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Philippe Ackerer — Jocelyne Erhel

N° 4227

Juillet 2001
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Abstract: The affluent literature of finite element methods applied to linear parabolic
problems, generally, produces numerical procedures with satisfactory properties from
a numerical approximation point of view. However, some initial, boundary condi-
tions or abrupt sink/source terms may cause large gradients at some points and
consequently jumps in the solution that usually needs a certain period of time to
become more and more smooth. This intuitive fact of the diffusion process necessi-
tates, when applying numerical methods, varying the mesh size (in time and space)
according to the smoothness of the solution. In this work, the numerical behav-
ior of the time-dependent solutions for such problems during small time duration
obtained by using the Mixed-Hybrid Finite Element Method (MHFEM) is inves-
tigated. Numerical comparisons with the standard Galerkin Finite Element (FE)
as well as the Finite Difference (FD) methods are checked up on. Due to the fact
that the mixed methods violate the discrete maximum principle, some numerical
experiments showed that the MHFEM leads sometimes to non-physical peaks in
the solution. A diffusivity criterion relating the mesh steps for an artificial initial-
boundary value problem will be presented. One of the propositions given to avoid
any non-physical oscillations is to use the mass-lumping techniques.

∗ Institut de Mécanique des Fluides et des solides, Univ. Louis Pasteur de Strasbourg,
CNRS/MUR 7507, 2 rue Boussingault, 67000 Strasbourg.
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A propos de la violation du Principe du Maximum par

la Méthode des EFMH appliquée aux Equations de

Diffusion.

Résumé : L’abondante littérature sur les méthodes de type éléments finis ap-
pliquées aux problèmes paraboliques linéaires conclut généralement sur les pro-
priétés satisfaisantes du point de vue de l’approximation numérique. Cependant,
certains problèmes aux conditions initiales, aux limites ou aux termes puits/sources
raides peuvent entrâıner l’apparition de gradients localement très forts, causant
ainsi aux temps courts des sauts dans la solution, solution qui devient de plus en
plus lisse à mesure que la période de temps augmente. Ce fait rend nécessaire,
lors de l’utilisation des méthodes numériques, l’adaptation des pas de temps et
d’espace selon la raideur de la solution. Dans ce travail, nous étudions le comporte-
ment de la méthode des Eléments Finis Mixtes Hybrides (EFMH) dans le cadre de
problèmes diffusifs transitoires plus ou moins raides dans la condition initiale. Des
comparaisons numériques avec les méthodes de type Elément Finis standards (EF)
et Différences Finies (DF) sont effectuées. Les méthodes mixtes ne respectant pas
le principe de maximum discret, quelques expériences numériques montrent que la
méthodes des EFMH mène parfois à des pics non-physiques dans la solution. Un
critère reliant les pas de temps et d’espace particulier est présenté. Pour remédier à
la présence d’oscillations non physiques de la solution obtenue par la méthode des
EFMH, une des propositions est d’utiliser la technique de condensation de masse.

Mots-clés : problèmes paraboliques, écoulement en milieu poreux, méthode des
éléments finis mixtes hybrides, stabilité numérique, principe du maximum.



4 Hoteit et al.

1 Introduction

The ongoing swelling environment problems, in particular the transport of pollutants
by underground water, have pressed upon the attention to develop new methods
for more precise representative simulations. Subsequently, numerical modeling has
played an increasing role to solve such physical processes. Despite the fact that the
mathematical models delineating the transport problems are described by coupled
systems of nonlinear partial differential equations, in this paper we are restricted
to the linear diffusion equation since the focus is to give a numerical study of the
approximated solution attained by the MHFE method. Nevertheless, this work is
of importance even for the nonlinear advection-diffusion problems since one of the
approaches to solve such problems is by using the time splitting operator technique,
i.e. advection and dispersion operators are treated separately. Generally, the MH-
FEM is voted to solve the diffusion part [1].

For the unknown pressure scalar function p = p(x, t) and velocity vector function
u = u(x, t), we consider the mass conservation equation and Darcy’s law which are
given as follows

s
∂p

∂t
+ ∇.u = f in Ω × (0, T ], (1)

p(x, 0) = p0(x) in Ω, (2)

p = pD on ΓD × (0, T ], (3)

u.ν = qN on ΓN × (0, T ], (4)

the so-called Darcy velocity u is given via

u = −K∇p in Ω × (0, T ], (5)

where Ω is a bounded domain in Rd (d = 1, . . . , 3) with boundary ∂Ω = ΓD ∪ ΓN ;
K = K(x) is the conductivity, it is assumed to be a diagonal tensor with components
in L∞(Ω); ν indicates the outward unit normal vector along ∂Ω ; f = f(x, t) ∈ L2(Ω)
represents the sources; s = s(x) is the storage coefficient; pD(x, t) and qN (x, t) are
respectively the Dirichlet and Neumann boundary conditions.

