
Available online at www.sciencedirect.com
Applied Mathematical Modelling 32 (2008) 1511–1529

www.elsevier.com/locate/apm
Robustness and applicability of Markov chain
Monte Carlo algorithms for eigenvalue problems q

I.T. Dimov a,b,*, B. Philippe c, A. Karaivanova b, C. Weihrauch a

a Centre for Advanced Computing and Emerging Technologies, The University of Reading, Whiteknights,

P.O. Box 217, Reading RG6 6AH, UK
b IPP, Department of Parallel Algorithms, Bulgarian Academy of Sciences, Acad. G. Bonchev St.,

25 A, 1113 Sofia, Bulgaria
c IRISA/INRIA-Rennes, Campus de Beaulieu, 35042 Rennes cedex, France

Received 1 December 2006; received in revised form 1 April 2007; accepted 25 April 2007
Available online 30 June 2007
Abstract

In this paper we analyse applicability and robustness of Markov chain Monte Carlo algorithms for eigenvalue prob-
lems. We restrict our consideration to real symmetric matrices.

Almost Optimal Monte Carlo (MAO) algorithms for solving eigenvalue problems are formulated. Results for the struc-
ture of both – systematic and probability error are presented. It is shown that the values of both errors can be controlled
independently by different algorithmic parameters. The results present how the systematic error depends on the matrix
spectrum. The analysis of the probability error is presented. It shows that the close (in some sense) the matrix under con-
sideration is to the stochastic matrix the smaller is this error. Sufficient conditions for constructing robust and interpolation
Monte Carlo algorithms are obtained. For stochastic matrices an interpolation Monte Carlo algorithm is constructed.

A number of numerical tests for large symmetric dense matrices are performed in order to study experimentally the
dependence of the systematic error from the structure of matrix spectrum. We also study how the probability error depends
on the balancing of the matrix.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Monte Carlo algorithms; Markov chain; Eigenvalue problem; Robust algorithms
0307-904X/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.apm.2007.04.012

q This work was partially supported by BIS-21++ project and by the Ministry of Science and Education of Bulgaria under grant I-1405/
2004.

* Corresponding author. Address: Centre for Advanced Computing and Emerging Technologies, The University of Reading,
Whiteknights, P.O. Box 217, Reading RG6 6AH, UK.

E-mail addresses: I.T.Dimov@reading.ac.uk (I.T. Dimov), Bernard.Philippe@irisa.fr (B. Philippe), anet@parellel.bas.bg
(A. Karaivanova), c.weihrauch@reading.ac.uk (C. Weihrauch).

URLs: http://www.personal.reading.ac.uk/~sis04itd/ (I.T. Dimov), http://www.irisa.fr/sage/bernard/ (B. Philippe), http://www.bas.bg
(A. Karaivanova), http://acet.rdg.ac.uk/~cw/ (C. Weihrauch).

mailto:I.T.Dimov@reading.ac.uk
mailto:Bernard.Philippe@irisa.fr
mailto:anet@parellel.bas.bg
mailto:c.weihrauch@reading.ac.uk
http://www.personal.reading.ac.uk/~sis04itd/
http://www.irisa.fr/sage/bernard/
http://www.bas.bg
http://acet.rdg.ac.uk/~cw/

1512 I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529
1. Introduction

Many scientific and engineering applications are based on the problems of finding extremal (dominant)
eigenvalues of real n� n matrices. The computation time for very large problems, or for finding solutions
in real-time, can be prohibitive and this prevents the use of many established algorithms. Monte Carlo algo-
rithms give statistical estimates of the required solution, by performing random sampling of a random vari-
able, whose mathematical expectation is the desired solution [1–4]. Let J be the exact solution of the
problem under consideration. Suppose it is proved that there exists a random variable n, such that
Efng ¼ J . If one can produce N values of n, i.e. n1; . . . ; ni; . . . ; nN , then
�nN ¼
XN

i¼1

ni;
can be considered as a MC approximation of J. The probability error of the MC algorithm is defined as
follows.

Definition 1.1. If J is the exact solution of the problem, then the probability error is the least possible real
number RN , for which:
P ¼ Prfj�nN � J j 6 RNg; ð1Þ
where 0 < P < 1. If P ¼ 1=2, then the probability error is called probable error.

Several authors have presented work on the estimation of computational complexity of linear algebra prob-
lems [5–7,17–25]. In this paper we consider bilinear forms of matrix powers, which is used to formulate a solu-
tion for the eigenvalue problem. We consider our Monte Carlo approach for computing extremal eigenvalues
of real symmetric matrices as a special case of Markov chain stochastic method for computing bilinear forms
of matrix polynomials.

By h ¼ ðh1; . . . ; hnÞ and v ¼ ðv1; . . . ; vnÞ, we usually denote given vectors of dimension n, i.e., h; v 2 Rn. By
x ¼ ðx1; . . . ; xnÞ; x 2 Rn we denote the unknown vector. By eðjÞ � ð0; . . . ; 0; 1|{z}

j

; 0; . . . ; 0Þ we denote an unit

vector all elements, of which are zeros except the jth element eðjÞj , which is equal to 1. Sometimes we will need
to use a vector containing squares of elements of the original vector. We will use the notation ĥ ¼ fh2

i g
n
i¼1. The

notation �h will be used to denote vector containing absolute values of elements of vector h, i.e., �h ¼ fjhijgn
i¼1.

By A and B we denote matrices of size n� n, i.e., A;B 2 Rn�n. We use the following presentation of
matrices:
A ¼ faijgn
i;j¼1 ¼ ða1; . . . ; ai; . . . ; anÞT; where ai ¼ ðai1; . . . ; ainÞ; i ¼ 1; . . . ; n
and the symbol T means transposition.
The following norms of vectors (l1-norm):
khk ¼ khk1 ¼
Xn

i¼1

jhij; kaik ¼ kaik1 ¼
Xn

j¼1

jaijj
and matrices
kAk ¼ kAk1 ¼ max
j

Xn

i¼1

jaijj
are used.
Let us note that in general kAk 6¼ maxikaik.
By A we denote the matrix containing the absolute values of elements of a given matrix A:
A ¼ fjaijjgn
i;j¼1:

I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529 1513
By
pkðAÞ ¼
Xk

i¼0

ciA
i; ci 2 R
we denote matrix polynomial of degree k.
As usual, ðv; hÞ ¼

Pn
i¼1vihi denotes the inner product of vectors v and h.

