
PARALLEL MULTIPLICATION OF A VECTOR BY A KRONECKER
TENSOR PRODUCT OF MATRICES

CLAUDE TADONKI � AND BERNARD PHILIPPE y

Abstract� Di�erent parallel algorithms are designed and evaluated for computing the multipli�
cation of a vector by a Kronecker tensor product of elementary matrices� The algorithms are based
on an analytic computation model together with some algebraic properties of the Kronecker multi�
plication� From that theoretical study� two algorithms are proposed which di�er on the volume of
�oating�point operations and communication they involve� A special study of the data and comput�
ing distribution is proposed depending on the dimensions of the elementary matrices� Experimental
results show the e�ciency of the approach�

Key words� Kronecker product� matrix�vector product� parallel algorithm� recurrent equation�
scheduling� data parallel algorithm� communication

�� Introduction� The use of Stochastic Automata Networks �SAN� is becoming
increasingly important in performance modelling issues related to parallel and dis�
tributed computer systems ����	 As such models become increasingly complex
 so also
does the complexity of the modelling process	 Various methods have been developed
for solving Markov models ���
 ��
 �
 ��
 ���	

A particular aspect of these models is that
 their transition matrix called descrip�
tor is not explicitly given	 In fact
 it is represented by a number of much smaller
matrices
 one for each of the stochastic automata that constitute the system
 and
from these
 all relevant information may be determined without explicitly forming
the global matrix	 Although the fact that particular algorithms have to be developed
for this context
 a considerable saving in memory is obtained by storing the matrix
in this fashion	 Speci�cally
 we consider the problem of performing a matrix�vector
multiplication when the matrix is stored as a compact SAN descriptor
 since this is a
fundamental step for most of the iterative methods and is by far
 the major cost per
iteration ��
 ���	

For this problem which is the bulk of this paper
 the basic operation on matrices
is the tensor product that is a well�known algebraic operation ��
 ���	 For the applica�
tions of this operation and how to proceed with it
 the reader may refer to ��
 �
 �
 ���	
Particularly
 we shall focus on the parallel issues for this computation in the context
of distributed memory parallel machines	 An e�ort has to be done to develop e��
cient and portable algorithms for this type of architectures ��
 ��
 ���	 Now
 there
are available languages and compilers for building such programs and making them
e�ective ���
 ���	

It is well�known that when the elementary matrices are given
 the cost of per�
forming a vector�descriptor multiply is given by

�N �

NY
i��

ni �

NX
i��

ni

where ni is the number of states in the i
th automaton andN is the number of automata

in the network	 Some e�ort has already been done for the parallelization of this

�University of Yaound�e I� Yaound�e� Cameroon 	cmtado
uycdc�uninet�cm�� supported by the
French agency �Aire Developpement and by an Inria�NSF agreement�

yINRIA�IRISA� Campus de Beaulieu� ����� Rennes Cedex� France 	philippe
irisa�fr��

�

� C� TADONKI AND B� PHILIPPE

computation and can be found in ����	 The reader is also advised to refer to ��
 ���	
At this level
 let us point out that
 as the matrices may be sparse
 an algorithm which
takes into account the presence of zero entries would be preferable	

Our paper is organized as follows	 In the second section
 we provide a number
of basic properties of the Kronecker product	 In section
 we present the position of
the problem and its computational complexity	 A polyhedral model of our computa�
tional space is proposed in section � followed by a formal model based on recurrence
equations	 An algebraic interpretation is proposed in section �	 From that analysis

various scheduling are derived for sequential computation in section � and for parallel
computations in the following sections	 On conclusion
 numerical tests illustrate the
behaviour of the algorithms	

�� The Kronecker multiplication� Definition ���� �Kronecker product�� If
A � RnA�mA and B � RnB�mB then the Kronecker product C � A�B that belongs
to RnAnB�mAmB is de�ned by the following block structure �

C � �cij� where cij � aijB � RnB�mB

This multiplication is also called tensor product�
Example ���� Let us consider the following matrices �

A �

�
� a�� a�� a��

a�� a�� a��
a�� a�� a��

�
A B �

�
b�� b��
b�� b��

�

The Kronecker product C � A�B is given by

C �

�
BBBBBBBBBB�

a��b�� a��b�� j a��b�� a��b�� j a��b�� a��b��
a��b�� a��b�� j a��b�� a��b�� j a��b�� a��b��
��� ��� ��� ��� ��� ��� ��� ���
a��b�� a��b�� j a��b�� a��b�� j a��b�� a��b��
a��b�� a��b�� j a��b�� a��b�� j a��b�� a��b��
��� ��� ��� ��� ��� ��� ��� ���
a��b�� a��b�� j a��b�� a��b�� j a��b�� a��b��
a��b�� a��b�� j a��b�� a��b�� j a��b�� a��b��

�
CCCCCCCCCCA

If In denotes the identity matrix of order n then for the four square matrices
A�B�C�D of compatible orders nA� nB � nC � nD respectively
 we have the following
properties	

Basic properties

� Associativity
A� �B � C� � �A�B�� C�
� Distributivity over �ordinary matrix� addition
�A�B�� �C �D� � A� C �B � C �A�D �B �D�
� Compatibility with �ordinary matrix� multiplication �Grouping factor�
�A�B�� �C �D� � �A� C�� �B �D�
� Compatibility with �ordinary matrix� inversion
�A�B��� � A�� �B��

KRONECKER TENSOR PRODUCT

� Compatibility with �ordinary matrix� transposition
�A�B�T � AT �BT

� Factorization �direct consequence of the Grouping factor property�
�A�B� � �A� InB �� �InA �B� � �InA �B�� �A� InB �

The associativity of the Kronecker product implies that one can naturally de�ne
the Kronecker product of N matrices A�i� of size ni � mi
 i � �� ���� N
 denoted by
�N
i��A

�i� which is a matrix of size
QN

i�� ni �
QN

i��mi	
From the property of factorization
 it appears that for square matrices A�i� of

order ni
 i � �� ���� N
 we have �N
i��A

�i� �
YN

s��
�In� � ��� � Ins�� � A�s� � Ins�� �

��� � InN � in which the regular matrix multiplication denoted by
Q

is commutative
for this special form of the factors	

The operator � is not commutative	 However
 under the use of permutation
matrices
 a pseudo�commutativity could be obtained as we will soon describe	 For
more details
 the reader can refer to ���	 Let us recall that for a given permutation �
of the set of integer f�� �� ���� ng
 the corresponding permutation matrix P� is de�ned
by P� � �e����� ���� e��n�� where ei is the i

th column vector of the canonical basis	
In our context
 we shall consider a particular permutation de�ned as follows	
Definition ���� �Perfect Shu	e� Let L be an integer and p
 q two of its divisors

such that L � pq� We de�ne the map ��p�q� called Perfect Shu	e by

��p�q� � f�� ���� Lg �� f�� ���� Lg

a � �i� ��� p� j ��� b � �j � ��� q � i with � � j � p

It is obvious that we have ��p�q� 	 ��q�p� � � where � is the identity permutation
which means that ��q�p� is the inverse permutation of ��p�q�	 For a given Perfect Shu	e
��p�q�
 the corresponding permutation matrix will be denoted by S�q�p� and it is clear
that for x � R��L
 the vector y de�ned by y � xS�q�p� is such that yi � x��p�q��i�

� � i � L	 Because a permutation matrix is an orthogonal matrix
 it is also clear
that �S�p�q���� � S�q�p� � �S�p�q��T 	 Hence
 the following result holds �

Lemma ���� If Ap is a square matrix of order p and Iq the identity matrix of
order q
 then we have

S�p�q��Ap � Iq�S
�q�p� � Iq �Ap

Proof	 Let i� j � f�� ���� pqg with i � �s � �� � p � � and j � �t � �� � p � �

� � �� � � p �i�e � � s� t � q�	 We have

�S�p�q��Ap � Iq�S
�q�p��ij � eTi �S

�p�q��Ap � Iq�S
�q�p��ej

� �S�q�p�ei�
T �Ap � Iq��S

�q�p�ej�

� eT��p�q��i��Ap � Iq�e��p�q��j�

� eT������q�s�Ap � Iq�e������q�t

� a���st

� �sta��

� �Iq �Ap�ij

� C� TADONKI AND B� PHILIPPE

From that result
 we obtain the following proposition �
Proposition ���� If Ap and Bq are square matrices of order p and q respectively

then we have

Ap �Bq � S�q�p��Bq �Ap�S
�p�q�

Proof	 From Lemma �	 and the grouping factor property we have

Ap �Bq � �Ap � Iq��Ip �Bq�

� �S�q�p��Iq �Ap�S
�p�q���S�q�p��Bq � Ip�S

�p�q��

� S�q�p��Iq �Ap��S
�p�q�S�q�p���Bq � Ip�S

�p�q�

� S�q�p��Iq �Ap��Bq � Ip�S
�p�q� since S�p�q�S�q�p� � Ipq

� S�q�p��Bq �Ap�S
�p�q�

Let us now analyse the main problem and its complexity 	

�� Complexity of the vector matrix multiplication� Given N square ma�
trices A���� A���� ���� A�N� of order n�� n�� ���� nN respectively and a vector x � R��L

where L �
QN

i�� ni
 our concern is the computation of

z � x�N
i�� A

�i�

�We consider the left�sided multiplication as it is done in the �eld of Markov
chains	 However
 this obviously does not reduce the generality of the problem since
the opposite case can be obtained by transposing the matrices�	

If we intend to �rst build the matrix �N
i��A

�i� and then perform the corresponding

vector�matrix product
 we will face the problem of its unfeasible size �
QN

i�� ni�
� that

usually requires an unrealistic space�memory	 Moreover
 this approach leads to a
computation containing too many redundant operations although it is highly parallel	

Some recurrence will therefore be considered to avoid computational redundancy
and
 an e�cient data and task partitioning will be determined to lower data commu�
nication	

Let us now present the already known sequential complexity of the problem	
Theorem ���� �Complexity of the vector�matrix product� The multiplication

x�N
i�� A

�i��

where A�i� is a square matrix of order ni and x is a vector of length L �
QN

i�� ni
 can
be computed using �N multiplications where

�N � nN � ��N�� �

NY
i��

ni� � �

NY
i��

ni��

NX
i��

ni��

The theorem implies that the multiplication must not be performed through the

assembly of the matrix �N
i��A

�i� since it would end up with ��n �
�QN

i�� ni

��
multi�

plications	 It is a direct consequence of the sequential computation scheme induced
by the following lemma �

KRONECKER TENSOR PRODUCT �

Lemma ���� By assuming that the vector x and the matrices A�i� are correctly
de�ned
 the computation

z � x�N
i�� A

�i�

is equivalent to

z �
	
v� �

N��
i�� A�i� v� �

N��
i�� A�i�

 vnN �

N��
i�� A�i�

S�m�nN �

where

vj �
	
u�A

�N���� j� u�A
�N���� j�

 umA

�N���� j�

j � �� ���� nN

with

uk �
	
x�k���nN��

 xknN

k � �� ����m

with m �
QN��

i�� ni�
Proof	 We have

z � x�N
i�� A

�i�

� x���N��
i�� A�i���A�N��

� x��Im �A�N��� ���N��
i�� A�i��� InN �� �grouping factor�

� �x� �Im �A�N���� ���N��
i�� A�i��� InN � �associativity�

� �u� �A�N� u� �A�N�

 um �A�N��� ���N��
i�� A�i��� InN �

� �u� �A�N� u� �A�N�

 um �A�N��� S�nN �m��InN � ��N��
i�� A�i���S�m�nN �

� �v� v�

 vnN �� �InN � ��N��
i�� A�i���S�m�nN �

� �v� �
N��
i�� A�i� v� �

N��
i�� A�i�

 vm �N��

i�� A�i��S�m�nN �

This result shows that the computation of x �N
i�� A

�i� can be viewed as nN
computations v �N��

i�� A�i� which are similar to the original problem with a smaller
number of operands	 We are now going to present a formal model that will help us
to express our multiplication as a succession of regular computation steps	

�� Recurrent equations for the computation� In this section
 we focus on
an analytic model expressed with the formalism of recurrence equations	 Although
it is a model widely used in the systolic context
 it is helpful in any other context
as it generally provides �ner information about the data dependencies of the given
computation	 For a more general analysis
 this model will be followed in the next
section by an algebraic point of view	

Let us begin by modelling our computational space	 From the result presented
in Lemma 	�
 it appears that for the computation of a given entry of the result
vector
 we use a well determined column in each matrix A�s�	 By considering the
sequence of columns used during this computation
 we obtain an index sequence
�i�� i�� ���� iN� which means that for the matrix A�s�
 we have to use the column is
 for
s � N�N��� ���� �� �	 This decreasing progression is due to the fact that the computa�
tion recursively requires the matrices A�N�� A�N���� ���� A���	 It can be observed that

� C� TADONKI AND B� PHILIPPE

this index sequence
 on its lexicographic ordering
 represents the index of the corre�
sponding entry of the resulting vector	 We can therefore consider this representation
to enumerate the components of the result	

Because matrices are used sequentially
 we consider a variable s to index the
current matrix	 For the computation of one entry of the result
 the corresponding
column of matrix A�s� is used

Qs��
i�� ni times
 due to the the implicit presence of the

partial product �s��
i��A

�i� on its left side
 is	 Therefore
 we consider the variable k to
contain the current processing step	

On the end
 since the operation performed with each column is the classical inner
product
 we consider a variable t to manage the current accumulation	

At last
 we obtain that each of our operands can be expressed by a term of
the form v�i�� i�� ���� iN � s� k� t� which represent the corresponding partial result of the
computation of the entry �i�� i�� ���� iN� of the result z � �N

i��A
�i�	

From above
 it logically appears that

v�i�� ���� is��� is� ���� iN � s� k� t� � v��� ���� �� is� ���� iN � s� k� t�

whatever the value of �i�� ���� is��� is	 Consequently
 we focus our attention on the
terms v��� ���� �� is� ���� iN � s� k� t� that can be simply denoted as v�is� ���� iN � s� k� t��

Under this representation of the computational space
 the following result com�
pletely describes the data and task dependencies in the considered computation	