It should be noted that the above parabolic, initial boundary value problem can
also models many other physical phenomena like heat transfer, chemical transport
and electromagnetic current [2]. For the reason of similarity, the fluid flow equation
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Mixed-Hybrid method 5

in porous media is chosen to be studied.

The finite element methods have been the preferred tools over the finite difference
methods due to their simple physical interpretation and their flexibility dealing with
irregular geometrical domains. In modeling flow in porous media, it is essential to
utilize a discretization method which satisfies the physics of the problem, i.e. con-
serves mass locally and preserves continuity of fluxes. The Raviart-Thomas Mixed
Finite Element method of lowest order satisfies these properties. Moreover both the
pressure and the velocity are approximated with the same order of convergence (see,
e.g., [11, 13]). One of the inconvenient properties of this method is that it leads to
an indefinite linear system, so its resolution cannot be achieved by simple robust
algorithms like Choleski or Conjugate Gradient methods. Furthermore, the number
of unknowns is relatively quite large since both the pressure on each element and the
flux through each edge have to be calculated simultaneously [3]. The mixed-hybrid
formulation was introduced as an improvement of the MFE where the pressure and
the velocity are calculated by solving an equivalent symmetric positive definite lin-
ear system. Moreover this technique provides more information about the pressure
since degrees of freedom of the pressure on the edges are computed as well.

Numerous works showed the accuracy and the efficiency of this method applied to
the stationary diffusion problem [4, 5, 6]. However, numerical comparisons presented
in many papers like [7, 8], which showed the upper hand of the MHFEM applied
to the parabolic problem with regard to other classical methods, took an implicit
supposition of at least one of these two cases: i) smooth initial and boundary values,
ii) sufficient long interval of simulation time (0, T ]. Discordantly, in this work we
show that the MHFEM applied to some particular initial-boundary value diffusion
problems leads to relatively erroneous results compared with solutions obtained by
the classical FE or FD methods. It is proved that under assumptions of smoothness
of initial and boundary conditions, optimal convergence for the pressure and the
velocity is obtained (see, e.g., [9, 11, 13]) . In our study here, we show, by numer-
ical experiments, that the theory breaks down if the assumption of smoothness is
omitted and no convergence is obtained at some points of large gradient.

The fact that the mixed methods do not obey the discrete maximum principle is
well known [11]. In the work presented in [12], it is found that the MHFEM applied
to semiconductor device equations violates the discrete maximum principle. This
problem is time-independent convection–diffusion problem. However, in this work
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6 Hoteit et al.

we study the MHFEM applied to an groundwater flow problem which is a time-
dependent purely diffusive problem.

An outline of the paper is as follows. In the next section, the formulation of the
MHFEM corresponding to the Raviart-Thomas space of lowest order is reviewed.
Numerical analyses of the solution of an artificial well-posed initial-boundary value
problem are discussed in section 3 where we compare the approximated solutions
with the exact one. In section 4 we show that, unlike the FD method, the MHFEM
conditionally satisfies the discrete maximum principle. Before ending with a conclu-
sion, we give in section 5 some alternative propositions to prevent the non-physical
oscillations in the solutions attained by the MHFE method.

2 The mixed-hybrid finite element method

We restrict our discussion to the two-dimensional case, the three-dimensional case
follows in a similar manner. The polygonal domain Ω is discretized into a mesh Q

h

consisting of quadrangles or triangles where h denotes the mesh parameter. In prac-
tice, quadrangles are restricted to be parallelograms since these can be generated
from the reference element by affine transformations. Throughout this paper, we
denote by E

h
the set of edges of the grid not belonging to ΓD, NE is the cardinal of

E
h

and NQ is the number of discretized elements.

In the mixed finite element method, Darcy’s law and the mass conservation equation
are approximated individually subsequently, we get additionally the Darcy velocity
u as an unknown function. In the following, we present the approximation spaces of
our unknowns, the discretization of Darcy’s law and that of the mass conservation
equation as well as the derived algebraic system to solve.

2.1 Approximation spaces

The essential idea of the MFE methods is to approximate simultaneously the pres-
sure and its gradient. The simplest case of approximation, which is by means of
the space of Raviart-Thomas of the lowest order RT0, will be presented in brief. For
more details see [9, 11, 14].

The finite approximation spaces of the pressure p
h

and the velocity u
h

are the two
finite dimensional spaces M(Q

h
) and V(Q

h
), respectively.
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Mixed-Hybrid method 7

M(Q
h
) is the space of piecewise constant function on each element of Q

h
, it is given

by
M(Q

h
) = {ϕ ∈ L2(Ω) | ϕ/K ∈ P0(K), K ∈ Q

h
},

where Pd(K) is the space of polynomials of total degree d defined on K.