We will be interested in computing inner products of the following type:
ðv; pkðAÞhÞ:
By Efng we denote the mathematical expectation of the random variable n. The random variable n could be a
randomly chosen component hak of a given vector h. In this case the meaning of Efhakg is mathematical expec-

tation of the value of randomly chosen element of h.
By
Dfng ¼ r2fng ¼ Efn2g � ðEfngÞ2
we denote the variance of the random variable n (rfng is the standard deviation).
2. Formulation of the problems

Basically, we are interested in evaluation of forms
ðv; pkðAÞhÞ: ð2Þ
2.1. Bilinear form of matrix powers

In a special case of pkðAÞ ¼ Ak the form (2) becomes
ðv;AkhÞ; k P 1:
2.2. Eigenvalues of matrices

Suppose that a real symmetric matrix A is diagonalisable, i.e.,
x�1Ax ¼ diagðk1; . . . ; knÞ;

where x ¼ ðx1; . . . ; xnÞ and jk1j > jk2jP � � �P jkn�1j > jknj. Values k, for which the equality
Ax ¼ kx
is fulfilled are called eigenvalues. If A is a symmetric matrix, then the values k are real numbers, i.e., k 2 R.
The well-known Power method [8] gives an estimate for the dominant eigenvalue k1. This estimate uses the

so-called Rayleigh quotient lk ¼ ðv;Ak hÞ
ðv;Ak�1hÞ:
k1 ¼ lim
k!1

ðv;AkhÞ
ðv;Ak�1hÞ

;

where v; h 2 Rn are arbitrary vectors. The Rayleigh quotient is used to obtain an approximation to k1:
k1 �
ðv;AkhÞ
ðv;Ak�1hÞ

; ð3Þ
where k is an arbitrary large natural number.

1514 I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529
To construct an algorithm for evaluating the eigenvalue of minimum modulus kn, one has to consider the
following expression:
piðAÞ ¼
Xi

k¼0

qkCk
mþk�1Ak; ð4Þ
where Ck
mþk�1 are binomial coefficients, and the characteristic parameter q is used as acceleration parameter of

the algorithm [6,9,10]. This approach is a discrete analogue of the resolvent analytical continuation method
used in functional analysis [11].

If jqjkAk < 1 and i!1, then the expression (4) becomes the resolvent matrix [9,12]:
p1ðAÞ ¼ pðAÞ ¼
X1
k¼0

qkCk
mþk�1Ak ¼ ½I � qA��m ¼ Rm

q ;
where Rq ¼ ½I � qA��1 is the resolvent matrix of the equation
x ¼ qAxþ h: ð5Þ

Values q1; q2; . . . ðjq1j 6 jq2j 6 � � �Þ for which Eq. (5) is fulfilled are called characteristic values of the Eq. (5).
The resolvent operator
Rq ¼ ½I � qA��1 ¼ I þ Aþ qA2 þ � � � ð6Þ
exists if the sequence (6) converges. The systematic error of the presentation (6) when m terms are used is
Rs ¼ O½ðjqj=jq1jÞ
mþ1mq�1�; ð7Þ
where q is multiplicity of the roots q1. Estimation (7) shows that the MC algorithm converges if jqj < jq1j.
When jqjP jq1j the algorithm does not converge for q ¼ q� ¼ 1, but the solution of (5) exists (and moreover,
the solution is unique). In this case one may apply a mapping of the spectral parameter q described in [12]. The
mapping procedure consists in choosing a domain D lying inside the definition domain of
Rqh ¼
X1
k¼0

ckqk; ck ¼ Akþ1h ð8Þ
as a function of q such that all characteristic values are outside of D; q� ¼ 1 2 D; 0 2 D. Consider a variable d
in the unit disk Dðjdj < 1Þ of the complex plane and a function q ¼ WðdÞ, which maps the domain D onto D.
We show in [12] that the matrix resolvent (8) can be replaced by
RWðdÞh ¼
X1
j¼0

bjd
j; bj ¼

Xj

k¼1

dðjÞk ck; b0 ¼ 1; ð9Þ
where dðjÞk ¼ 1
j!

oj

odj ½WðdÞ�k
h i

d¼0
. So, we assume that the matrix resolvent exists. In MC calculations we keep

m + 1 terms of the sequence (9) (see [12]):
Rq�h �
Xm

k¼0

gðmÞk ck; gðmÞk ¼
Xm

j¼k

dðjÞk dj
�; ð10Þ
where coefficients dðjÞk depend on the mapping function q ¼ WðdÞ. Normally, the coefficients dðjÞk are calculated
at advance and then are used in all MC calculations.

Let us consider the ratio:
k ¼ ðv;ApðAÞhÞ
ðv; pðAÞhÞ ¼

ðv;ARm
q hÞ

ðv;Rm
q hÞ :
If q < 0, then
ðv;ARm
q hÞ

ðv;Rm
q hÞ �

1

q
1� 1

lðkÞ

� �
� kn; ð11Þ

I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529 1515
where kn ¼ kmin is the minimal by modulo eigenvalue, and lðkÞ is the approximation to the dominant eigen-
value of Rq.

If jqj > 0, then
ðv;ARm
q hÞ

ðv;Rm
q hÞ � k1; ð12Þ
where k1 ¼ kmax is the dominant eigenvalue.
The approximate Eqs. (3), (11), (12) can be used to formulate efficient Monte Carlo algorithms for evalu-

ating both the dominant and the minimal by modulo eigenvalue of real symmetric matrices.
The two problems formulated in this section rely on the bilinear form ðv; pkðAÞhÞ. The latter fact allow us to

concentrate our study on MC algorithms for computing
ðv;AkhÞ; k P 1: ð13Þ

In the next section we are going to consider Almost Optimal Markov Chain Monte Carlo algorithms for com-
puting both bilinear forms of matrix powers ðv;AkhÞ (Section 3.2) and extremal eigenvalues of real symmetric
matrices (Section 3.3). Since expressions (4) and (11) exist the technique can also be used to compute the eigen-
value of minimum modulus kn.

It should be mentioned that the use of acceleration parameter based on the resolvent presentation is one
way to decrease the computational complexity. Another way is to apply a variance reduction technique [13]
in order to get the required approximation of the solution with a smaller number of operations. The variance
reduction technique for particle transport eigenvalue calculations proposed in [13] uses Monte Carlo estimates
of the forward and adjoint fluxes.

3. Almost optimal Markov chain Monte Carlo

We shall use the so-called MAO algorithm studied in [5,12,14,15]. Here we give a brief presentation of
MAO.

Suppose we have a Markov chain
T ¼ a0 ! a1 ! a2 ! � � � ! ak ! � � �

with n states. The random trajectory (chain) T k of length k starting in the state a0 is defined as follows:
T k ¼ a0 ! a1 ! � � � ! aj ! � � � ! ak; ð14Þ

where aj means the number of the state chosen, for j ¼ 1; . . . ; n.

Assume that
P ða0 ¼ aÞ ¼ pa; Pðaj ¼ bjaj�1 ¼ aÞ ¼ pab; ð15Þ
where pa is the probability that the chain starts in state a and pab is the transition probability to state b after
being in state a. Probabilities pab define a transition matrix P. We require that
Xn

a¼1

pa ¼ 1 and
Xn

b¼1

pab ¼ 1; for any a ¼ 1; 2; . . . ; n: ð16Þ
3.1. MAO density distributions

Suppose the distributions created from the density probabilities pa and pab are tolerant, according to the
following definition:

Definition 3.1. The distribution ðpa1
; . . . ; pan

Þ is tolerant to vector v, if
pas
> 0 when vas 6¼ 0;

pas
P 0 when vas ¼ 0:

�
ð17Þ

1516 I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529
Similarly, the distribution pas�1;as
is tolerant to matrix A, if
1 No
pas�1;as
> 0 when aas�1;as 6¼ 0;

pas�1;as
P 0 when aas�1;as ¼ 0:

(
ð18Þ
We will consider a special choice of tolerant densities that are called permissible1 pi and pi;j defined as
follows:
pi ¼
jvij
kvk ; pij ¼

jaijj
kaik

: ð19Þ
Such density distributions lead to almost optimal algorithms in sense that for a class of matrices A and vectors
h such a choice coincides with optimal weighted algorithms defined in [1] and studied in [16] (for more details
see [15]). The reason to use MAO instead of Uniform Monte Carlo is that MAO normally gives much smaller
variances. From the other hand the truly optimal weighted algorithms are very time consuming since to define
the optimal densities one needs to solve an additional integral equation with a quadratic kernel. The procedure
makes the optimal algorithms very expensive.

