is necessary to compute S-I/2 where S A*A ( I). To insure the stability of (;) the
condition number of S is assumed to be smaller than (I 7 + 16f).

In order to define an initial guess, the spectral radius p(S) of the matrix S has to be
estimated. In fact, the o-norrn is used instead of this spectral radius. From Theorem
2.4 a number # is then computed:-- V3IIsII --< /3/o(s).
By choosing To M, we ensure the convergence of scheme (Z). The first iteration can
be skipped since it is easy to compute the following:

TI (3/2)#I-(1]2)#3S.
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However, if the matrix A S- I is small (i.e., O(A) < 1), the initial guess can be much
closer to the solution by choosing the Taylor approximation of order k of (I + A)-/2

To I+ =1 (-1) -1/2i A"

After m iterations the magnitude of the error is given by

rm- S-/- O(A( / 1).
The computation of Tm involves (k 1) + 3m matrix multiplications. Then, the best
order to choose is always smaller than 5. For a required precision e, an estimation ofthe
best order of the Taylor approximation is given by the author in [PH85] and depends
on the ratio (log e/log IIAII),

This algorithm is related to the algorithm which is described in [BB71 ]: here the
matrix T (A’A)-/2 is computed before performing the multiplication A T, hence
the iterative part of the algorithm is in O(p3) flops while it was in O(np2) in [BB71 ].
Moreover, the introduction of a symmetrization on the iterate at every stage improves
the stability when needed.

3.2. Algorithm. Summarizing the previous considerations, we have the following
algorithm.

begin
S:=A* A
A:=I-S;

if (i < ) then
nothing to do

elseif (di < 1) then
k Taylor approximation order
T Taylor approximation of order k
sym := false

else
#= 3"
T := (3/2)#1- (1/2)#3S
sym := true

endif
iter := 0

loop
0 := i
Z:=I-TST;
:- Ilzll 

if (i < e) then exit of the loop endif
if (di > di0) then divergence endif
iter iter +
T := (1/2)T (21 + Z);
if (sym) then T := (1/2)(T* + T) endif

endloop
A:=AT;

end.
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TABLE
Symmetric orthogonalization on CRAY 1.

before orthog.

0.24 E- 3
0.41 E- 3
0.54 E- 2
0.22 E-
0.81 E-
0.39
0.27 E +
0.34 E +

With
symmetriz.

No
No
No
No
No
No
Yes
Yes

Taylor
order

# of
iteration(s)

0

2
3
14
7

Elapsed time
(unity: 10-t s)

0.35
0.45
0.42
0.45
0.58
0.69
1.72
1.01

To measure the cost of the computation, it is assumed that A Rnxp. Follow-
ing [GVL83] a flop is defined as the amount of computation involved in a triad:
a := a + b c. Then the cost of."

S := A r A is p2n flops (or 1/2p:n flops if symmetry ofS is taken into account),
one iteration of (;) is 3p flops,
A := A T is p2n flops.

The cost of the Gram-Schmidt orthogonalization is p2n + np flops. So if n >) p the
symmetric orthogonalization is about twice as expensive as the Gram-Schmidt process,
but it is based only on matrix multiplications. If n p the symmetric orthogonalization
becomes more expensive for the computation of T-1/2.

An alternative way to compute the symmetric orthogonalization would be to perform
the SVD ofA or to diagonalize S. In both cases, the number offlops is larger (see [PH85]).
Moreover these algorithms are much more difficult to vectorize.

3.3. Experiments. In this section, the results of experiments on a CRAY 12 are
discussed. An orthogonal matrix Q e R21 x 61 was constructed from a unitary vector u
by Q I- 2uu r. This matrix Q was randomly perturbed into a matrix whose column
vectors were still normalized (to be in a situation similar to when finding eigenvectors).
Both orthogonalizations (symmetric and Gram-Schmidt) were performed on Q. For
symmetric orthogonalization, the results for different magnitudes of perturbation are
exhibited in Table 1. For each run, the algorithm is defined by the value of the quantity
di. If/i is smaller than then the initial guess is obtained by a Taylor expansion whose
order is given in Table 1. If di is larger than then the initial guess is/I, where # is
computed from / ( 3.2). In this last case, a symmetrization on the iterate occurs at
every stage.

After orthogonalization, the residual I[OrO-II]oo was always in the range
10-13, 10-12]. The elapsed time for the Gram-Schmidt process was 0.59 10-1 s.

For each run, the distance between the perturbed matrix and its orthogonalized
matrix was very close to the residual given in the first column of Table for Gram-
Schmidt. For the symmetric orthogonalization, the distance was only halfofthis residual.
Some cases of divergence were obtained with perturbation of larger magnitude. These
cases correspond to matrices r( with a small eigenvalue which implies a large condition
number. In these situations, the solution was almost reached before the rounding errors
became important because of increasing magnitude at every iteration.

This CRAY is managed by the Conseil Scientifique du Centre de Calcul Vectoriel pour la Recherche,
Palaiseau, France.
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Conclusion. Even when the result of a computation should be an orthonormal set
of vectors (e.g., for the eigenvectors of a Hermitian matrix), there is often a loss of or-
thogonality which occurs due to rounding errors. In this situation the orthogonalization
process should preserve the quality ofthe original set. As has been proved, the symmetric
orthogonalization is optimal. The iterative scheme which is proposed in this paper is
efficient on vector processors since it uses only matrix multiplications. This scheme
is numerically stable when the ratio of the extremal singular values is smaller than
3 + /-.

Acknowledgment. The author would like to thank the referees for their valuable
criticism of a first version of this paper. He is also grateful to B. Parlett and A. Sameh
for their helpful remarks.

REFERENCES

[BB71] A. BJORCK AND C. BOWIE, An iterative algorithm for computing the best estimate ofan orthogonal
matrix, SIAM J. Numer. Anal., 8 (1971), pp. 358-364.

[FH55] K. FAN AND A. HOFFMAN, Some metric inequalities in the space of matrices, Proc. Amer. Math.
Soc., 6 (1955), pp. 111-116.

[G59] F. R. GANTMACHER, The Theory ofMatrices, Volume One, Chelsea, New York, 1959.
[GVL83] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins University Press,

Baltimore, MD, 1983.
[HA84] N. J. HIGHAM, Computing the polar decompositionmwith applications, Numerical Analysis Report

No. 94, Univ. of Manchester, Manchester, England, 1984.
[HB84],Newton’s methodfor the matrix square root, Math. Comp., 46 (1986), pp. 537-550.
[LA58] P. LAASONEN, On the iterative solution of the matrix equation AX I 0, Math. Tables Aids

Comput., 12 (1958), pp. 109-116.
[LO70] P. LOWDIN, Advances in Quantum Chemistry, Vol. 5, Academic Press, New York, 1970.
[OR70] J.M. ORTEGA AND W. C. RHEINBOLDT, Iterative Solution ofNonlinear Equations in Several Variables,

Academic Press, New York, 1970.
[PA80] B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ 1980.
[PH85] B. PHILIPPE, Approximating the square root of the inverse of a matrix, Cedar document No. 108,

CSRD, Univ. of Illinois, Urbana, IL 1985.