V(Q
h
) is given by the Raviart-Thomas space RT0(Qh

)

V(Q
h
) = RT0(Qh

) = {χ ∈ L2(Ω) | χ/K ∈ RT0(K), K ∈ Q
h
},

where RT0(K) stands for the lowest Raviart-Thomas element.

RT0(K) =

{

{φ ∈ (P1(K))2 | φ = (a + b x1, c + b x2), a, b, c ∈ R} if K is triangle,
{φ ∈ (P1(K))2 | φ = (a + b x1, c + d x2), a, b, c, d ∈ R} if K is quadrangle.

The hybridization technique tends to enforce the continuity of the normal component
of u

h
across the interelement boundaries by using the Lagrange multiplier spaces

N (E
h
) = {λ ∈ L2(E

h
) | λ/E ∈ P0(E) ∀E ∈ E

h
},

Ng,D(E
h
) = {λ ∈ N (E

h
) | λ = g on ΓD}.

Now we introduce tp
h

a new degree of freedom approximating the traces of the
pressure on the edges of the mesh. Thus, the MHFE formulation reads as:
Find (u

h
, p

h
, tp

h
) ∈ V(Q

h
) ×M(Q

h
) ×NpD,D(E

h
) such that







































∫

Ω
(K−1

u
h
).χ

h
dx +

∑

K∈Q
h

∫

∂K

tp
h
ν

K
.χ

h
d` =

∑

K∈Q
h

∫

K

p
h
∇.χ

h
dx ∀ χ

h
∈ V(Q

h
),

∫

Ω
s
∂p

h

∂t
ϕ

h
dx +

∫

Ω
∇.u

h
ϕ

h
dx =

∫

Ω
f ϕ

h
dx ∀ ϕ

h
∈ M(Q

h
),

∑

K∈Q
h

∫

∂K

u
h
.ν

K
λ

h
d` =

∫

∂Ω
qN λ

h
d` ∀ λ

h
∈ N0,D(E

h
).

(6)

2.2 Local basis functions

As a matter of fact, any irregular element K can be mapped from a reference element
K̂ (as shown in Fig.2.2) by using an affine transformation (see, e.g., [9, 10, 14]). This
mapping is defined as

K̂ 7−→ K
x̂ 7−→ x = T

K
x̂ + b

K
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Figure 1: The approximated unknowns and the basis functions on the reference
elements.

Subsequently, V(K) = RT0(K) could be written as

V(K) =
1

J
K

T
K
V(K̂),

where T
K

is the transformation matrix, J
K

= det(T
K

) is the Jacobian and b
K

is a
point in K.
The Raviart-Thomas basis functions of V(K̂), defined on the reference element,
are given by If K is a triangle (as depicted in Fig.2.2), a choice for a basis of the
3-dimensional space V(K̂) is

ŵ
K̂,E

1

=

[

x̂
1
− 1

x̂
2

]

, ŵ
K̂,E

2

=

[

x̂
1

x̂
2
− 1

]

, ŵ
K̂,E

3

=

[

x̂
1

x̂
2

]

. (7)

One the other hand, if K is a rectangle (see Fig.2.2), V(K̂) becomes a 4-dimensional
space with the basis functions

ŵ
K̂,E

1

=

[

x̂
1
− 1
0

]

, ŵ
K̂,E

2

=

[

x̂
1

0

]

,

ŵ
K̂,E

3

=

[

0
x̂

2
− 1

]

, ŵ
K̂,E

4

=

[

0
x̂

2

]

.

(8)

One can easily verify that for every χ
K

=
∑

E⊂∂K

q
K,E

w
K,E

∈ V(K) and K ∈ Q
h
,

the following properties are satisfied.
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Mixed-Hybrid method 9

1. ∇.χ
K

is constant over K

2. ν
K,E

.χ
K

= q
K,E

is constant on each E ⊂ ∂K

Hence u
K

is uniquely determined by the normal fluxes q
K,E

= u
K

.ν
K,E

on the edges
of K, where ν

K,E
denotes the outer normal vector on E with respect to K.

2.3 Approximation equations

The finite dimensional space V(Q
h
) is spanned by linearly independent vectorial

basis functions w
K,E

, E ⊂ ∂K, K ∈ Q
h
, such that w

K,E
has its support in K

(supp(w
K,E

) ⊆ K) and

∫

E′

w
K,E

.ν
K

d` = δEE′ , E, E′ ⊂ ∂K.