3.2. MC algorithm for computing bilinear forms of matrix powers ðv;AkhÞ

The pair of density distributions (19) defines a finite chain of vector and matrix entries:
va0
! aa0a1

! � � � ! aak�1ak : ð20Þ
The latter chain induces (defines) the following product of matrix/vector entries and norms:
Ak
v ¼ va0

Yk

s¼1

aas�1as ;

kAk
vk ¼ kvk �

Yk

s¼1

kaas�1
k:
Note, that the product of norms kAk
vk is not a norm of Ak

v . The rule for creating the value of kAk
vk is following:

the norm of the initial vector v, as well as norms of all row-vectors of matrix A visited by the chain (20) defined
by densities (19), are included. For such a choice of densities pi and pij we can prove the following lemma.

Lemma 3.1
Efhakg ¼
signfAk

vg
kAk

vk
ðv;AkhÞ:
Proof. Consider the value hðkÞ ¼ signfAk
vgkAk

vkhak for k P 1. We have
hðkÞ ¼ signfAk
vgkAk

vkhak ¼ sign va0

Yk

s¼1

aas�1as

()
kvk

Yk

s¼1

kaas�1
khak

¼ sign va0

Yk

s¼1

aas�1as

()
kvkkaa0

k . . . kaak�1
khak ¼

va0

jva0
j

aa0a1
. . . aak�1ak

jaa0a1j . . . jaak�1ak j
kvkkaa0

k . . . kaak�1
khak : ð21Þ
Let as stress that among elements va0
; aa0a1

. . . aak�1ak there are no elements equal to zero because of the special
choice of acceptable distributions pi and pij defined by (19). The rules (19) ensure that the Markov chain visits

non-zero elements only. From (21) and taking into account (19) one can get:
te that we distinguish tolerant from permissible densities. Permissible densities are equal to zero whenever vas ; aas�1 ;as ¼ 0.

I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529 1517
EfhðkÞg ¼ E
va0

jva0
j

aa0a1
. . . aak�1ak

jaa0a1j . . . jaak�1ak j
kvkkaa0

k . . . kaak�1
khak

� �

¼ E
va0

pa0

aa0a1
. . . aak�1ak

pa0a1
. . . pak�1ak

hak

()

¼
Xn

a0;...ak¼1

va0

pa0

aa0a1
. . . aak�1ak

pa0a1
. . . pak�1ak

hak pa0
pa0a1

. . . pak�1ak

¼
Xn

a0¼1

va0

Xn

a1¼1

aa0a1
. . .

Xn

ak�1¼1

aak�2ak�1

Xn

ak¼1

aak�1ak hak ¼
Xn

a0¼1

va0

Xn

a1¼1

aa0a1
. . .

Xn

ak�1¼1

aak�2ak�1
ðAhÞak�1

¼
Xn

a0¼1

va0
ðAkhÞa0

¼ ðv;AkhÞ: �
Obviously, the standard deviation rfhakg is finite. Since we proved that the random variable
hðkÞ ¼ signfAk

vgkAk
vkhak is a unbiased estimate of the form ðv;AkhÞ, Lemma 3.1 can be used to construct a

MC algorithm.

Let us consider N realizations of the Markov chain T k (14) defined by the pair of density distributions (19).
Denote by hðkÞi the ith realization of the random variable hðkÞ. Then the value
�hðkÞ ¼ 1

N

XN

i¼1

hðkÞi ¼
1

N

XN

i¼1

fsignðAk
vÞkAk

vkhakgi; k P 1 ð22Þ
can be considered as a MC approximation of the form ðv;AkhÞ. The probability error of this approximation
can be presented in the following form:
RðkÞN ¼ jðv;AkhÞ � �hðkÞj ¼ cprfhðkÞgN�
1
2; ð23Þ
where the constant cp only depends on the probability P used in Definition 1.1 and does not depend on N and
on hðkÞ. Note that sometimes the constant cp is taken for convenience to be 2 or 3 (for cp ¼ 2 the approximate
probability in (1) is P � 0:95). Sometimes this error is refereed to as statistical error. Because of the finiteness
of the standard deviation the probability error is always finite.

In fact, (22) together with the rules (19) defines a MC algorithm. The expression (22) gives a MC approx-
imation of the form ðv;AkhÞ with a probability error RðkÞN . Obviously, the quality of the MC algorithm depends
on the behavior of the standard deviation rfhðkÞg. So, there is a reason to consider a special class of robust MC

algorithms.

3.3. MC algorithm for computing extremal eigenvalues

Now consider again the pair of density distributions (19) defining a finite chain of vector and matrix entries
(20). For such a choice of densities pi and pij we can prove the following theorem.

Theorem 3.1. Consider a real symmetric matrix A and the chain of vector and matrix entries (20) defined by

MAO density distributions (19).

Then
k1 ¼ lim
k!1

signfaak�1akgkaak�1
k Efhakg

Efhak�1
g :
Proof. First consider the density of the Markov chain T k of length k a0 ! a1 ! . . .! ak as a point in
nðk þ 1Þ-dimensional Euclidian space T kþ1 ¼ Rn � . . .� Rn|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

kþ1

:

Pfa0 ¼ t0; a1 ¼ t1; . . . ; ak ¼ tkg ¼ pt0
pt0t1 pt1t2 . . . ptk�1tk

:

To prove the theorem we have to show that signfaak�1akgkaak�1
k Efhak g

Efhak�1
g ¼ lk ¼ ðv;Ak hÞ

ðv;Ak�1hÞ.