Theorem ���� The following system of recurrent relations ������ achieves the
computation of z � x�N

i�� A
�i� �

v�N � �� k� �� � xk��	��

v�is� ���� iN � s� k� t� � v�is� ���� iN � s� k� t�����	��

� A�s��t� is�� v�is��� ���� iN � s��� �k���ns�t� ns���

v�is� ���� iN � s� k� �� � ���	�

z�i�� ���� iN� � v�i�� ���� iN � �� �� n����	��

where � � ip � np p � �� ���� N
 � � s � N
 � � k �
Qs��

��� n�
 � � t � ns
 nN�� � ��
Proof	 By induction on N 	
Case N � � � The proposed system implies
� the rule �	� gives v��� k� �� � xk where � � k � n�	
� the rule �	� gives v�i�� �� �� t� � v�i�� �� �� t��� � A����t� i�� � v��� t� �� where
� � i�� t � n� and k � �	

� from these two observations together with the initializing relation �	
 we
obtain that v�i�� �� �� n�� �

Pn�
t��A

����t� i��xt	
Then
 by considering the relation �	� which appears as z�i�� � v�i�� �� �� n��
 we obtain
a complete speci�cation of the standard vector�matrix product z � x�A���	

Induction � Let us assume that the result is true for N�� and consider the sys�
tem ��	���	�� for N matrices	 In order to inherit the required relations from the induc�
tion hypothesis
 we consider the quantities w�iN ��is� ���� iN��� s� k� t�
 iN � �� ���� nN de�

�ned in the index domain � � s � N��
 � � i� � n�
 s � 	 � N��
 � � k �
Qs��

p�� np

� � t � ns
 nN � � by the following relations �

�i� w�iN ��N� k� �� � v�iN � N� k� nN �

�ii� w�iN ��is� ���� iN��� s� k� t� � v�is� ���� iN � s� k� t�

�iii� z�i�� ���� iN� � w�iN ��i�� ���� iN����

KRONECKER TENSOR PRODUCT �

By applying the recursion
 we obtain

w�iN ��N� k� �� � v�iN � N� k� nN �

�

nNX
t��

A�N��t� iN �v�N��� �k���nN�t� ��

�

nNX
t��

A�N��t� iN �x�k���nN�t

� ukA
�N���� iN �

where uk is the k�th bloc vector of length nN in x	 Moreover
 by applying the rule
�	� in �ii�
 we obtain the following relation as well �

w�iN ��is� ���� iN��� s� k� t� � w�iN ��is� ���� iN��� s� k� t���

�A�s��t� is�� w�iN ��is��� ���� iN��� s��� �k���ns�t� ns���

which is the system for N�� matrices	 Then
 while observing that for any j in
f�� ���� nNg we have w

�j� � vj �
N��
i�� A�i�
 we obtain from the relation �iii� under lexi�

cographic consideration and from the induction hypothesis that the system ��	���	��
computes

z �
	
v� �

N��
i�� A�i� v� �

N��
i�� A�i�

 vnN �

N��
i�� A�i�

S�m�nN �

where

vj �
	
u� �A�N���� j� u� �A�N���� j�

 um �A�N���� j�

and

uk �
	
x�k���nN��

 xknN

is the k�th block�vector of length nN in the vector x and m �
QN��

i�� ni� From Lemma
	�
 this is equivalent to z � x�N

i�� A
�i�	

We now present an algebraic interpretation of the computation	

�� General expression of the multiplication� This section provides an anal�
ysis of our problem using tensor algebra operations	

Let us begin with the following de�nition	
Definition ���� �Lexicographical index�� For �i�� ���� iN � a sequence of N integers

where � � ip � np for p � �� ���� N
 we de�ne pos�i�� ���� iN � as the corresponding rang
in the natural lexicographical order�

Since it is a coding mapping
 the corresponding inverse will be denoted by lex�
Actually
 the notation pos stands for a set of mappings in which each of them is
de�ned by the number of its arguments� The following relations hold �

�� pos�i�� ���� iN � � �i�� ���

NY
p��

np� �����is� ���

NY
p�s��

np� �����iN � ��� �

� C� TADONKI AND B� PHILIPPE

�� is � ��i���mod�

NY
p�s

np��div�

NY
p�s��

np���
 � � s � N while i � pos�i�� ���� iN �

We are now going to express how the lexicographical index is related to the canon�
ical basis	 Let �ensi �i���ns denote the canonical basis of R

ns�� and �eLi �i���L the cor�

responding one for the whole space RL�� where L �
QN

i��ni	

Proposition ���� For any i � f�� ���� Lg
 i � pos�i�� ���� iN ��� eLi � �N
s��e

ns
is

Proof	 Obvious	
Because

�N
i��A

�i� �

NY
s��

�In� � ���� Ins�� �A�s� � Ins�� � ���� InN ��

the recursion

�
V �N��� � x

V �s� � V �s����In� � ���� Ins�� �A�s� � Ins�� � ���� InN � � � s � N

obviously leads in its last step to V ��� � z where z � �N
i��A

�i�	 From the commu�
tativity of the considered multiplication
 it can be noticed that any order of the set
f�� ���� Ng can be considered for s since each corresponding recursion provides on its
last step the result z	 We have chosen the right to left order because it will lead to
vary more often the right most index consistently with the lexicographical ordering	
This also impacts the data locality in the loops as we shall see	

Let now express the computation of one component of V �s� for a given s �
f�� ���� Ng	

Proposition ���� Let i � f�� ���� Lg with lex�i� � �i�� ���� iN�� The i
th component

of V �s� is then given by

V �s��i� �

nsX
t��

A�s��t� is�V
�s����j�

where j � pos�i�� ���� is��� t� is� ���� iN ��

Proof	 We may express IL �

LX
j��

eLj e
L
j

T
from eLj � �N

s��e
ns
js

and eLj
T
� �N

s��e
ns
js

T

when j � pos�j�� ���� jN �	 Therefore �

V �s��i� � �V �s����
LX
j��

eLj e
L
j

T
��In� � ���� Ins�� �A�s� � Ins�� � ���� InN ��e

L
i

�

LX
j��

�V �s���eLj ����
s��
p���e

np
jp

T
Inpe

np
ip
��� �enst

TA�s�ensis �� ��N
p�s���e

np
jp

T
Inpe

np
ip
���

�
LX
j��

�V �s����j����
s��Y
p��

�ipjp��A
�s��t� is���

NY
p�s��

�ipjp�

�

nsX
t��

V �s����j�A�s��t� is�

KRONECKER TENSOR PRODUCT �

where j � pos�i�� ���� is��� t� is� ���� iN�	
We are now going to focus on the derivation of some algorithms from the above

analysis	 But before that
 let us check the following statement which uni�es the two
expressions of the computation	 In fact
 we have �

z�i�� ���� iN� � �x�N
s�� A

�s��eLi

� x�N
s�� �A

�s�ensis �

where i � pos�i�� ���� iN �	
Then it appears that the multiplication x �N

s�� A
�s� can be performed step by step

from s � N to s � � by computing at step s the partial result

v�is� ���� iN � s� k� ns� � V �s��i�� ���� is��� is� is��� ���iN �

� x���s��
p��e

np
ip
��� ��N

p�sA
�s�e

np
ip
��

where k � pos�i�� ���� is���	
Hence
 the two previous expressions of the multiplication provide appropriate recur�
sion laying on this idear	