These functions can be chosen the local bases functions given in (7) or (8). Thus, a
function u

h
∈ V(Q

h
) has three degrees of freedom per element which are the fluxes

across the element’s edges

u
h
(x) =

∑

K∈Q
h

∑

E⊂∂K

q
K,E

w
K,E

(x), x ∈ Ω.

The two space M(Q
h
) and N (E

h
) are spanned respectively by the linearly indepen-

dent scalar basis functions ϕ
K

, K ∈ (Q
h
), and λ

E
, E ∈ (E

h
), such that

ϕ
K

(x) = δK,K′ , x ∈ K ′, K, K ′ ∈ Q
h
,

λ
E
(x) = δE,E′ , x ∈ E′, E, E′ ∈ E

h
.

Thus, a function p
h
∈ M(Q

h
) (resp. tp

h
∈ N (E

h
)) has one degree of freedom of

constant value per element K ∈ Q
h

(resp. E ∈ E
h
), such that

p
h
(x) =

∑

K′∈Q
h

p
K′

ϕ
K′

(x) = p
K

, x ∈ K,

tp
h
(x) =

∑

E′∈E
h

tp
E′

λ
E′

(x) = tp
E
, x ∈ E.

Now, we individually investigate the underlying equations in (6), which can be
integrated over the element level.
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10 Hoteit et al.

2.3.1 Discretization of Darcy’s law

By taking as test functions χ
K

successively the basis functions w
K,E

, the discretized
equation of Darcy’s law (the first equation in (6) ) becomes

∫

K

(K−1

K
u

K
).χ

K
dx +

∑

E⊂∂K

∫

E

tp
K,E

χ
K

.ν
K,E

d` =

∫

K

p
K
∇.χ

K
dx, (9)

where K
K

is a piecewise approximation of the conductivity tensor over K, and

tp
E

= tp
K,E

=

{

tp
K′,E

if E = K ∩ K ′

pD
E

if E ∈ ΓD
, E ∈ E

h
∪ ΓD, K, K ′ ∈ Q

h
.

By integrating (9) and by making use of the Raviart-Thomas space basis properties,
the following equations come into view

∑

E′⊂∂K

(B
K

)
E,E′

q
K,E′

= p
K
− tp

K,E
, E ⊂ ∂K, K ∈ Q

h
. (10)

In the matrix form, (9) is written as

B
K

Q
K

= p
K

e − TP
K

, K ∈ Q
h
, (11)

where

Q
K

and TP
K

are N
K

– dimensional vectors containing respectively the fluxes q
K,E

and the traces of the pressure tp
K,E

on each E ⊂ ∂K, with N
K

is the number
of edges of K ;

e refers to the elementary divergence vector. It is of dimension N
K

and unitary
entries;

B
K

is a N
K
× N

K
symmetric positive definite matrix whose elements are

(B
K

)
E,E′

=

∫

K

wT
K,E

K−1

K
w

K,E′
dx. (12)

It should be noted that these integrations are all evaluated exactly.

The last equation in (6) is equivalent to
∫

E

u
K

.ν
K,E

d` +

∫

E

u
K′

.ν
K′,E

d` = 0 if E = K ∩ K ′,

∫

E

u
K

.ν
K,E

d` = qN
E

if E ∈ ΓN ,
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Mixed-Hybrid method 11

where qN
E

=
∫

E
qN d`.

Hence, the normal components of u
h

are continuous across the interelement bound-
aries, i.e.

q
K,E

=

{

−q
K′,E

if E = K ∩ K ′,

qN
E

if E ∈ ΓN .
(13)

By inverting the matrix B
K

and using (13), it is possible to eliminate the unknown
flux. As a result, the reduced algebraic system, acquired by discretizing Darcy’s law
with unknowns the pressure head given in P and its traces in TP , becomes

R
T

P − M TP + V = 0, (14)

where

R
T

is the transpose matrix of R which is a sparse matrix of dimension NE × NQ

with nonzero elements given by

(R)
K,E

= α
K,E

=
∑

E′⊂∂K

(B
−1

K
)

E,E′
, E ⊂ ∂K;

M is a NE × NE sparse matrix with nonzero entries defined as

(M)
E,E′

=
∑

∂K⊃E,E′

(B
−1

K
)

E,E′
;

V is a NE–dimensional vector corresponding to the Dirichlet and Neumann bound-
ary conditions.

2.3.2 Discretization of the mass conservation equation

By integrating the mass conservation equation (the second equation in (6)) where
the test functions φh are successively replaced by the basis functions of M, we get

s
K

µ
K

∂p
K

∂t
+

∑

E⊂K

q
K,E

= f
K

K ∈ Qh, (15)

where s
K

and f
K

are respectively the approximations of the storage coefficient and
the sink/source term over K, µ

K
denotes the measure of K.