1518 I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529
From the definition of sign function and MAO distributions (19) one can write:
signfaak�1akgkaak�1
k Efhakg

Efhak�1
g ¼

aak�1ak

jaak�1ak j
kaak�1

k Efhakg
Efhak�1

g

¼

va0

jva0j

aa0a1
. . . aak�2ak�1

aak�1ak

jaa0a1
j . . . jaak�2ak�1

jjaak�1ak j
kvkkaa0

k . . . kaak�2
kkaak�1

k
va0

jva0j

aa0a1
. . . aak�2ak�1

jaa0a1
j . . . jaak�2ak�1

j kvkkaa0
k . . . kaak�2

k
Efhakg

Efhak�1
g

¼ signfAk
vgkAk

vkEfhakg
signfAk�1

v gkAk�1
v kEfhak�1

g
:

According to Lemma 3.1 we have:
signfAk
vgkAk

vkEfhakg
signfAk�1

v gkAk�1
v kEfhak�1

g
¼ ðv;A

khÞ
ðv;Ak�1hÞ

¼ lk: �
Obviously, since the standard deviation rfhakg is finite Theorem 3.1 allows to define a biased estimate of the
extremal eigenvalue k1. Since, according to Theorem 3.1 for large enough values of k
k1 � lk ¼
Efsignðaak�1ak Þkaak�1

khakg
Efhak�1

g

and the computational formula of the algorithm can be presented in the following form:
k1 � flkgN :¼ 1PN
i¼1hðiÞak�1

XN

i¼1

signðaðiÞak�1ak
ÞkaðiÞak�1

khðiÞak
;

where the upper subscript (i) denotes the (i)th realization of the Markov chain, so that hðiÞak�1
is the value of the

corresponding element of vector h after the k � 1-st jump in the ith Markov chain, hðiÞak
is the value of the cor-

responding element of vector h after the kth jump in the ith Markov chain, kaðiÞak�1
k is the corresponding vector

norm of the row which element is last visited by the Markov chain number i after the kth jump, and N is the
total number of Markov chains performed.

In this subsection we presented an Almost Optimal Markov Chain Monte Carlo algorithms for computing
extremal eigenvalues of real symmetric matrices. As it was mentioned before, the developed technique can eas-
ily be applied to compute the eigenvalue kn of minimum modulus. For computing kn one needs to consider
bilinear forms of polynomials (4) (see, also (11) instead of just bilinear forms of matrix powers).

3.4. Robust MC algorithms
Definition 3.2. MC algorithm for which the standard deviation does not increase with increasing matrix
powers k is called robust MC algorithm.

We can prove the following lemma.

Lemma 3.2. If MC algorithm is robust, then there exist a constant M such that
lim
k!1

rfhðkÞg 6 M ;
where hðkÞ is defined in the proof of Lemma 3.1.

Proof. Let us choose the constant M as:
M ¼ kvk � kaa0
k � rfha1

g:

Consider the equality (23):
RðkÞN ¼ cprfhðkÞgN�
1
2:

I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529 1519
If a MC algorithm is robust, then for any fixed pair ðN ; P Þ (number of realizations N and probability P) we
have:
rfhðkÞg 6 rfhðk�1Þg:

Since the smallest possible value of k is 1 (according to our requirement (13))
rfhðkÞg 6 rfhðk�1Þg 6 . . . 6 rfhð1Þg ¼ rfsignfva0
aa0a1
g � kvk � kaa0

k � ha1
g

¼ kvk � kaa0
k � rfha1

g ¼ M : � ð24Þ
It is interesting to answer the question:

• How small could be the probability error? and

• Is it possible to construct MC algorithms with zero probability error?

To answer the first question one has to analyse the structure of the variance. Then it will be possible to
answer the second question concerning the existence of algorithms with zero probability error.

3.5. Interpolation MC algorithms

Definition 3.3. MC algorithm for which the probability error is zero is called interpolation MC algorithm.

The next theorem gives the structure of the variance for MAO algorithm.

Theorem 3.2. Let
ĥ ¼ fh2
i g

n
i¼1; �v ¼ fjvijgn

i¼1; A ¼ fjaijjgn
i;j¼1:
Then
DfhðkÞg ¼ kAk
vkð�v;AkĥÞ � ðv;AkhÞ2:
Proof. Taking into account MAO density distributions (19) the random variable hðkÞ can be presented in the
following form:
hðkÞ ¼ signfAk
vgkAk

vkhak ¼
va0

jva0
j

aa0a1
. . . aak�1ak

jaa0a1
j . . . jaak�1ak j

kvkkaa0
k . . . kaak�1

khak ¼
va0

pa0

aa0a1
. . . aak�1ak

pa0a1
. . . pak�1ak

hak :
We deal with the variance
DfhðkÞg ¼ EfðhðkÞÞ2g � ðEfhðkÞgÞ2: ð25Þ
Consider the first term of (25).
EfðhðkÞÞ2g ¼ E
v2

a0

p2
a0

a2
a0a1

. . . a2
ak�1ak

p2
a0a1

. . . p2
ak�1ak

h2
ak

()
¼

Xn

a0;...ak¼1

v2
a0

p2
a0

a2
a0a1

. . . a2
ak�1ak

p2
a0a1

. . . p2
ak�1ak

h2
ak

pa0
pa0a1

. . . pak�1ak

¼
Xn

a0;...ak¼1

v2
a0

pa0

a2
a0a1

. . . a2
ak�1ak

pa0a1
. . . pak�1ak

h2
ak
¼

Xn

a0;...ak¼1

v2
a0

jva0
j kvk

a2
a0a1

. . . a2
ak�1ak

jaa0a1
j . . . jaak�1ak j

kaa0
k . . . kaak�1

kh2
ak

¼ kAk
vk

Xn

a0;...ak¼1

jva0
jjaa0a1

j . . . jaak�1ak jh2
ak
¼ kAk

vk
Xn

a0¼1

jva0
j
Xn

a1¼1

jaa0a1
j . . .

Xn

ak�1¼1

jaak�2ak�1
j
Xn

ak¼1

jaak�1ak jh2
ak

¼ kAk
vk
Xn

a0¼1

jva0
j
Xn

a1¼1

jaa0a1
j . . .

Xn

ak�1¼1

jaak�2ak�1
jðAĥÞak�1

¼ kAk
vk
Xn

a0¼1

jva0
jðAkĥÞa0

¼ kAk
vkð�v;AkĥÞ:

1520 I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529
According to Lemma 3.1 the second term of (25) is equal to ðv;AkhÞ2.
Thus, DfhðkÞg ¼ kAk

vkð�v;AkĥÞ � ðv;AkhÞ2t. h

Now we can formulate an important corollary that gives a sufficient condition for constructing an interpo-
lation MC algorithm.

Corollary 3.1. Consider vectors h ¼ ð1; . . . ; 1ÞT, v ¼ 1
n ; . . . ; 1

n

� �
and the stochastic matrix

A ¼ hv ¼

1
n . . . 1

n

..

.

1
n . . . 1

n

0
B@

1
CA, h 2 Rn�1; v 2 R1�n; A 2 Rn�n. Then MC algorithm defined by density distributions

(19) is an interpolation MC algorithm.
Proof. To prove the corollary it is sufficient to show that the variance DfhðkÞg is zero. Obviously, kvk ¼ 1 and
kaik ¼ 1 for any i ¼ 1; . . . ; n. Thus,
kAk
vk ¼ kvkkaa0

k . . . kaak�1
k ¼ 1: ð26Þ
The following equalities are true:
Ah ¼

1
n . . . 1

n

..

.

1
n . . . 1

n

0
BB@

1
CCA

1

..

.

1

0
B@

1
CA ¼

1

..

.

1

0
B@

1
CA:
Obviously,
Akh ¼
1

..

.

1

0
B@

1
CA
and
ðv;AkhÞ ¼ 1

n
; . . . ;

1

n

� � 1

..

.

1

0
B@

1
CA ¼ 1:
Since
A ¼

1
n

		 		 . . . 1
n

		 		
..
.

1
n

		 		 . . . 1
n

		 		

0
BB@

1
CCA ¼ A
and ĥ ¼ fjh2
i jg

n
i¼1 ¼ h, and taking into account (26) we have:
kAk
vkð�v;AkĥÞ ¼ 1:
Thus, we proved that DfhðkÞg ¼ 0. h
4. Computational complexity

It is very important to have an estimation of the computational complexity (or number of operations) of
MAO algorithms. Such estimates are important when there are more than one algorithm for solving the prob-
lem. We consider a MAO algorithm for computing bilinear forms of matrix powers, which can be also used to
formulate the solution for the dominant eigenvalue problem. Assume, we considering the set, A, of algo-

I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529 1521
rithms, A, for calculating bilinear forms of matrix powers ðv;AkhÞ with a probability error Rk;N less than a
given constant e:
A ¼ fA : PrðRk;N 6 eÞP cg: ð27Þ

There exists a question: which algorithm in the set A has the smallest computational cost? In this paper we are
not going to analyse the performance of different Monte Carlo algorithms. We can only mention that the
MAO algorithm has a performance close to the best one (for more details we refer to [5,6,10,15]).

We assume that the probability error Rk;N is fixed by the value of e and the probability c < 1 in (27) is also
fixed. Obviously, for fixed e and c < 1 the computational cost depends linearly on the number of iterations k

and on the number of Markov chains N.

Definition 4.1. Computational cost of MAO algorithm A is defined by
sðAÞ ¼ nEðqÞt;

where n is the number of Markov chains, EðqÞ ¼ k is the mathematical expectation of the number of transi-
tions in a single Markov chain and t is the mean time (or number of operations) needed to compute the value
of the random variable.

Two types of errors, systematic and stochastic (probability), can occur in Monte Carlo algorithms, and
achieving a balance between these two types of error is necessary. Clearly, to obtain good results the stochastic
(probability) error Rk;N must be approximately equal to the systematic one Rk;s and so
Rk;N � Rk;s:
The problem of balancing the error is closely connected with the problem of obtaining an optimal ratio be-
tween the number of realizations N of the random variable and the mean value of the number of steps in each
random trajectory (number of iterations) k.

4.1. Method for choosing the number of iterations k

Assume that we wish to estimate the value of the bilinear form ðv;AkhÞ, so that with a given probability
P < 1 the error is smaller than a given positive e:
ðv;AkhÞ � 1

N

XN

i¼1

hðkÞi

					
					 6 e:
We consider the case of balanced errors, i.e.,
Rk;N ¼ Rk;s ¼
e
2
:

When a mapping procedure (9) is applied one may assume that there exists a positive constant a < 1 such that
a P jgðkÞi j � kAk for any i and k: ð28Þ

Then
e
2
6
ðjgðkÞi jkAkÞ

kþ1khk
1� jgðkÞi jkAk

6
akþ1khk
1� a
and for k should be chosen the smallest natural number for which
k P
j log dj
j log aj � 1; d ¼ eð1� aÞ

2khk : ð29Þ
If a mapping procedure is not applied, i.e., the corresponding Neumann series converges fast enough, then one
assumes that a positive constant a, such that a P kAk exists. Then the number of iterations k should be chosen
according to (29).

1522 I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529
We should also mention here that there are other possibilities to estimate the number of needed iterations k

if a mapping procedure is applied. An example follows. Assume that the multiplicity of the characteristic value
q1 of the Eq. (5) is q = 1. Assume also that there exists a positive constant q�, such that
q� 6 jq1j:

Then we have
Rs ¼
e
2
¼ cs

q
q�

				
				kþ1

;

k P
log e

2cs

 �			 			
log q

q�

			 						 			 � 1:
The choice of the method of estimation of k depends on the available a priori information, which comes from
the concrete scientific application. One may use the first or the second approach depending on the information
available.

4.2. Method for choosing the number of chains N

To estimate the computational cost sðAÞ we should estimate the number N of realizations of the random
variable hðkÞ. To be able to do this we assume that there exists a constant r such that
r P rðhðkÞÞ: ð30Þ

Then we have
e ¼ 2RðkÞN ¼ 2cprðhðkÞÞN�
1
2 P 2cprN�

1
2

and
N P
2cpr

e

� �2

: ð31Þ
Taking into account relations (29) and (31) one can get estimates of computational cost of biased MC algo-
rithms. Let us stress that to obtain relations (29) and (31) we needed some a priori information in form of (28)
and (30). We do not assume that one needs to calculate kAk in order to have a good estimate for a, as well as to
compute rðhðkÞÞ in order to get an estimate for r. In real-life applications very often parameters like a and r are
known as a priori information. That information may come from physics, biology or any concrete scientific
knowledge. This remark is important, because we do not include computation of kAk or rðhðkÞÞ into the com-
putational cost of our algorithm.

Let us also note that if a priori information of type (30) is not available one may use a posteriori information.
To compute a posteriori estimation of rðhðkÞÞ one needs to use the mean value of hðkÞ � 1

N

PN
i¼1h

ðkÞ
i as well as the

mean value of ðhðkÞÞ2 � 1
N

PN
i¼1ðh

ðkÞ
i Þ

2. Since the first mean value should be computed as a MC approximation to
the solution, one needs just to add one or two rows into the code to get a posteriori estimation for rðhðkÞÞ.

5. Applicability and acceleration analysis

In this section we discuss applicability and acceleration analysis of MAO algorithm. Summarizing results
from previous sections we can present Monte Carlo computational formulas for various linear algebra problems.

5.1. Power Monte Carlo algorithm for computing the dominant eigenvalue

The corresponding matrix polynomial is pkðAÞ ¼ Ak, so that
ðv;AkhÞ ¼ EfhðkÞg � �hðkÞ ¼ 1

N

XN

i¼1

fsignðAk
vÞkAk

vkhakgi ð32Þ

I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529 1523
and the computational formula is
kmax �
�hðkÞ

�hðk�1Þ ¼
1PN

i¼1hðiÞak�1

XN

i¼1

signðaðiÞak�1ak
ÞkaðiÞak�1

khðiÞak
:

5.2. Resolvent MC algorithm for eigenvalue problems

For the Inverse shifted (Resolvent) MC the matrix polynomial is pkðAÞ ¼
P1

k¼0qkCk
mþk�1Ak. If jqAj < 1, then

pkðAÞ ¼
P1

k¼0qkCk
mþk�1Ak ¼ ½I � qA��m ¼ Rm

q (R is the resolvent matrix) and
k ¼ ðv;ApðAÞhÞ
ðv; pðAÞhÞ ¼

ðv;ARm
q hÞ

ðv;Rm
q hÞ :
If q < 0, then
ðv;ARm

q hÞ
ðv;Rm

q hÞ � 1
q ð1� 1

lðmÞ
Þ � kmin (lðmÞ is the approximation to the dominant eigenvalue of the resolvent

matrix R).
For a positive q (q > 0):

ðh;ARm
q f Þ

ðh;Rm
q f Þ � kmax.