	� Deriving the algorithm� We begin by focalizing our attention on the oper�
ations performed in one step of the recursions provided by the two previous analyses	

	��� Loop scheduling in the recursion step�

	����� Derivation from recurrence equation� Let us store each value of
v�is� ���� iN � s� k� t� at position pos�k� is� ���� iN� in a vector V

�s�	 If i � pos�i�� ���� is� ���� iN �
then we have

is � ��i���div�

NY
p�s��

np��div �ns� � �

We also have

pos��k���ns�t� is��� ���� iN� � pos�k� is� ���� iN � � �t� is��

NY
p�s��

np

Therefore
 the recursion step s is obtained from the expressions �	���	� and is ex�
pressed by �

V �N��� � x
For s N downto � do
V �s� �� �
r

QN
p�s�� np

For i � to
QN

p�� np do
j ��i���div�r��mod�ns� � �
For t � to ns do
V �s��i� V �s��i� �A�s��t� j�� V �s����i� �t� j�� r�

End do
End do

End do
z � V ���

�� C� TADONKI AND B� PHILIPPE

Algo � � Optimal sequential algorithm from recurrence equation

	����� Derivation from algebraic expression� From Proposition �	
 the
computation of V �s� from V �s��� can be naturally expressed as follows�

V �s� �� �
For i� in f�� ���� n�g
For i� in f�� ���� n�g
	
	
	
For iN in f�� ���� nNg
For t in f�� ���� nsg
V �s��i� V �s��i��A�s��t� j��V �s����j�

Optimal sequential algorithm from algebraic expression
with i � pos�i�� i�� ���� iN � and j � pos�i�� ���� is��� t� is��� ���� iN�	

It is important to note that the set of all the embedded loops can be expressed in any
order	

	��� Global algorithm� As we have previously said in Section �
 we consider
the ordering s � N�N��� ���� � for our recursions	 In addition
 because the set of the
embedded loops of any step can be considered in any order
 we obtain the following
global algorithm by chosing an appropriate ordering which allows a maximum use of
each entry of the current matrix	

r �
	

QN
i�� ni

above For s N downto � do
U x
V �
m m
ns
For t � to ns do
For j � to ns do
If �A�s��t� j� �� �� then
For k � to m do
For 	 � to r do
i � 	� �j���� r � �k���� r � ns
V �i� V �i� �A�s��t� j�� U �i� �t� j�� r�

end do
end do

end if
end do

end do
U V
r r � ns
end do
z V

KRONECKER TENSOR PRODUCT ��

Algo � � Global algorithm for the multiplication

A direct implementation of this algorithm requires two vectors of length L �

NY
i��

ni	

In some cases
 the memory requirement will be considerable	 Let us show how this
systematic copy of the whole working vector can be avoided	

	��� Computation in one vector� For this purpose
 let us analyse the previ�
ously described allocating memory strategy towards the operations to be performed
on it in a given step	 Since pos��k���ns�t� is��� ���� iN� � pos�k� t� is��� ���� iN�
 it
appears that a storage con�ict will arise when t will be equal to is	 To solve this con�
�ict
 we need a vector U of length ns to save the values of v�is� is��� ���� iN � s� k� ns�
for is � �� ���� ns	 As this vector will be used for all the steps
 it should be of length
maxfnig

N
i�� and will be the only additionnal working space needed by the algorithm	

By the end
 because

pos�k� is� ���� iN � � ��k���� ns � �is�����

NY
��s��

n� � pos�is��� ���� iN�

the announced algorithm can be expressed as follows �

V x
	

QN
p�� np

r �
For s N downto � do
	 	
ns
For k � to 	 do
For i � to r do
For t � to ns do U �t� V ���k���� ns�t���� r�i�
For j � to ns do
scal �
For t � to ns do scal scal�A�s��t� j�� U �t�
V ���k���� ns�j���� r�i� scal

end do
end do

end
r r � ns

end do
z V

Algo � � Computation in one vector
This algorithm computes the multiplication in an e�cient time cost and reason�

able space memory	 We are now ready to study the parallel issue of our problem	
Because
 in the context of distributed memory machines
 communication cost may
often cause severe ine�ciency
 we shall �rst consider a parallel approach in which
there will be no need of communication between processors	 This is also justi�ed by
the increasing speed of actual processors	

� Parallel algorithm without data communication� Our purpose here is
to study the parallel computation of the multiplication under the constrain of avoiding
data communication	 The basic principle is that any processor which needs a data
should compute it	 Therefore
 it obviously appears that some redundant computations
will occur when some entries must be used by di�erent processors	 Let us begin by

�� C� TADONKI AND B� PHILIPPE

presenting an important concept to which we shall refer for the selection of the number
of processors to be used	

��� The concept of perfect�division� Let us de�ne recursively a perfect�
divisor	

Definition ���� An integer n � � is said to be a perfect�divisor of a sequence of
N integers �n�� n�� ���� nN �
 ni � � for all i � f�� �� ���� Ng
 if one of the following two
statements is true�

�� n is a divisor of n�
�� N � � and n is a strict multiple of n� and

n
n�

is a perfect�divisor of �n�� ���� nN �
Obviously
 when an integer n is a perfect�divisor of �n�� n�� ���� nN �
 there is a

unique s such that n is a strict multiple of
Qs��

��� n� and
nQ

s��

���
n�

is a divisor of ns	

It is then said that n is a perfect�divisor of �n�� n�� ���� nN � of rank s and the value of

q �

Q
s

���
n�

n
will be called the quotient of the perfect�division of �n�� n�� ���� nN � by n	

Example ����

� f�� �� �g is the set of perfect�divisors of rank � of the sequence ��� �� �� ��
� f��� ��� ��g is the set of perfect�divisors of rank � of the sequence ��� �� �� ��
� � and �� are not perfect�divisors of the sequence ��� �� �� ��
� the quotient of the perfect�division of ��� �� �� �� by �� is ��

Lemma ���� If Cs�n�� n�� ���� nN � denotes the set of all integers that are perfect�
divisors of rank s of �n�� n�� ���� nN �
 then the set of all perfect�divisors of �n�� n�� ���� nN �
is obtained as follows

C�n�� n�� ���� nN � �
N�
s��

Cs�n�� n�� ���� nN � �
N�
s��

�
s��Y
���

n��D�ns�

where D�ns� is the set of the divisors of ns greater than ��
Proof	 When considering a partition of the set of perfect�divisors of �n�� n�� ���� nN �

under the rank of the perfect�division
 the result follows from the de�nition of the rank
of the perfect�division from which we have Cs�n�� n�� ���� nN � � �

Qs��
��� n��D�ns�	

Example ���� Let us consider the sequence ��
 �

 �� of Example ���� By
applying the above result
 we obtain D��� � f�� �� �g
 D��� � f�� � �g
 D��� � f�� �g

D��� � f�g
 and therefore

C��� �� �� �� � D��� � �D��� � ��D��� � ���D��� � f�� �� �� ��� ��� ��� ��� ���� ���g�

From the above explanations
 the following property holds for the perfect�division�

Cs�n�� ��� ns� ns��� ���� nN� � C��

sY
���

n�� ns��� ���� nN ���	��

where � � s � N 	
Let us now turn to the presentation of the main idea of this section	

��� Basic scheduling� As previously described
 the computation of a given
entry �i�� ���� iN � of the result vector is performed from step s � N to step s � � by
using for each of them
 the corresponding su�x of this index sequence	 When looking
carefully the formal scheme ��	���	�� proposed in Theorem �
 particularly the Rela�
tion ��	��
 we conclude that at a given step s
 the computation of a value referenced

KRONECKER TENSOR PRODUCT �

by �is� is��� ���� iN � requires the values of step s�� which are referenced by the su�x
�is��� ���� iN �	 Consequently
 if a processor owns all the values v�is��� ��� iN � s��� k� ns���
for a given subsequence �is��� ��� iN�
 it can therefore compute all the values v�is� is��� ��� iN � s� k� ns�
with a complete data autonomy	 Starting from this observation
 we obtain the fol�
lowing result which also illustrates the importance of the concept of perfect�division	

Theorem ���� The computation of z � x �N
i�� A

�i� can be done in paral�
lel without any communication between processors using any number of processors
p�C�nN � nN��� ���� n��
 according to the formal scheme ������
 with increasing speedup
w�r�t� p�

Proof	 Let us �rst consider the simplest case when p belongs to C��nN � nN��� ���� n��
which means that p is a divisor of nN 	 We de�ne an allocating function which maps
the data onto the processors	 For the index of a given entry
 its provides the index of
the owning processor
 which consequently is supposed to perform all required opera�
tions for the computation of this entry	 Hence
 the result for this case is achieved by
considering the following allocating function �

a�is� ��� iN � s� k� t� � �iN � ��mod �p� � �

Let us now consider the case when p belongs to C��nN � nN��� ���� n�� where � � �	 Be�
cause some processors will require the same entries for their computations
 redundant
computations will be performed to avoid communications	 Therefore
 we consider
an extension of the allocating function that now addresses a set of indices instead of
a single index as previously	 Since we have p � q

QN
��s�

np where s	�N���� and
� q � ns�
 the set of our processors can be indexed by the sequences �j� js� � ��� jN �
where � � j � q and � � j� � n�
 	 � s	� ���� N 	 Considering a given sequence
�is� ��� iN � where s	 � s � N
 we de�ne the set of sequences E�is� ��� iN � as follows �

E�is� ��� iN � � f�j� js� � ���js��� is� ���� iN� where � � j � q

and � � j� � n� for 	 � s	� ���� s� ��g

In other words
 E�is� ��� iN � denotes the subset of the processors whose lexicographical
index contains the sequence �is� ��� iN � as a su�x	 Then
 the appropriate scheduling
for this case is obtained by considering the following allocating function

a�is� ��� iN � s� k� t� �

�
E�is� ��� iN � if s	 � s � N
��is������mod �q� � �� is� � ��� iN � if � � s s	

Let us emphasize the need of redundant computations when s	 � s � N since
more than one processor is concerned by the same entries	 We show now that the
execution time is a decreasing function w	r	t	 p belonging to C�nN � nN��� ���� n��	

It is assumed that in the present context
 each processor works with its compu�
tational space	 The time complexity of our computation on p processors where p is a
perfect�divisor of rank � of �nN � nN��� ���� n��
 is given by

T �p� � �

NX
s�s�

sY
���

n�� � �

NY
���

n� �

s���X
s��

ns�
p

where s	�N����	 The �rst term of this expression is obtained by reminding that
 at
a given step s such that s	 � s � N
 a processor referenced by �j� js� � ���� js��� is� ���� iN �

computes all the values v�is� ���� iN � s� k� t� for k � �� ����
Qs��

��� and t � �� ���� ns	 For
the second term
 since there is no redundant computation when � � s � s	��
 the

�� C� TADONKI AND B� PHILIPPE

result is obtained by considering an equal task distribution of each recursion step	
This expression shows that T �p� is a harmonic function of p for a constant value of
the rank � �i�e constant value of s	�	 Consequently
 T is a decreasing function when
restricted to C��nN � nN��� ���� n�� for a given �	 Therefore
 to complete this part of the
proof
 we just have to show that T �p�� T �p	� for p	 �maxC��nN � nN��� ���� n�� �QN

��s���
n� and for any p� in C����nN � nN��� ���� n�� �i�e p� � p	� 	 If q is the quotient

of the perfect�division of �nN � nN��� ���� n�� by p�
 it is clear that we have p� � qp		
Considering the expression of T �p� and the values of p	 and p�
 we have

T �p	� � �

NX
s�s�

sY
���

n�� � �

s���Y
���

n� �

s���X
s��

ns�

and

T �p�� � �

NX
s�s���

sY
���

n�� � �

s���Y
���

n� �

s���X
s��

ns�
q

From the fact that T �p�� � T �p	� when consider q � � in T �p��
 the result is obtained
by reminding that q � �	
This ends the proof of the theorem	

Description of the algorithm when p is a divisor of nN � Let Vj
 � � j � nN

denotes the set of all values v�is� ��� iN��� j� s� k� t� where � � i� � n�
 	 � �� ���� N��

� � s � N
 � � k �
Qs��

p�� np
 � � t � ns	 As the computation of the subsets
Vj can be done with complete data independency between themselves
 computation
without communication can then be done by applying the following distribution	 The
computation of all values in V� is allocated to Processor �
 that of V� to processor �

	 	 	
 that of Vp to processor p
 that of Vp�� to processor �
 and so on	 Formally

a processor k will be in charge of the computation of the subsets Vj such that k �
�j���mod�p� � �	 Practically
 when considering the derived global algorithm
 we
just have to apply a cyclic distribution of the vectors U and V 	 For the loops
 we
distinguish two cases	 When s � N we just distribute the loop under j onto the
processors in a cyclic manner and perform the total execution of the other loops in each
processor	 By doing that
 we ensure that each processor performs the corresponding
computation with its owned column�s� of the last matrix	 For the other loops �� �
s N�
 a total execution of the loops under t
 k and j will be done in each processor
and only the loop under 	 will be distributed in a cyclic manner	

Let us emphasize the fact that the case when p is a divisor of nN can be directly
implemented without a particular programming e�ort and leads to an optimal com�
putation since there is no redundant computation	 For the other case
 we show now
how to proceed to turn back to the previous case	

��� Simpli�ed algorithm� Let us consider the multiplication on p processors

where p is a perfect�divisor of �nN � nN��� ���� n�� of rank � �� � ��	 From the property

of the perfect�division
 p also belongs to C��
QN

��s�
n�� ns���� ���� n�� where s	 � N���

�	 We then turn to the expected case by noticing that z � x���s���
i�� A�i�����N

i�s�
A�i���	

In other words
 we �rst compute the partial product �N
i�s�

A�i� to obtain a matrix B

KRONECKER TENSOR PRODUCT ��

p � �� � � � � �� � �� ��� ���
���p� � � � �	� �	 ��	� ��	� 	� �	�

Table ���

Grouping factor e�ect on the speedup

and then consider the problem z � x���s���
i�� A�i�� � B� which can therefore be com�

puted with the p processors without any need of communication as described above	
With this adapted form of our problem
 the number of performed multiplications
becomes equal to