Therefrom, by using (11) to replace the sum of fluxes in (15), we obtain an ordinary
differential system which is given in its matrix form

S
dP

dt
+ D P − R TP = F, (16)

where

RR n
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12 Hoteit et al.

S is a NQ × NQ diagonal matrix with entries (S)
K,K

= µ
K

s
K

;

D is also a NQ × NQ diagonal matrix whose coefficients are

(D)
K,K

= α
K

=
∑

E⊂∂K

α
K,E

;

F is a vector of dimension NQ, it corresponds to the source/sink function as well
as to the imposed pressure given by the Dirichlet boundary conditions.

2.4 The derived algebraic system

The spatial discretization of the governing equations obtained by applying the
mixed-hybrid formulation led to two systems. The first one, given in (14), is an
algebraic system of unknowns P and TP and the second is an ordinary system of
first order differential equations in time (16). By inverting the matrix M which is
symmetric, positive definite [3, 14, 15], it is possible to eliminate TP from (16) and
consequently a stiff initial value problem is attained







dP

dt
= LP + W,

P (0) = P 0,

(17)

where
L = −S

−1

(D − R
T

M
−1

R), W = R
T

M
−1

V + F.

The semi-exact solution (solution of the problem discretized in space with exact time
integral operator) of (17) is given by the following formula

P (t) = etLP 0 +

∫ t

0
e(t−s)L Wds. (18)

For simplicity, we assume that pD, qN and f are time independent piecewise constant
functions over the grid then W is time independent and so (18) turns into

P (t) = etL(P 0 + L
−1

W ) − L
−1

W t ∈ [0, T ]. (19)

This solution is computationally high-priced due to the difficulties in evaluating the
exponential besides inverting the matrix M . To avoid such problem, a temporal dis-
cretization of the differential operator in (16) is indispensable. Nevertheless, the so-
lution given in (19) will be useful in appraising the accuracy of the time-discretization

INRIA



Mixed-Hybrid method 13

scheme. Since our primary motivation here is orientated to study the non-physical
oscillations in the approximated pressure which is caused by the spatial discretiza-
tion (as we will see later), a first order accurate scheme for time-discretization is
adequate. Accordingly, the classical Euler backward (implicit) method is elected for
the reason that it is unconditionally stable besides it is easy to be carried out.

We subdivide [0, T ] into a finite number of equal subintervals of time steps ∆t.
By replacing the differential time operator in (16) by the difference quantity (P n −
Pn−1)/∆t then by simple substitution of P n in (14), the following system is achieved







(M − ∆tN) T
n

P = R G
−1

(S P
n−1

+ ∆tF ) + V

G P
n

= SP
n−1

+ ∆tR
T

T
n

P + ∆tF
(20)

where G = S + ∆tD, N = RG
−1

R
T
.

Hence the problem is reduced to compute, at every time step, first TP by solv-
ing a linear system with symmetric, positive definite coefficient matrix (M − ∆tN)
[15], then P by solving a diagonal linear system. As a matter of fact, experimen-
tal inspections showed the adaptability and the robustness of the preconditioned
conjugate gradient method in solving such systems [10].

3 Presentation of the problem

Generally, The MHFE method is a wildly used tool to solve linear diffusion equa-
tions specially when both the pressure and the velocity of the flow are needed to be
approximated. As a matter of fact, numerical laboratory works with this method
furnished many phenomena where non-physical solutions are obtained and which
are still inexplicable due to the complication of the initial-boundary values or the
complexity of the underlying geometrical regions. For a better understanding of the
problem, in this section we present a very simple well-posed initial-boundary value
problem whereto various comparisons and observations of the numerical solution
behavior are interpreted.

The domain Ω is taken to be of rectangular shape (0, 20) × (0, 10) with the fol-
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14 Hoteit et al.

lowing initial-boundary conditions.







































s
∂p

∂t
+ ∇.u = 0 in Ω × (0, T ]

u = −K∇p in Ω × (0, T ]
p(x, 0) = 0 in Ω
p = 1 on ΓD

1 × (0, T ]

p = 0 on ΓD
2 × (0, T ]

u.ν = 0 on ΓN × (0, T ]

(21)

where ΓD
1 , ΓD

2 are respectively the left and the right hand perpendicular sides of the
domain, ΓD

1 = {0} × [0, 10], ΓD
2 = {20} × [0, 10] and ΓN = ∂Ω\ΓD.
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Figure 2: The pressure and its traces over the grid.

We discretize Ω into a (20× 10) uniform grid, the macro-elements are either rectan-
gles or right angle triangles . In Fig.2, both together, the pressure P and its traces
TP are simulated over the grid with time step ∆t = T = 0.05, s = 1 and K = 1. It
is clear that the two spatial discretization lead to severe peaks at some points of the
solution. These oscillations cannot be evaded or disregarded since they even cause
large critical deviations in the direction of the flow velocity, as appears in Fig.3.
Even though this sample problem can be considered as a one-dimensional problem
since physically the flow diffuses horizontally, the non horizontal deviations of the
flow velocity appearing in Fig.3b justify why the problem is discretized in the two
dimensional space. However, for the sake of clearness, in the runs the pressure will
be visualized with one variable in space.
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b) Grid of 20 × 10 triangular elements                                                          
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Figure 3: The velocity of the flow at the center of every element.
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Figure 4: Comparisons between the analytical solution and the approximated solu-
tions.

In Fig.4a we compare the approximated solutions of (21) obtained by applying the
MHFE, FE and FD methods. We find that oscillatory solution is also obtained by
the FE method except that these oscillations stay small compared to those obtained
by the MHFEM. On the other hand, the finite difference method achieves a numer-
ical solution free from any oscillations.
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16 Hoteit et al.

For an infinite long geometrical domain Ω, the analytic solution of (21) is given
by (see [16])

p(x, t) = pDerfc

(

x

2
√

t

)

, (x, t) ∈ [0,∞) × [0,∞), (22)

where

erfc(ν) = 1 − 2√
π

∫ ν

0
e−x2

dx, ν ∈ R.

By comparing the analytical solution (22), the semi-discretized time-dependent solu-
tion (19) and the Euler backward solution (20), as depicted in Fig.4b, the following
remarks are deduced.

� the sharp layer appearing in the analytic solution restricts its smoothness.

� dis-convergences in the approximated solution occur in the region where large
gradients in the analytical solution are located.

� the semi-exact solution is also oscillatory moreover, it behaves in a similar
manner as the Euler backward solution.
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Figure 5: Reduction of space-step or enlargement of time interval wipes out oscilla-
tions.

Since, in general, any discretizing scheme in time attempts to converge to the exact
time dependent solution, no time-discretizing method is able to amend these oscil-
lations. Furthermore, if smaller time steps are taken the results may be even worse.
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Reasonably, we focus on the spatial decomposition of the domain. For the moment
we try a uniform refinement of the mesh by taking a (100×10) grid. Depicted results
in Fig.5a show that the MHFE method leads to an acceptable approximation of the
exact solution. However by trying out smaller time step, oscillations will reappear
again.
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Figure 6: The velocity of the flow at the center of every element.

One more numerical test which will help to clarify this phenomenon is by increasing
the simulation time interval [0, T ]. In Fig.5b, even though without any refinement of
the mesh, convergence of the approximated pressure (similarly its derivative Fig.6)
is attained and this is due to the intuitive nature of linear diffusion process whose
solution becomes smoother as t increases. It should be noted that similar oscillatory
solutions may be also obtained if the sink/source function f(x, t) varies abruptly in
time.

As a primary conclusion, it becomes obvious to mind that in order to prevent any
non-physical solutions it is advantageous to vary the mesh size in time and space
according to the smoothness of the analytic solution. In the sequence, a criterion
relating the temporal and spatial steps is presented whereby the domain can be
discretized with maximum space steps and without oscillations in the solution.
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4 Discrete maximum principle

The maximum principle is generally used to explore some information about the
theoretical solution of some types of PDE. Specifically, it asserts that the solution
cannot have a maximum or a minimum within the interior of the underlying domain
besides, it is employed to show that the solution of certain problems must be non-
negative. Accordingly, by applying the maximum principle to the problem given in
(21), we obtain the following (see, e.g., [17, 18])

i. max
Ω̄×(0,T ]

{p(x, t)} ≤ max
∂Ω×(0,T ]

{p(x, t), 0}

ii. min
Ω̄×(0,T ]

{p(x, t)} ≥ min
∂Ω×(0,T ]

{p(x, t), 0} (23)

where Ω̄ = Ω ∪ ∂Ω.

So the pressure solution cannot have negative values as well as it is restricted be-
tween the Dirichlet boundary values. In the sequence, we verify whether the discrete
maximum principle is obeyed by the discretized scheme given in (20) and this by
investigating the following two properties:

1. Tn−1
P ≥ 0 =⇒ T n

P ≥ 0 (24)

2. max(Tn
P ) ≤ max(T n−1

P ) (25)

We shall investigate the positivity of the scheme locally over each macro-element,
i.e. tpn−1

K,E
≥ 0 ⇒ tpn

K,E
≥ 0 for E ∈ E

h
, K ∈ Q

h
. For the sake of simplicity, we

shall introduce the case of uniform rectangular discretization of the mesh over ho-
mogenous isotropic medium such that K = aI, s = s

K
∀K ∈ Q

h
, where a is the

anisotropic coefficient and I is the 2 × 2 identity matrix.

In Fig.7 we consider any two arbitrary adjacent elements in Q
h
. The local mass

conservation property enables us to rewrite the mixed-hybrid formulation over each
element K = K1, K2. By inverting B

K
in (11) furnished from Darcy’s law dis-

cretization, we get

q
K,E

= a



α
K,E

p
K
−

∑

E
′
⊂∂K

(B
−1

K
)
E,E

′
tp

K,E
′



 ∀ E ⊂ ∂K, K = K1, K2 (26)
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Figure 7: Two arbitrary adjacent element with their corresponding edges.

B
K

can be simply obtained by exact integrations over each element K, its inverse is
given by

B
−1

= B
−1

K
= 2
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(27)

From the spatial and temporal discretization of the mass conservation equation, we
obtain

pn
K

= pn−1
K

− ∆t

sµ

∑

E⊂∂K

qn
K,E

, K = K1, K2. (28)

Since there is no vertical diffusion of the flow, we have null fluxes across the horizontal
edges, i.e.

q
Et1

= q
Eb1

= q
Et2

= q
Eb2

= 0 (29)

As depicted in Fig.7, the labels l, r, t, b and m refer to left, right, top, bottom and
middle edges, respectively. Now by enforcing the continuity of the flux through the
middle edge and by eliminating the unknowns q

K,E
( substitute (29) and (26) in

(28)), the following system is achieved

c1 tpn
Em

= c2 (tpn
El

+ tpn
Er

) + c3 (pn−1
K1

+ pn−1
K2

) (30)
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pn
K1

=
1

1 + 2λ
pn−1

K1

+
λ

1 + 2λ
(tpn

El
+ tpn

Em
)

pn
K2

=
1

1 + 2λ
pn−1

K2

+
λ

1 + 2λ
(tpn

Em
+ tpn

Er
)

(31)

where
µ = ∆x

1
∆x

2
, α =

∑

i=1,4

B−1
i,1 = 6

∆x
2

∆x
1

, λ = aα∆t
sµ

, c1 = (B−1
11

+ B−1
22

− 2 αλ
1+2λ

) , c2 =

( αλ
1+2λ

− B−1
21

) and c3 = α
1+2λ

.

It is easily to verify that c1 and c3 are always nonnegative, whereas c2 is condi-
tionally positive.

Proposition 4.1 The discrete maximum principle is satisfied by the MHFEM if c2

is nonnegative, i.e.

c2 ≥ 0 ⇐⇒ ∆x2
1

∆t
≤ 6a

s
.

Proof:

To verify the positivity of the scheme, the classical mathematical induction
technique is utilized. We suppose that tpn−1

K,E
, pn−1

K
≥ 0 and let’s prove that

tpn
K,E

, pn
K
≥ 0 ∀K ∈ Q

h
, E ∈ E

h
.

We denote by E⊥ the set of vertical edges of the mesh and Em ∈ E⊥ such
that

tpn
Em

= min{tpn
K,E

| E ∈ E⊥, K ∈ Q
h
}.

We shall only consider the non trivial case, i.e. Em 6∈ ΓD. So Em can be
considered as a interior edge (suppose Em = K1 ∩ K2). Consequently, by
applying (30), we get

c1 tpn
Em

= c2 (tpn
El

+ tpn
Er

) + c3 (pn−1
K1

+ pn−1
K2

)

≥ 2 c2 tpn
Em

+ c3 (pn−1
K1

+ pn−1
K2

) (c2, c3 ≥ 0).

Since (c1 − 2 c2) ≥ 0 and pn−1
K

are positive by our assumption then tpn
Em

≥ 0
and by making use of (31), one can deduce the positivity of pn

K
for all K ∈ Q

h
.

Now, if E is a horizontal edge in E
h

then one can easily deduce from (26) and
(29) that tpn

K,E
and pn

K
have the same sign. Therefore, the positivity of the
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scheme holds. In order to avoid boring repetitions, similar technique can be
used to verify the second property given in (25) by taking

tpn
Em

= max{tpn
K,E

| E ∈ E⊥, K ∈ Q
h
}.

�

In should be noted that one can get the same results by verifying that the coefficient
matrix (M − ∆t N) an M–matrix. Since this matrix is symmetric definite positive
then the M–matrix property holds by showing that the off-diagonal entries are non-
positive ([20]). As a result, in the general case of rectangular or uniform triangular
grids, the MHFEM obeys the discrete maximum principle if the following criteria
are satisfied for every K ∈ Qh

(∆x2
1
)
K

∆t
≤ 6 a

K

s
K

if K is a rectangle,

(∆x2
1
)
K

∆t
≤ 6 a

K√
2 s

K

if K is a triangle.

(32)

The above criteria have a physical signification since the fraction
a

K

s
K

(L2 T−1) is the

so-called the diffusivity coefficient [19]. Therefore, by logical inference, the space
steps must not be larger than the displacement pressure in order to prevent nega-
tive solutions. It should be noted that similar criteria are also obtained in the case
of standard Galerkin method however, numerical experimentations showed that the
non-physical oscillations obtained by this method are relatively less significance than
those obtained by the MHFE method (see Fig.4). On the other hand, the classical
finite difference method with one nodal degree of freedom seeks the approximated
pressure by solving of the form a symmetric, definite positive penta-diagonal lin-
ear system. Hereby, one can easily verify that the discrete maximum principle is
unconditionally obeyed by showing that coefficient matrix is an M–matrix (see [21]).

5 Various alternative approaches to prevent oscillations

5.1 Refinement

The global refinement is maybe the simplest technique in order to enhance the
accuracy of the approximated solution. As we have seen above, the criteria given in
(32) enable us to refine the grid with maximum space steps (see Fig.8).
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Figure 8: Global refinement of the grid by using the maximum allowed space step.

Although speed and storage capabilities of computers have recently improved, the
ever increasing demand to more time and memory requirements is endless. Due
to such circumspections, the global refinement technique may not be preferred in
sizable problems.

5.2 Adaptive techniques

In general, two types of adaptive techniques are mostly used; the first one is the
local refinement method whereby uniform fine grids are added in the regions where
the approximated solution lacks adequate accuracy, and the second is the moving
mesh technique where nodes are relocated at necessary time steps.
We have found that the adaptive techniques could ameliorate the correctness of
the solution despite the fact that their idea may not fit in with the conditions of
the discrete maximum principle. However, we can define a process so that the
discrete maximum principle is satisfied locally and precisely in the regions where
high oscillations occur. Thereafter, we follow a similar work presented in [23] where
the mesh is moved so that a predetermined estimated error is satisfied and a system
of differential equations is used to dominate the locations of the nodes. In our
procedure, the error estimates rely on the properties given in (23) and the criteria
previously discussed in (32) control the motion of the elements. Thus, we regroup
the nodes (or add new nodes) in the regions where the solution behaves sharply in
so that (32) are satisfied. However, in order to avoid non-smooth or coarse meshes,
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Figure 9: Relocating the mesh nodes at each time step .

we uniformly redistribute the other nodes. By comparing figures 4 and 9a, one
can clearly notice the improvement in the approximated solution achieved by the
redistribution of the nodes. In Fig.9b, we present the MHFE solution at different
time simulations. It should be noted that the requisite solution with respect to the
original grid can be simply obtained by linear interpolations.

5.3 Lumped-Mass method

By using the integration formula proposed in [22, 3] for rectangular elements and in
[24] for acute triangulations (the angles of triangular elements ≤ π/2), the elemen-
tary matrix BK boils down to a diagonal matrix and so is M . Then the off-diagonal
entries of (M − ∆tN) are

(M − ∆tN)
E,E′

= −∆t(RG
−1

R
T

)
E,E′

≤ 0 ∀E 6= E′, E, E′ ⊂ Eh.

Therefore, the coefficient matrix (M − ∆tN) is an M -matrix.

Conclusion

The mixed-hybrid finite element method has been developed to handle many physical
models where the classical numerical methods such as the finite element or the
finite difference methods fail to give satisfactory representative approximations. The
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superior properties of this method is that it allows to conserve mass locally besides
the primary unknown and its derivative are approximated simultaneously. In this
work we have introduced a brief review of the MHFE formulation corresponding to
the lowest order Raviart-Thomas space which is the most popular. Due to the fact
that the MHFEM does not obey the discrete maximum principle, many numerical
experiments have brought to light some phenomena where non-physical oscillations
are obtained. Accordingly, we have clearly seen such oscillations in the approximated
solution of a simple artificial initial-boundary value problem by using rectangular
and triangular grids. Consequently, a diffusivity criterion relating the space and time
steps is given with respect to both spatial discretization (rectangular and triangular
grids). Some alternative solutions are suggested to solve this difficulty. The first
natural remedy is a global or local refinement of the grid where we refine the mesh
at necessary time steps in a way that we regroup the nodes in the regions where
fast changes in the solution occur. The second idea is to use the mass-lumping
technique whereby integrations are evaluated by using some approximation formula.
Such techniques enable to reduce the MHFE method to the finite difference or finite
volume methods and in both cases the discrete maximum principle is obeyed.
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