Thus the computational formula for the smallest by magnitude eigenvalue is
k � E
Pl

k¼0qkCk
kþm�1h

ðkþ1Þ

E
Pl

k¼0qkCk
kþm�1h

ðkÞ ; ð33Þ
where hð0Þ ¼ vk0

pk0

and the r.v. hðkÞ are defined according to (22). The value vk0
is the entrance k0 of the arbitrary

vector v chosen according to the initial distribution pk0
.

If q > 0 the algorithm described by (33) evaluates kmax, if q < 0, the algorithm evaluates kmin.
To analyse the applicability of the MAO algorithm in the Power method with MC iterations we consider

two matrices: the original matrix A with eigenvalues ki and the iterative matrix R with eigenvalues li. Thus
values ki and li can be considered as solutions of the problems:
Ax ¼ kx and Rx ¼ lx:
We assume that jk1j > jk2jP � � �P jkn�1j > jknj as well as jl1j > jl2jP � � �P jln�1j > jlnj.
The systematic error that appears from the Power method is:
O
l2

l1

				
				k

 !
;

where l ¼ k if R ¼ A (Plain Power method), l ¼ 1
k if R ¼ A�1 (Inverse Power method), l ¼ k� q if Rq ¼ A� qI

(Shifted Power method), l ¼ 1
1�qk if Rq ¼ ðI � qAÞ�1 (Resolvent Power method). For the Resolvent Power

method in case of negative q the eigenvalues of matrices A and Rq are connected through the equality:
li ¼
1

1þ jqjkn�iþ1

:

The stochastic error that appears because we calculate mathematical expectations approximately is
OðrðhðkÞÞN�1=2Þ.

The choice of the parameter q is very important since it controls the convergence. When we are interested in
evaluating the smallest eigenvalue applying iterative matrix Rq ¼ ðI � qAÞ�1 the parameter q < 0 has to be
chosen so that to minimize the following expression:
Jðq;AÞ ¼ 1þ jqjk1

1þ jqjk2

; ð34Þ
or if q ¼ � a
kAk, then Jðq;AÞ ¼ k1þakn

k1þakn�1
. In practical computations we chose a 2 ½0:5; 0:9�. In case of a ¼ 0:5 we

have
q ¼ � 1

2kAk : ð35Þ

1524 I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529
The systematic error in this case is
Table
Illustra

Matrix

A1

A2

A2

A2
O
2k1 þ kn

2k1 þ kn�1

� �m�

; ð36Þ
where m is the power of the resolvent matrix Rq (or the number of iterations by Rq).
The convergence in this case can not be better than O½ð1=3Þm�. Such a convergence can be almost reached

for matrices with kn having opposite sign than all other eigenvalues k1; . . . kn�1. The best convergence in case
when all eigenvalues are positive or all are negative is O½ð2=3Þm� for a ¼ 1

2
. In case of a ¼ 9

10
the convergence can

not be better than O½ð1=19Þm�.
Let us consider some examples in order to demonstrate applicability and acceleration analysis of our

approach. We use two randomly generated matrices A1 and A2 with controlled spectra and three different values
of a 2 ½0:5; 0:9� (see Table 1). The last column of Table 1 contains results of the convergence (the ratio l2=l1

characterizes the rate of convergence). Obviously, the smaller is the ratio l2=l1 the faster is the convergence.
The results presented in Table 1 show that for some classes of matrices the convergence is relatively slow,

but for some other classes it is very fast. If one has a priori information about the spectrum of the matrix A the
acceleration parameter q (respectively a) can be chosen so that to reach a very fast convergence of order
Oð0:0830Þm (see the last row of Table 1). Such an analysis is important because it helps to choose the power

m of the resolvent matrix Rq. If the matrix has a spectrum like A1 and q ¼ � 1
2jjAjj then m has to be chosen

m � 30 in order to get results with a relative error 0:01. If the matrix has spectrum like A2 and q ¼ � 9
10jjAjj than

after just 4 iterations the relative error in computing kn is smaller than 5:10�5. One should try to find appro-
priate values for q (respectively for a) in order to get satisfactory accuracy for relatively small values of number
of iterations. It is quite important for non-balanced matrices since non-balancing leads to increasing stochastic
errors with increasing number of iterations. In illustration of this fact is the next example. We consider a ran-
dom symmetric non-balanced matrix A3 with k1 ¼ 64 and kn ¼ 1, n = 128. We apply Plain Power MC algo-
rithm for computing the dominant eigenvalue k1.

We compute the first 10 iterations by Monte Carlo and by simple matrix–vector multiplication with double
precision assuming that the obtained results are ‘‘exact’’ (they still contain some roundoff errors that are relatively
small). The results of computations are presented on Fig. 1. The first impression is that the results are good.

But more precise consideration shows that the error increases with increasing matrix powers (see Fig. 2).
Since we consider values of matrix powers vTAk v

kvk we eliminate the systematic error (the Monte Carlo estimate
is a unbiased estimate) in this special case. So that considering the results from Fig. 2 we can see how stochas-
tic error propagates with the matrix power.

One can see that for the first seven iterations the error is less than 1% while for the ten’s iteration it is almost 3%.
This is an expected result since the applied MC algorithm is not robust for such a non-balanced matrix. It means
that with increasing number of iterations the standard deviation (respectively the probability error) also increases
(see Section 3.4). This consideration shows that one has to pay a special attention to the problem of robustness.

To study experimentally this phenomenon we generated matrices and vectors with a priori given properties.
Matrices A were generated of order 100, 1000 and 5000. The vector h was filled with ones and v was filled with
1
n. The matrices A were filled with elements of size 1

n and then perturbed by 2%, 5%, 10%, 50% and 90%. After
perturbation the matrices are not any more stochastic. Bigger the perturbation farther the matrix from the
stochastic form. The norm of such matrices is around 1. For comparison random non-balanced matrices were
generated too. Our aim was to compute matrix powers in a form of ðv;A

khÞ
ðv;hÞ since in this case there is no system-
1
tion of the convergence of the resolvent MC algorithm

a k1ðAÞ kn�1ðAÞ knðAÞ l1ðRqÞ l2ðRqÞ lnðRqÞ l1

l2

1
2 0.5 0.22 0.05 0.9524 0.8197 0.6667 0.8600
1
2 1.0 0.95 �0.94 1.8868 0.6780 0.6667 0.3590
4
5 1.0 0.95 �0.94 4.0323 0.5682 0.5556 0.1409
9
10 1.0 0.95 �0.94 6.4935 0.5391 0.5263 0.0830

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Numbers of MC iterations (numbers of jumps in every Markov chain) k

M
at

rix
 p

ow
er

s

Fig. 1. Monte Carlo and ‘‘Exact’’ values vTAk v
jjvjj for a random non-balanced matrix A3 of size 128 · 128. In all experiments the number N of

Markov chains is 106.

1 2 3 4 5 6 7 8 9 10
-0.02

-0.01

0

0.01

0.02

0.03

Number of MC iterations (number of jumps in every Markov chain) k

R
el

at
iv

e
M

C
 e

rr
or

 fo
r

m
at

rix
 p

ow
er

s

Fig. 2. Relative MC error for values vTAk v
kvk for a random non-balanced matrix of size 128� 128. In all experiments the number N of Markov

chains is 106.

I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529 1525
atic error. In such a way we can study how the stochastic error propagates with the number of Monte Carlo
iterations for different classes of symmetric matrices. Note also that in our experiments the choice of vectors v

and h ensures the equality ðv; hÞ ¼ 1.
Since the deterministic computations were performed with a double precision we accept the results obtained

as ‘‘exact results’’ and use them to analyse the accuracy of the results produced by our Monte Carlo code. Our
numerical experiments show that the results are very close for perturbations of up to 10% whereas the results
for 50 and 90% differ up to 2% for matrices of size 1000 and 5000 and differ up to 14% for a matrix of size 100.

In Fig. 3 the relative error of the results for Monte Carlo algorithm is shown. The Monte Carlo probability

error RðkÞN and the Relative Monte Carlo probability error RelðkÞN was computed in the following way:
RðkÞN ¼
1

N

XN

i¼1

hðkÞi �
ðv;AkhÞ
ðv; hÞ

					
					; RelðkÞN ¼

ðv; hÞ
ðv;AkhÞ

RðkÞN :

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 2 3 4 5 6 7 8 9 10

M
C

 r
el

at
iv

e
er

ro
r

(s
to

ch
as

tic
 c

om
po

ne
nt

)

Number of MC iterations

n=1000, pert=2%
n=1000, pert=10%
n=1000, pert=90%

n=5000, pert=2%
n=5000, pert=10%
n=5000, pert=50%

n=1000, non-balanced
n=5000, non-balanced

Fig. 3. The dependence of MC relative error (stochastic component) on power of the matrix A.

1526 I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529
From Fig. 3 we can see that the error increases linearly if k is increasing. The larger the matrix is, the smaller
the influence of the perturbation. For comparison, the results for non-balanced matrices were included.

The variance of the results for the different perturbations are shown in Fig. 4. In this figure we compare
results for different sizes of the matrix for a fixed (but relatively small) number of Markov chains. Again it
is obvious that the influence of the perturbation is a lot bigger for smaller matrix of size n = 100. But over
all a variance of 10�5 is a good result and shows that the Monte Carlo algorithm works well with this kind
of balanced matrices. Nevertheless, the algorithm is still not robust since the variance (and the probability
error RðkÞN) increases with increasing k (see results shown on Fig. 3). It is because the norms of iterative matrices
A are large. Such matrices should be scaled in order to get a robust algorithm.

To test the robustness of the Monte Carlo algorithm, a re-run of the experiments was done with matrices of
norm kAk � 0:1. In fact we used the same randomly generated matrices scaled by a factor of 1/10. The results
for these experiments are shown in Figs. 5 and 6.

In Fig. 5 the Monte Carlo errors for matrix size of n = 1000 and number of Markov chains N = 1000 are
shown. The number of Markov chains in these experiments is relatively small because the variance of hðkÞ is
small (as one can see from the experimental results). One can also see that the Monte Carlo algorithm is very
robust in this case because with an increasing k the error is decreasing enormously.
0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

0 10 20 30 40 50

V
ar

ia
nc

e

Pertubation in %

n=100, k=5, chains=1000
n=1000, k=5, chains=1000
n=5000, k=5, chains=1000

Fig. 4. The dependence of variance of the r.v. on perturbation of the matrix entries.

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
M

C
 e

rr
or

 (
st

oc
ha

st
ic

 c
om

po
ne

nt
)

Number of MC iterations

n=1000, pert=2%
n=1000, pert=10%
n=1000, pert=90%
n=5000, pert=2%

n=5000, pert=10%
n=5000, pert=50%

Fig. 5. The dependence of MC error on power of matrices k with ‘‘small’’ spectral norms ðkAk � 0:1Þ.

 1e-19

 1e-18

 1e-17

 1e-16

 1e-15

 1e-14

 1 10 100

V
ar

ia
nc

e

Pertubation in %

n=100, k=5, chains=1000
n=1000, k=5, chains=1000
n=5000, k=5, chains=1000

n=100, k=5, chains=100
n=1000, k=5, chains=100
n=5000, k=5, chains=100

Fig. 6. The dependence of variance of the r.v. on perturbation of matrices with ‘‘small’’ spectral norms ðkAk � 0:1Þ.

I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529 1527
The results shown on Fig. 6 illustrate the fact that even with a very small number of Markov chains
(N = 100) one can obtain quite accurate results. The variance shown in Fig. 6 is 1010 smaller than the variance
shown in Fig. 4. It increases with increasing of perturbations because matrices are getting more and more
unbalanced. The last results show how one may control robustness (and the stochastic error of MC algo-
rithms). It seems that it’s very important to have a special balancing procedure as a pre-processing before run-
ning the Monte Carlo code. Such a balancing procedure ensures robustness of the algorithm and therefore
relatively small values for the stochastic component of the error.

If one is interested in computing dominant or the smallest by modulo eigenvalue the balancing procedure
should be done together with choosing appropriate values for the acceleration parameter q (or a) if Resolvent
MC is used. If all these procedures are properly done, then one can have robust high quality Monte Carlo
algorithm with nice parallel properties.

Parallel properties of the algorithms is another very important issue of the acceleration analysis. It is known
that Monte Carlo algorithms are inherently parallel [5,6,9]. Nevertheless, it is not trivial to chose the parall-
elization scheme in order to get appropriate load balancing of all processors (computational nodes). In our
experiments we distribute the job dividing the number of Markov chains between nodes. Such a method of

Table 2
Matrices for testing parallel properties

Matrix name Size n # of non-zero elements per row kn k1

A3 128 52 1.0000 64.0000
A4 1000 39 1.0000 �1.9000
A5 2000 56 1.0000 64.0000

Table 3
Computational cost s (in millisecond) of MAO algorithm Implementation of the Resolvent Monte Carlo Algorithm for evaluation of k1

using MPI (number of Markov chains N ¼ 105; q > 0 for all experiments)

Number of nodes 1 2 3 4 5

Matrix A3 (n = 128) 18 9 6 4 3
Matrix A4 (n = 1024) 30 15 10 7 6
Matrix A5 (n = 2000) 21 11 7 5 4

1528 I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529
parallelization seems to be one of the most efficient from the point of view of good load balancing [9]. Exper-
iments are performed using Message Passing Interface (MPI). The matrices used in our experiments are pre-
sented in Table 2.

The results of runs on a parallel system are given in Table 3. The computational cost s of the MAO algo-
rithm is measured in milliseconds.

The main observations from the computational experiments are the following.

• The systematic error depends very much on the spectrum of the iterating matrix. For a reasonable choice of
the acceleration parameter q (or respectively a) the convergence of Resolvent MC can be increased signif-
icantly (in comparison with the Plain Power MC).

• The experimental analysis of the stochastic component of the error shows that the variance can be reduced
significantly if a pre-processing balancing procedure is applied.