NY
���

n� � �

s���X
s��

ns �

NY
��s�

n��

and
 since there is no data communication during this computation in parallel with p
processors
 the time complexity is

QN
��� n� � �

Ps���
s�� ns �

QN
��s�

n��

p

The speedup
 ratio between the sequential time and the time of the corresponding
parallel version
 is given in this case by

�� � p
�

� � �
where � �

QN
��s�

n��
PN

��s�
n�PN

��� n�

Table �	� illustrates the quality of this approach for N � �� and n� � �� l �
�� ���� �� and p � ��	 In this particular case
we will have �� � ��� N

N������� � and
when assuming that p is constant
 it appears that limN��� �� � p	 This result is
more general and shows that
 on matrices of constant size
 the algorithm becomes of
optimal works for larger number of matrices	 Suitable case also occur for matrices of
bigger size
 more precisely the lasts	

Anyway
 as redundant computations are intentionally performed
 care must be
taken while using this approach for large values of � as the speedup grows very slowly
w	r	t	 the number of used processors as it can be seen from Table �	�	 In the particular
case when all the matrices are of size � � � and because � � � � � � � � �
 the
last two matrices can be replaced by their Kronecker product without introducing
any redundancy in the whole computation which therefore allows the use of four
processors for an optimal time computation	 On another hand
 if the number of
processors P is not a perfect�divisor of �nN � nN��� ���� n��
 one could select for the
number of processors
 the largest value p � C�nN � nN��� ���� n�� such that p P 	 In
the simpli�ed version of the algorithm
 the admissible values of p is extended to the
set of all divisors of

QN
��s�

s�	
In the next section
 we present another way of mapping the formal scheme ��	��

�	�� on a given number of processors p � C�nN � nN��� ���� n�� without redundant
computation but at a price of communication cost	

� Solution involving communications between processors� Let us con�
sider p � C��nN � nN��� ���� n�� where � � � N 	 Our purpose is to map the
computational space on the p processors so that the required volume of communi�
cation is minimal
 assuming that no redundant computation is allowed	 For mak�
ing easier the situation
 we assume that p �

QN
��s�

where s	 � N�� � ��	 Let

�� C� TADONKI AND B� PHILIPPE

us address our processors with sequences �is� � is���� ���� iN � where � � i� � n� for
	 � s	� ���� N 	 Then
 at a step s �s	 � s N�
 if we consider a cyclic distribution
of the values v�is� ���� iN � k� ns� coded by �k� is� ���� iN�
 we obtain that each processor
�is� � ���� is��� is� ���� iN� will be in charge of the computational points �k� is� ���� iN� such
that k � pos�j�� ���� js���� is� � ���� is��� with � � jp � np
 p � �� ���� s	��	 From the def�
inition of the mapping pos
 we can observe that
 if k � pos�j�� ���� js���� is� � ���� is���
then �k � ��ns � t � pos�j�� ���� js���� is� � ���� is��� t�	 Hence
 from the rule �	� of
our recurrence equations
 it follows that at step s
 the computation of the value
v�is� ���iN � s� k� t� �k � pos�j�� ���� js���� is� � ���� is���� in Processor
I � pos�is� � ���� is��� is� is������ iN� requires the value v�is��� ���iN � s � �� �k � ��ns �

t� ns��� owned by Processor J � pos�is� � ���� is��� t� is��� ���� iN� � I��t�is�
QN

��s�� n�	
We obtain on the end that
 at step s
 a processor I sends and receives values from its
neighbourhood de�ned by

��I� � fI � �t� T �� r� t � �� ���� nsg

where r �
QN

p�s�� np and T � ��I � ��div�r��mod�ns� � �	
and performs the following operation with collected data �ut is the vector which is
received from I � �t� T �� r�

v �

ns��X
t��

A�s����t� T ��ut�

Let us notice at this point that before any communication
 the vector uT is al�
ready available in Processor I	 This last aspect
 together with the associativity and
the commutativity of the operation

P

 introduces the possibility of doing �oating

point operations while performing communications	 On another hand
 as computa�
tion to be done is composed of a succession of regular operations of linear algebra
 an
opportunity is o�ered for using routines from the set BLAS ��	
Moreover
 it appears from the above description that the communication graph is
symmetric and re�exive	 The re�exivity means that any processor uses values pre�
viously computed by itself	 The symmetry implies a send�receive instruction can be
used	 Figure �	� displays this graph for a � � � matrices when using respectively �
and �� processors	 In the case when there is more than one communication time
 the
edges will be valuated by the rank of the corresponding communication step	

Let us now describe the entire process	 During the steps including communica�
tions between processors �s	 � s N�
 computation is performed as already de�
scribed	 For the other steps �� � s N���
 because the behavior is the same as in
the case where � � s � N�� in the �rst parallel issue
 we apply the same organiza�
tion
 means that a total execution of the loops under t
 k and j will be performed in
each processor and the loop under 	 will be distributed in a cyclic manner	 We end
by noticing that for the case when the quotient q of the perfect� division is lower
than the size of the corresponding matrix
 a mixed recursion should be considered	

Further details will be given in the implementation subsection	 Let us now turn
to the e�ciency of this approach	

��� Timing model� Let us consider our computation when using p processors
where p � C��nN � nN��� ���� n�� with � � � N 	 During the �rst �����th steps

communications will occur while going from a given step to another	 As previously

KRONECKER TENSOR PRODUCT ��

1 2 3 4

(a)

5 6 7 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

2
1

2

2

2

2

2

2

2
1 1

1 1

1

1

1

(b)

�a� Case for � processors	 �b� Case for �� processors	

Fig� ���� Graph of communication for �� � matrices�

p � �� � � � � �� � �� ��� ���
���p� � � � �	� ��	� �	� ��	 ��� ��	�

Table ���

Theoretical speedups for the algorithm involving communications

proved
 at step s each processor I sends a vector of length

Q
N

���
n�

p
to each of the

ns���� processors in ��I�	 By considering the ideal case for physical communication
network
 it appears that the communication cost is given by

NX
s�s�

�ns������� �

QN
��� n�
p

�c�

where s	 � N���� and the tranmission time for a vector of length w is modelized
by � � �cw	 Therefore
 the cost of the whole computation is equal to

QN
��� n� �

PN
��� n�

p
�a � �� �

QN
��� n�
p

�c��

NX
s�s�

�ns�����

where �a is the elementary time for a �oating point operation	 The corresponding
speedup is then given by

�� � p
�

� � � �p
L�a

� �c
�a
�A
B

where L �
QN

��� n�
 A �
PN

s�s�
�ns����� and B �

PN
��� n�	 Table �	� illustrates

the quality of this approach for N � �� and n� � �� l � �� ���� �� and p � ��	 In
this particular case
 we consider L � �N
 A � ��� and B � �N 	 The values
of the parameter are those of the machine PARAGON for which � � �� � ���
s