• The computational cost (time) s is almost independent from the size of the matrix. It depends linearly on the
mathematical expectation of the number of non-zero elements per row.

• There is a linear dependence of the computational cost on the number of Markov chains N.
• When MAO algorithm is run on parallel systems the speedup is almost linear when the computational cost

s for every processor is not too small.

All observations are expected; they confirm the theoretical analysis of MAO algorithm.
6. Conclusion

In this paper we have analysed the robustness and applicability of the Almost Optimal Monte Carlo algo-
rithm for solving a class of linear algebra problems based on bilinear form of matrix powers ðv;AkhÞ. We have
shown how one has to choose the acceleration parameter q (or a) in case of using Resolvent Power MC. We

analysed the systematic error and showed that the convergence can not be better that O 1þjqjkn

1þjqjkn�1

 �m
. We have

analysed theoretically and experimentally the robustness. We have shown that with increasing the perturba-
tions of entries of perfectly balanced matrices the error and the variance are increasing too. Especially small
matrices have a high variance. For a rising power of A an increase of the relative error can be observed. The
robustness of the Monte Carlo algorithm with balanced matrices with matrix norms much smaller than 1 has
been demonstrated. In these cases the variance has improved a lot compared to cases were matrices have
norms close to 1. We can conclude that the balancing of the input matrix is very important for MC compu-
tations. A balancing procedure should be performed as an initial (preprocessing) step in order to improve the
quality of Monte Carlo algorithms. For matrices that are ‘‘close’’ in some sense to the stochastic matrices the
accuracy of the MC algorithm is fairly high.

I.T. Dimov et al. / Applied Mathematical Modelling 32 (2008) 1511–1529 1529
References

[1] S.M. Ermakov, G.A. Mikhailov, Statistical Modelling, Nauka, Moscow, 1982.
[2] I.M. Sobol, Monte Carlo Numerical Methods, Nauka, Moscow, 1973.
[3] J. Spanier, E. Gelbard, Monte Carlo Principles and Neutron Transport Problem, Addison-Wesley, 1969.
[4] J.R. Westlake, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations, John Wiley & Sons, Inc., New York,

London, Sydney, 1968.
[5] I. Dimov, Monte Carlo algorithms for linear problems, Pliska (Studia Mathematica Bulgarica) 13 (2000) 57–77.
[6] I. Dimov, V. Alexandrov, A. Karaivanova, Parallel resolvent Monte Carlo algorithms for linear algebra problems, J. Math. Comput.

Simul. 55 (2001) 25–35.
[7] I. Dimov, O. Tonev, Random walk on distant mesh points Monte Carlo methods, J. Statist. Phys. 70 (5/6) (1993) 1333–1342.
[8] G.V. Golub, C.F. Van Loon, Matrix Computations, third ed., Johns Hopkins Univ. Press, Baltimore, 1996.
[9] I. Dimov, A. Karaivanova, Parallel computations of eigenvalues based on a Monte Carlo approach, J. Monte Carlo Method Appl. 4

(1) (1998) 33–52.
[10] I. Dimov, A. Karaivanova, in: O. Iliev, M. Kaschiev, Bl. Sendov, P. Vassilevski (Eds.), A Power Method with Monte Carlo

Iterations, Recent Advances in Numerical Methods and Applications, World Scientific, Singapore, 1999, pp. 239–247.
[11] L.W. Kantorovich, V.I. Krylov, Approximate Methods of Higher Analysis, Interscience, New York, 1964.
[12] I.T. Dimov, V. Alexandrov, A new highly convergent Monte Carlo method for matrix computations, Math. Comput. Simul. 47 (1998)

165–181.
[13] J.D. Densmore, E.W. Larsen, Variational variance reduction for particle transport eigenvalue calculations using Monte Carlo adjoint

simulation, J. Comput. Phys. 192 (2) (2003) 387–405.
[14] V. Alexandrov, E. Atanassov, I. Dimov, Parallel quasi-Monte Carlo methods for linear algebra problems, Monte Carlo Methods

Appl. 10 (3–4) (2004) 213–219.
[15] I. Dimov, Minimization of the probable error for some Monte Carlo methods, in: Proc. Int. Conf. on Mathematical Modeling and

Scientific Computation, Albena, Bulgaria, Sofia, Publ. House of the Bulgarian Academy of Sciences, 1991, pp. 159–170.
[16] G.A. Mikhailov, Optimization of Monte Carlo Weighted Methods, Springer-Verlag, 1992.
[17] J.H. Curtiss, A theoretical comparison of the efficiencies of two classical methods and a Monte Carlo method for computing one

component of the solution of a set of linear algebraic equations, Proc. Symposium on Monte Carlo Methods, John Wiley and Sons,
1956, pp. 191–233.

[18] J.H. Curtiss, Monte Carlo methods for the iteration of linear operators, J. Math. Phys. 32 (4) (1954) 209–232.
[19] I.T. Dimov, A.N. Karaivanova, Iterative Monte Carlo algorithms for linear algebra problems, in: First Workshop on Numerical

Analysis and Applications, Rousse, Bulgaria, June 24–27, 1996, in Numerical Analysis and Its Applications, Springer Lecture Notes
in Computer Science, ser. 1196, pp. 150–160.

[20] I. Dimov, O. Tonev, Performance analysis of Monte Carlo algorithms for some models of computer architectures, in: Bl.
Sendov, I. Dimov (Eds.), International Youth Workshop on Monte Carlo Methods and Parallel Algorithms – Primorsko, World
Scientific, Singapore, 1990, pp. 91–95.

[21] I. Dimov, O. Tonev, Monte Carlo algorithms: performance analysis for some computer architectures, J. Comput. Appl. Math. 48
(1993) 253–277.

[22] G.E. Forsythe, R.A. Leibler, Matrix inversion by a Monte Carlo method, MTAC 4 (1950) 127–129.
[23] J.M. Hammersley, D.C. Handscomb, Monte Carlo Methods, John Wiley & Sons Inc., New York, London, Sydney, Methuen, 1964.
[24] M. Mascagni, A. Karaivanova, A parallel quasi-Monte Carlo method for computing extremal eigenvalues, Monte Carlo and Quasi-

Monte Carlo Methods, Springer, 2000.
[25] G.M. Megson, V.N. Aleksandrov, I.T. Dimov, Systolic matrix inversion using a Monte Carlo method, J. Parallel Algorith. Appl.

3 (3/4) (1993) 311–330.

	Robustness and applicability of Markov chain Monte Carlo algorithms for eigenvalue problems
	Introduction
	Formulation of the problems
	Bilinear form of matrix powers
	Eigenvalues of matrices

	Almost optimal Markov chain Monte Carlo
	MAO density distributions
	MC algorithm for computing bilinear forms of matrix powers (v, {A}^{k}h)
	MC algorithm for computing extremal eigenvalues
	Robust MC algorithms

	Interpolation MC algorithms

	Computational complexity
	Method for choosing the number of iterations k
	Method for choosing the number of chains N

	Applicability and acceleration analysis
	Power Monte Carlo algorithm for computing the dominant eigenvalue
	Resolvent MC algorithm for eigenvalue problems

	Conclusion
	References