�c � ���� ���
s and �a �

�
�� � ���
s	

Before turning to the implementation
 we must point out that
 since the oper�
ations to be performed during the steps including communications are regular
 the
measured speedup could be better than expected
 and it would be even better when
using specialized BLAS routines	

�� C� TADONKI AND B� PHILIPPE

��� Implementation� Let us de�ne some routines that are used in the next
algorithm	

� send�tag� u� length� idest� for sending a vector u of lentgh length to the pro�
cessor idest with the associated tag tag	

� recv�tag� v� length� for receiving in the vector v
 a vector of length length
with the corresponding tag tag	

� gather�z� v�mode� length� for gathering communications and rebuilding the
vector z
 according to the kind of its distribution to the processors that is
speci�ed by mode which can be block or cyclic	 The vector v
 of size length

is the part owned by each processor	

� perfect�p� n�N� returns the rank of the perfect�division of �n�N�� ���� n����
by p where n is an integer vector of length N 	 When it is not a perfect�divisor

the rank is set to �	

� numproc�� and mynode�� return respectively the number of processors to
be used and the rank of a processor between � and P�numproc��	

Every processor needs three vectors U
 V and W of length

Q
N

���
n�

P
where P is the

number of processors	 Since a cyclic distribution of the whole vectors U and V and of
the loops is done
 the following relation
 between the absolute index ia and its relative
value ir in the processor rank
 holds

ia � rank � �ir���� P�

Because our algorithm follows a SPMD model
 the instructions are run by every
processor	 The code for our computation is displayed in Table �	�	

Let us now state some remarks about this algorithm	 The communications are
performed selectively in order to avoid a deadlock due to the symmetry of the commu�
nication graph and also to avoid an accumulation of messages sent to one processor
by its neighbours	 In addition
 also due to the symmetric aspect of the communi�
cations
 the use of a simultaneous send�receive is possible	 In the particular case of
� � � matrices
 the use of the additional vector W can be omitted as well as the
communicating loops
 due to the binary value of T 	 On another hand
 during the
steps including communication
 performed operations provide a regular access to the
right hand side vectors which therefore increases the speed	

Let us now turn to the presentation of the performance results obtained in our
tests	

�� Performance results and comments�

���� Hardware�

������ NEC CENJU�� Cenju	� ���� is a distributed memory parallel machine	
Up to ��� processing elements ��� in our case�
 each having a MIPS R���� running at
�� MHZ clock and local memory of � MB
 are connected by multistage network based
on � � � switches	 The point�to�point throughput of the network is �� Mbytes�sec	
A host workstation is connected to the above network
 and provides interfaces to
external storage and LAN to tasks running on processor elements	 Each processor is
accompanied by a network interface hardware �NIF�
 which is capable of DMA data
transfer to and from the network	

DenEn is a parallel operating system for Cenju�
 composed of CMU�s Mach
microkernel and a set of small servers
 and supports multi�user
 multitask
 and mul�
tithread execution	 Programming interfaces provided for users programs include�

KRONECKER TENSOR PRODUCT ��

P �numproc��
� � perfect�P� n�N�
I �mynode��

L �
QN

���
n�

m � L

� � L
P

n � n�N�
j � �I���mod�n� � �
For t� � to n do

For ir� � to � do

V �ir�� V �ir� �A�N��t� j��X��ir � ��� p� I � �t� j��
end do

endo do

m � m
n

r � n

For s� N�� down to N���� do
n � n�s�
m � m

n

W � V

V � �
K � div��I���� r� � �
T � mod�K��� n� � �
For t� � to n do

J � I � �j � T �� r

if �t �� T � then
If �T � t� then
send�t�W� �� J�
recv�t� U� ��

else

recv�t� U� ��
send�t�W� �� J�

end if

If �A�s��t� T � �� �� then V � V �A�s��t� T ��U
else

If �A�s��t� T � �� �� then V � V �A�s��t� T ��W
end if

end do

r � r � n

end do

U � V

For s� N�� down to � do
n � n�s�
m � m

n

V � �
For t� � to ns do

For j � � to ns do

If �A�s��t� j� �� �� then
For k� � to m do

For �� � to r
p
do

i � �� �j���� r
p
� �k���� r

p
� ns

V �i�� V �i� �A�s��t� j�� U �i� �t� j�� r
p
�

end do

end do

end if

end do

end do

U � V

r � r � n

endo do

gather�Z� V� cyclic� ��

END
Table ���

Parallel algorithm involving communications

�� C� TADONKI AND B� PHILIPPE

Mach kernel calls
 C threads
 most UNIX �le I�O system calls
 and MPI	 MPI imple�
mentation on Cenju	� is called MPI�DE and the version �	� has all MPI functions
except error handlings � it reaches �� microseconds for the minimum latency and ��
Mbytes�sec for the maximum throughput	 UNIX system calls are redirected to and
processed by the host workstation	

������ INTEL PARAGON� Paragon is a distributed memory parallel ma�
chine	 It consists of a set of nodes connected by a high�speed internal network	 Each
node contains two processors i���tm � one processor is specialized for the compu�
tation and it runs at �� MHZ clock and is equipped of a local memory of �� MB

and one processor specialized for communication	 Care must be taken for the local
memory of each processor as � to � MB is used by the system OSF	 The nodes of the
machine are divided into a service partition �� nodes� for the system and a compute
partition ��� nodes� for running parallel programs	

���� Software�

������ HPF� High Performance Fortran �HPF� is a data parallel language that
includes the following features�

� It mainly targets parallel processing speci�cations on distributed�memory
parallel processing computers	

� It is based on data parallel considerations	 That is
 the user usually needs only
to specify in the program how to distribute the data between the local mem�
ories
 and loops and statements are automatically partitioned concurrently
according to that data distribution	 The user may also specify a particular
distribution of loops and statements to the processors	

� The user speci�es distribution of data that is performed in two steps using
the ALIGN and DISTRIBUTE directives �
� ALIGN directive � Maps arrays accordingly to a reference array	
� DISTRIBUTE directive � Distributes each element of the reference array
in the memory of an abstract set of processors	

� PROCESSORS directive � Speci�es the topology of the abstract set of
processors	

HPF becomes a simple way to develop distributed parallel programs when they involve
regularly structured data	

������ MPI and NX communication libraries� NX is a message passing
library available on the Intel paragon machine which we used	 It provides routines
for sending and receiving messages from a given node to another	 Each node is
referenced by a number from � to p�� where p is the number of processors to be used	
NX can be viewed as a library of the similar to MPI but the later makes program
portable since the MPI library is now implemented on most of the architectures	

���� Performance results� We present here the performance results of our
programs	 We have considered the case of twenty ��� matrices	 In the �rst case �see
Table �	��
 the program has been developped using HPF compiler on cenju	� and in
the second case �see Table �	� and Figure �	��
 we have used the Fortran �� compiler
with the NX library on paragon	

KRONECKER TENSOR PRODUCT ��

Number of processors � � � � ��
Measured time �s� �� �� �	� �	� �	�
Measured speedup � �	� 	� �	� ��	�

Table ���

Timings �HPF � cenju�	 � no communication�

Number of processors � � � � �� �

Measured time �s� ��� ��	�� ��	�� �	� 	� �	� �	�
Measured speedup ��� � �	� 	� �	� ��	� ��	�

Measured time �s� ��� ��	�� ��	�� �	� �	� �	� �	��
Measured speedup ��� � �	� 	� �	� �	� ��

��� refers to the algorithm without communication
��� refers to the algorithm with communications

Table ���

Timings �NX � paragon�

N � ��
ni � �� i � �� ���� ���

Vector length � �
���
���
Number of multiplications � ��
��
��� �when no redundancy�

Characteristics of the test problem�

���� Comments� On cenju	�
 the obtained speedups are nearly those expected
since the program do not involve communications � they are even slightly better

possibly because the speed per processor increases with the redundancy	 On Paragon

the e�ciency of the version without communication decreases when the number of
processors increases	 This happens when redundant computations occur	 In that
situation
 the second version becomes more e�cient since the communications are of
low cost	 If the program was run on a network of workstations
 the conclusion would
be di�erent since the cost of the communications would be much higher	

For the two programs
 the user only speci�es the number of processors to be used
without any other change inside the considered program	

��� Conclusion� Our purpose in this paper was to provide some parallel e�cient
algorithms for computing the multiplication of vector by a Kronecker product of
matrices	 A formal model computation has �rst been proposed in order to obtain
a deep exploration of the parallel computation issues	 Based on this model
 two
mains directions were explored	 In the �rst direction
 a computation without any
communication between processors
 it has been shown that it may be necessary to
group some small matrices to form a larger one according to the number of available
processors	 It is clear that care must be taken for the set of matrices to be grouped not
to be too large because it introduces redundant computations	 However
 acceptable
speedup can be achieved and the implementation of this approach is quite simple	

The second approach requires communications instead of redundant computa�
tions	 A connecting graph with nice properties as re�exivity
 symmetry and low
number of neighbours
 has been obtained from the proposed scheduling and nearly
optimal behaviour has been proved and practically observed	 A special version has
been proposed when the elementary matrices are sparse so that each zero entry is

�� C� TADONKI AND B� PHILIPPE

0 5 10 15 20 25 30 35
10

−1

10
0

10
1

10
2

number of processors

C
P

U
 ti

m
e

(s
)

Performances of the algorithms on Paragon

without communication
with communications

Fig� ���� Graph of the performance results of the two algorithms on paragon�

detected in such a way that non�necessary computation is avoided	

These two approaches rely on the fact that the number of processors to be consid�
ered must belong to a particular set which depends on the sequence of the dimensions
of the matrices	 Although that restriction is clearly justi�ed by our scheduling
 it
should be possible to consider other numbers of processors	 This aspect has to be
explored	

REFERENCES

��� M� Davio� Kronecker Products and Shu�e Algebra�� IEEE Trans� Comput�� Vol� C���� No� ��
pp� ���������� �����

��� S� Donatelli� A Class of Stochastic Petri Nets with Parallel Solution and Distributed State
Space�� Performance Evaluation� Vol� ��� pp� ������ �����

��� J� J� Dongarra� J� DuCroz� S� Hammarling� and R� Hanson� An extended set of Fortran Basic
Linear Algebra Subprograms� ACM Trans� Math� Software ��� �� pp� ����� �����

��� P� Fernandes� B� Plateau� and W� J� Stewart� E�cient Descriptor�Vector Multiplications in
Stochastic Automata Networks� INRIA Rapport de recherche interne No� ���� � July �����

��� J� Granta� M� Conner� and R� Tolimieri� Recursive fast algorithms and the role of the tensor
product� IEEE Transaction on Signal Processing� ��	�������������� December �����

��� S� K� S� Gupta� Z� Li� and J� H� Reif� Generating e�cient programs for two�level memories
from tensor products� In Prof� of the Seventh IASTED�ISMM Int� Conf� on Parallel and
Distributed Computing and Systems� pp� �������� Washington D�C 	USA�� October �����

��� C� H� Huang� J� R� Johnson� and R� W� Johnson� Generating parallel programs from tensor
product formulas	 A case study of Strassen
s matrix multiplication algorithm� In Proc� Int�
Conf� on Parallel Processing� pp� �������� August �����

��� R� W� Johnson� C� H� Huang� and J� R� Johnson� Multilinear algebra and parallel programming�

KRONECKER TENSOR PRODUCT �

Journal of Supercomputing� ���������� �����
��� R� M� Karp� R� E� Miller� and S� Winograd� The organization of computations for uniform

recurrence equations� Journal of the ACM� ��	����������� July �����
���� S� D� Kaushik� C� H� Huang� R� W� Johnson� and P� Sadayappan� A methodology for gener�

ating e�cient disk�based algorithms from tensor product formulas� In Proc� Sixth Annual
Workshop on Languages and Compilers for Parallel Computing� pp� �������� August �����

���� C� H� Koelbel� D� B� Loveman� R� S� Schreider� G� L� Steele Jr� M� E� Zose The High Perfor�
mance Fortran Handbook� The MIT Press�

���� N� Koike� NEC Cenju��	 A Microprocessor�Based Parallel Computer� Proceedings of IPPS�
pp� �������� �����

���� B� Philippe� W� J� Stewart� and Y� Saad� Numerical Methods in Markov Chain Modelling�
Operations Research� Vol� ��� No� �� �����

���� B� Plateau� A methodology for solving markov models of parallel systems�� Journal of Parallel
and Distributed Computing� ��	��������� �����

���� B� Plateau� On the stochastic structure of parallelism and synchronization models for dis�
tributed algorithms�� In ACM Sigmetrics Conference on Measurement and Modelling of
Computer systems� Austin� August �����

���� Y� Saad� Data communication in parallel architectures�� Parallel Computing� 	���� �����
���� P� J� Schweitze� Methods for large markov chains�� International workshop on applied mathe�

matics and performance reliability models of computer connection systems� University of
Pisa� Italy� pp� �������� �����

���� M� Siegle� On e�cient Markov Modelling�� In Proc� QMIPS Workshop on Stochastic Petri Nets�
pp� �������� Sophia�Antipolis� France� November �����

���� W� J� Stewart� An introduction to the Numerical Solution of Markov Chains�� Princeton Uni�
versity Press� New Jersey� �����

���� W� J� Stewart� K� Atif� and B� Plateau� The Numerical Solution of Stochastic Automata Net�
works� European Journal of Operations Research� vol� ��� No� �� pp� ������� �����

���� H� S� Stone� Parallel processing with the perfect shu�e� IEEE Trans� on Computers� ��	�������
���� �����

���� A� Touzene� Resolution des Modeles Markoviens sur Machine a Memoires Distribuees�� These
de l�INPG de Grenoble� September �����

���� J� N� Tsitsikis� and D� P� Bertsekas� High Parallel and Distributed Computation�� Printice�Hall�
International Edition� �����

���� J� N� Tsitsikis� and D� P� Bertsekas� A survey of some aspect of parallel and distributed iterative
algorithm�� CICS Publication O�ce M�I�T� June �����

���� M� Wolfe� High Performance Compilers for Parallel Computing�� Addison�Wesley Publishing
Compagny� �����

