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Abstract: Given a labelled transition system LTS partially observed by an attacker, and a
regular predicate Sec over the runs of LTS, enforcing opacity of the secret Sec in LTS means
computing a supervisory controller K such that an attacker who observes a run of K/LTS
cannot ascertain that the trace of this run belongs to Sec based on the knowledge of LTS
and K. We lift the problem from a single labelled transition system LTS to the class of all
labelled transition systems specified by a modal transition system MTS. The lifted problem
is to compute the maximally permissive controller K such that Sec is opaque in K/LTS for
every labelled transition systems LTS which is a model of MTS. The situations of the attacker
and of the controller are dissymmetric: at run time, the attacker may fully know LTS and K
whereas the controller knows only MTS and the sequence of actions executed so far by the
unknown LTS. We address the problem in two cases. Let Σa denote the set of actions that can
be observed by the attacker, and let Σc and Σo denote the sets of actions that can be controlled
and observed by the controller, respectively. We provide optimal and regular controllers that
enforce the opacity of regular secrets when Σc ⊆ Σo ⊆ Σa = Σ. We provide optimal and
regular controllers that enforce the opacity of regular upper-closed secrets (Sec = Sec.Σ∗) when
Σa ⊆ Σc ⊆ Σo = Σ.
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1. INTRODUCTION

The concept of opacity, first introduced in the context of
sessions of security protocols [12, 13], was extended later
on to transition systems [3]. A predicate over the runs of a
transition system is opaque w.r.t. an observation function
if every observation produced by a run that satisfies the
predicate is also produced by some run that does not
satisfy the predicate. The concept of opacity is very flexible
as it depends both on the class of predicates and on the
observation function. By adjusting these two parameters,
many common security properties such as confidentiality,
anonymity and so on, can be rephrased in terms of opacity
[3, 10]. Opacity is in general undecidable but this property
may be checked effectively when it is applied to regular
predicates on runs of finite transition systems and with
observation functions induced by projection operators.
Algorithms for checking opacity in Discrete Event Systems
are presented together with applications in [17, 19, 10].

An active and hot topic at the frontier of the theories
of Security and Discrete Event Systems is the search for
Supervisory Controllers enforcing the opacity of a predi-
cate on a given transition system. As written in [8], long
term motivation for such work may be found in the need
to protect SCADA systems and networks of sensors and
actuators from interferences with malicious agents through
TCP/IP. However, work done till now has born upon
finite transition systems exclusively. Approaches differ by
considering either initial-state opacity [17, 18], or current-
state opacity [8], or language opacity [1, 2, 4, 5, 10, 19, 20].
With state opacity, the secret predicate bears either upon

the initial state, or upon the current state, or upon the
set of all states that have been gone through from the
beginning of a run. With language opacity, the secret pred-
icate is a set of sequences of actions that label transitions.
Language opacity and current-state opacity are mutually
reducible. Approaches also differ upon whether they pro-
vide synthesis algorithms or closed formulas or both for
maximally permissive controllers enforcing opacity. Closed
formulas are proposed for instance in [2, 20, 19]. In fine, all
approaches rely on Ramadge and Wonham’s basic theory
of supervisory control for DES [14, 15, 16]. Significant
adaptations must however be brought to the basic theory,
because opacity objectives do not reduce to safety and
liveness. In fact, opacity objectives are not concerned with
individual runs but with sets of indiscernible runs from
the perspective of the attacker. Classes of indiscernible
runs may be captured by estimators as usually done for
the purpose diagnosis.

In this paper, we lift the opacity enforcing control prob-
lem from finite transition systems to families of finite
transition systems specified by modal transition systems.
Modal transition systems were introduced in [9] as tuples
(S, Σ,→2,→3, s0) with two modal transition relations →2

(the strong or must transition relation) and →3 (the weak
or may transition relation), both included in S × Σ × S
and subject to the inclusion constraint →2⊆→3. A modal
transition system MTS should be understood as a logical
formula, with labelled transition systems as models. Modal
transition systems are indeed a well-identified fragment of
the modal µ-calculus [7]. Intuitively, a labelled transition



system LTS is a model of a modal transition system MTS
if there exists a relation |= between their respective sets
of states Q and S such that q0 |= s0 holds for the initial
states and whenever q |= s, all must transitions from s are
simulated by transitions from q, all transitions from q are
simulated by may transitions from s and |= is preserved
under simulation of transitions in both directions.

Example 1. (adapted from [6]). The modal transition sys-
tem MTS depicted in Figure 1, where the relations →2

and →3 are represented with plain arrows and dashed
arrows, respectively, expresses the fact that the presence
of the first transition a is mandatory in any model LTS,
while the second transition a is optional, and that after any
a, a model LTS should be able to trigger a b (after the
execution of a single a, the execution of this b transition
is not mandatory, since LTS may alternatively trigger a
second a). The presence of a second transition b (returning
to the initial state of MTS) is optional in LTS. The two
LTS on the right hand side of Figure 1 are models of MTS,
whereas the LTS depicted in Figure 2 is not. Indeed, after
the sequence aa, MTS requires a transition labelled by b,
which in not present in this LTS. ⋄
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Fig. 1. A modal specification MTS and some LTS models
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Fig. 2. An LTS which is not a model of MTS

In everyday life, one uses frequently systems without an
exact knowledge of their behaviour. This is generally the
case when the system belongs to a range of products with
many versions, such as mobile phones or software, and
all the more for software with automatic updates. This
is also the case when the system is a web service or an
orchestration, selected on request by a broker so as to
match operating guidelines specified in the request [11].
In such situations, modal transition systems may serve to
represent the partial knowledge of the user on the possible
behaviours of the system (modal transition systems with
final states, introduced in [6], are in fact a restricted form
of the operating guidelines of [11]). Enforcing opacity of
regular predicates on modal transition systems may then
serve to prevent user confidential information to be leaked
by the partially unknown system which they actually use.

The purpose of this paper differs from the purpose of
our earlier paper [6]. In [6], the goal was to enforce
specifications of service, expressed by modal transition
systems, on service providers, modelled by LTS. Here the
goal is to enforce the opacity of a secret predicate on all
models LTS of a modal transition system MTS.

The rest of the paper is organized as follows. First, we
recall briefly the background of Modal Transition Systems

and Supervisory Control for Opacity, and we state the
opacity enforcement problem for modal transition systems.
The parameters of the problem are the secret predicate,
the subset of actions Σa that the attacker can observe,
and the subsets of actions Σo and Σc that the controller
can observe and control, respectively. Then, we address
the opacity enforcement problem for regular secrets in the
case Σc ⊆ Σo ⊆ Σa and for upper-closed regular secrets in
the case Σa ⊆ Σc ⊆ Σo = Σ. Possible extensions of this
work are considered in a short conclusion.

2. BACKGROUND OF TRANSITION SYSTEMS

We recall in this section the background of labelled tran-
sition systems and modal transition systems.

2.1 Labelled Transition Systems

A deterministic labelled transition system (or LTS) over
Σ is a 4-tuple LTS = (Q, Σ, δ, q0) where Q is a finite set
of states, q0 ∈ Q is an initial state, and δ is a partial
map from Q × Σ to Q, called the labelled transition map.
This map is extended inductively to δ : Q × Σ∗ → Q
by letting δ(q, ε) = q (where ε is the empty word) and
δ(q, w.σ) = δ(δ(q, w), σ) for all q ∈ Q, w ∈ Σ∗ and
σ ∈ Σ (w.σ denotes the word got by appending σ to w,
and similarly, w.w′ and w.L′ denote the concatenation of
two words and the prefixing of a language by a word, i.e.,
w.L′ = {w.w′ |w′ ∈ L′}). A state q ∈ Q is reachable (from
q0) if δ(q0, w) = q for some word w ∈ Σ∗. An LTS is
finite if Q and Σ are finite; it is reduced if all states in Q
are reachable and every event σ ∈ Σ is enabled at some
state q, i.e., δ(q, σ) is defined for the considered state q. In
the sequel, we always consider finite and reduced labelled
transition systems. The language of LTS is the set of words
L(LTS) = {w ∈ Σ∗ | δ(q0, w) defined}. More generally, for
q ∈ Q, we let L(LTS, q) = {w ∈ Σ∗ | δ(q, w) defined}.

Given two labelled transition systems LTS = (Q, Σ, δ, q0)
and LTS′ = (Q′, Σ, δ′, q′0) over the same alphabet Σ,
their product is the (reachable restriction of the) labelled
transition system LTS×LTS′ = (Q×Q′, Σ, δ×δ′, (q0, q

′
0))

where (δ × δ′)((q, q′), σ) = (δ(q, σ), δ′(q′, σ)).

2.2 Modal Transition Systems [9]

A deterministic modal transition system (or MTS) over Σ
is a 5-tuple MTS = (S, Σ, δ2, δ3, s0) where S is a finite set
of logical states, and δ2 : S×Σ → S and δ3 : S×Σ → S are
two partial maps, called the strong and the weak labelled
transition maps, respectively, subject to the constraint
δ2 ⊆ δ3. The maps δ2 and δ3 are extended inductively
to words like the transition maps of labelled transition
systems. For any modal transition system MTS, we let
L(MTS) = L(MTS) where MTS = (S, Σ, δ3, s0), thus
MTS denotes the LTS whose transition map is the weak
transition map of MTS. Similarly, MTS = (S, Σ, δ2, s0)
denotes the LTS whose transition map is the strong
transition map of MTS.

A modal transition system MTS determines a family of
labelled transition systems LTS called its models (nota-
tion: LTS |= MTS). A labelled transition system LTS =
(Q, Σ, δ, q0) is a model of MTS = (S, Σ, δ2, δ3, s0) if there



exists a relation |=⊆ Q × S such that qo |= s0 and for all
q ∈ Q and s ∈ S, q |= s entails the following for all σ ∈ Σ:

• if δ(q, σ) is defined then δ3(s, σ) is defined and
δ(q, σ) |= δ3(s, σ),

• if δ2(s, σ) is defined then δ(q, σ) is defined and
δ(q, σ) |= δ2(s, σ).

With these definitions, MTS |= MTS, MTS |= MTS,
and LTS |= MTS ⇒ L(MTS) ⊆ L(LTS) ⊆ L(MTS).
Therefore, L(MTS) =

⋂
{L(LTS) |LTS |= MTS} and

L(MTS) =
⋃
{L(LTS) |LTS |= MTS}. However, MTS

and MTS are not the unique models of MTS with
minimal or maximal language, respectively, since there
may exist other LTS with the same language. A central
property of modal transition systems is stated by the
following relation: LTS1 |= MTS ∧ LTS2 |= MTS ⇒
LTS1×LTS2 |= MTS. We refer the reader to [7] for more
information.

In addition to these reminders, we introduce a specific
construction used in later proofs. Given a modal transition
system MTS, we want to construct for each word w ∈
L(MTS) a labelled transition system w ◦ MTS such that
w ◦MTS |= MTS, w ∈ L(w ◦MTS), and L(w ◦MTS) is
the infimum of L(LTS) for all labelled transition systems
LTS satisfying LTS |= MTS and w ∈ L(LTS).

Definition 1. Given w = σ1 . . . σn ∈ L(MTS) where
MTS = (S, Σ, δ2, δ3, s0), let w ◦ MTS denote the
LTS produced by the following procedure, where si =
δ3(s0, σ1 . . . σi) for 1 ≤ i ≤ n:

• make n+1 separate copies of the set of states S with
elements (s, i), s ∈ S and 0 ≤ i ≤ n,

• for 1 ≤ i ≤ n, let δ((si−1, i − 1), σi) = (si, i),
• for 0 ≤ i ≤ n and for all pairs (s, σ) ∈ S × Σ such

that s 6= si or σ 6= σi+1, let δ((s, i), σ) = (δ2(s, σ), i),
• let (s0, 0) be the initial state and δ be the partial

transition map,
• remove all unreachable states. ⋄

For w = ε (the empty word), i.e., for n = 0, ε ◦ MTS is
isomorphic to MTS. For any other word w.σ ∈ L(MTS)
with w ∈ Σ∗, σ ∈ Σ and δ3(s0, w.σ) = s, the language
of the labelled transition system (w.σ) ◦ MTS is equal to
L(w ◦ MTS) ∪ w.σ.L(MTS, s).

Proposition 1. w ◦ MTS |= MTS, w ∈ L(w ◦ MTS), and
L(w◦MTS) =

⋂
{L(LTS) |LTS |= MTS∧w ∈ L(LTS)}.

Proof. The first two statements are obvious. We prove
LTS |= MTS∧w ∈ L(LTS) ⇒ L(w◦MTS) ⊆ L(LTS) by
induction on w. For w = ε, this holds since L(ε ◦MTS) =
L(MTS). For any other word w.σ ∈ L(MTS) with σ ∈ Σ,
L(w.σ) ◦ MTS = L(w ◦ MTS) ∪ w.σ.L(MTS, s). By
induction, L(w◦MTS) =

⋂
{L(LTS) |LTS |= MTS∧w ∈

L(LTS)} ⊆
⋂
{L(LTS) |LTS |= MTS ∧ w.σ ∈ L(LTS)}.

By definition of the relation |=, LTS |= MTS ∧ w.σ ∈
L(LTS) ⇒ w.σ.L(MTS, s) ⊆ L(LTS) for any labelled
transition system LTS. 2

3. BACKGROUND OF OPACITY AND
SUPERVISORY CONTROL FOR OPACITY

Given LTS = (Q, Σ, δ, q0), let Sec ⊆ Σ∗ be a regular
predicate called the secret, and let Σa ⊆ Σ be the set of

actions that the attacker can observe. The secret predicate
Sec is said to be opaque in LTS w.r.t. Σa if, for any
word w ∈ L(LTS) ∩ Sec, there exists some word w′ ∈
L(LTS) \ Sec with an identical projection on Σa, i.e.,
πa(w) = πa(w′) where πa(w) is the natural projection of
w on Σa defined inductively by:

• πa(ε) = ε (the empty word),
• πa(v.σ) = πa(v).σ for v ∈ Σ∗ and σ ∈ Σa,
• πa(v.σ) = πa(v) for v ∈ Σ∗ and σ /∈ Σa.

Enforcing the opacity of the secret Sec w.r.t. Σa in LTS
means computing a supervisory controller K such that
Sec is opaque w.r.t. Σa in the product LTS × K, usually
written K/LTS. In Ramadge and Wonham’s setting for
supervisory control [14, 15, 16], an admissible controller
K may be seen as an LTS K = (X, Σ, δK , x0), subject
to constraints parametric on two subsets of actions Σc

and Σo. The first set Σc is comprised of the actions that
the controller can block or control. For any uncontrollable
action σ /∈ Σc and for any word w, if δK(x0, w) = x and
wσ ∈ L(LTS) then δK(x, σ) must be defined. The second
set Σo is comprised of the actions that the controller can
observe. For any action σ /∈ Σo and for any state x in
which δK(x, σ) is defined, it is required that δK(x, σ) = x.
Moreover, if x = δK(x0, w) and x′ = δK(x0, w

′) for
two words w and w′ with equal projections on Σ0, then
δK(x, σ) and δK(x′, σ) should be both defined or both
undefined for any controllable action σ ∈ Σc,

K† is said to be maximal permissive among the controllers
that enforce the opacity of Sec in LTS w.r.t. Σa if
L(K/LTS) ⊆ L(K†/LTS) for all such controllers K. In
[4], it was shown that there exists a maximal permissive
and regular controller K† in all cases where Σc ⊆ Σo

and Σa compares with Σc and Σo. In [5], more elaborate
constructions were presented for computing K† in the case
where Σc ⊆ Σo and Σa ⊆ Σo. In this paper, we make a first
step to extend these results to modal transition systems.

4. ENFORCING OPACITY IN MODAL TRANSITION
SYSTEMS

From now on, MTS = (S, Σ, δ2, δ3, s0) is a fixed modal
transition system, and Sec is a fixed regular subset of
Σ∗, called the secret. Let Σa be the subset of actions
in Σ that can be observed by the attacker. Let Σo and
Σc be the subsets of actions in Σ that may be observed
or blocked by the controller, respectively. We want to
construct controllers K = (X, Σ, δK , x0) such that, for
every labelled transition system LTS over Σ, if LTS |=
MTS, then K is an admissible controller of LTS (w.r.t.
Σo and Σc) and the secret Sec is opaque in K/LTS (w.r.t.
Σa). In this case, we say that K enforces the opacity of Sec
in MTS w.r.t. Σa. As regards permissivity, it would not
make any sense to require that K† be maximal permissive
for every model LTS of MTS (among the controllers
K that enforce the opacity of Sec in LTS w.r.t. Σa).
In the framework of opacity control for modal transition
systems, we will say that K† is maximal permissive if
L(K/LTS) ⊆ L(K†/LTS) for every controller K that
enforces the opacity of Sec in MTS (w.r.t. Σa) and for
every model LTS of MTS. In the following sections, we
address two cases in which a maximal permissive and
regular controller K† can be constructed.



5. COMPUTING K† WHEN THE ATTACKER HAS
FULL OBSERVATION

In this section, Sec is an arbitrary regular subset of Σ∗ and
we assume that Σc ⊆ Σo ⊆ Σa. Under these assumptions,
πa(w) 6= πa(w′) for any two distinct words w, w′ ∈ Σ∗,
i.e., the attacker has full observation. In order that a
controller K enforces the opacity of the secret Sec in MTS,
it is necessary and sufficient that L(K/LTS) ⊆ Σ∗ \ Sec
for every model LTS of MTS, where Σ∗ \ Sec is the
complement of the predicate Sec (hence it is a regular
subset of Σ∗).

Now L(K/LTS) = L(K) ∩ L(LTS) and L(MTS) is the
supremum of L(LTS) for all LTS |= MTS. Therefore,
L(K/LTS) ⊆ Σ∗ \ Sec for all models LTS of MTS if and
only if L(K/MTS) ⊆ Σ∗ \ Sec, and K is an admissible
controller for all models LTS of MTS if and only if it is
an admissible controller of MTS (w.r.t. Σc and Σo).

As Σc ⊆ Σo (entailing that K is observable if and
only if it is normal), the maximally permissive controller
K† enforcing the opacity of the secret Sec in MTS
(w.r.t. Σa) is the maximally permissive solution K† of
the basic supervisory control problem for MTS and the
safe behaviour L(MTS) \ Sec. This K† is a finite state
controller, and it may be computed by applying Ramadge
and Wonham’s theory and algorithms [14, 15, 16].

6. COMPUTING K† FOR REGULAR
UPPER-CLOSED SECRETS

In this section, we assume that the secret Sec is upper-
closed w.r.t. the prefix-order on words, i.e., Sec = Sec.Σ∗.
This working assumption, also made in [1], implies that
the goal of the opacity game is to avoid that the attacker
may ascertain that some prefix of the partially observed
run of the LTS was in the secret.

We moreover assume that Σa ⊆ Σc ⊆ Σo = Σ. Under these
assumptions, the attacker has partial observation, whereas
the controller has full observation and can block all actions
observed by the attacker. This gives a strong advantage
to the controller over the attacker, but remember that in
counterpart the controller ignores which LTS among all
models of MTS is executing, whereas the attacker may
know precisely which LTS is executing.

Integrating the secret into the modal transition system

As a first step towards computing controllers, we combine
the modal transition system MTS = (S, Σ, δ2, δ3, s0) and
the secret Sec into a modal transition system MTS#, with
distinguished logical states representing the intersection of
L(MTS) and the complement of Sec. First, one constructs
a complete deterministic automaton A = (Y, Σ, δ, y0, YF )
recognizing Sec, with initial state y0, final states YF , and
labelled transition map δA. Note that y ∈ YF ⇒ δA(y, σ) ∈
YF if the latter is defined, because Sec is upper-closed
w.r.t. the prefix-order on words. Next, one computes the
product MTS# of MTS and A. The initial state of MTS#

is the pair (s0, y0). The set of states S# of MTS# and the
weak transition map δ3

# are jointly and inductively defined

by setting δ3

#((s, y), σ) = (s′, y′) and (s′, y′) ∈ S# when

δ3(s, σ) = s′ and δA(y, σ) = y′. The strong transition map

δ2

# is defined similarly, but replacing δ3(s, σ) with δ2(s, σ).

The distinguished logical states SF

# of MTS# are the pairs

(s, y) ∈ S# such that y ∈ YF , i.e., for all w ∈ L(MTS#),
w ∈ Sec if and only if δ3

#(s0, w) ∈ SF

#.

As the automaton A has been chosen complete, L(MTS) =
L(MTS#) and LTS |= MTS ⇔ LTS |= MTS# for
all LTS (over Σ). From now on, we assume w.l.o.g. that
MTS = MTS#, and we let SF = SF

#. As Sec is upper-

closed, s ∈ SF ⇒ δ3(s, σ) ∈ SF if the latter is defined.

The general schema

As Σo = Σ and L(MTS) = L(MTS) is the supremum of
L(LTS) for all labelled transition systems LTS |= MTS,
in order that a controller K may be admissible for every
model LTS of MTS, it is necessary and sufficient that
w.σ ∈ L(MTS) ⇒ w.σ ∈ L(K) for any word w ∈
L(MTS)∩L(K) and for any uncontrollable action σ ∈ Σ\
Σc. When this condition is satisfied, we say that K is an
admissible controller of MTS (w.r.t. Σc and Σo = Σ).

Among the admissible controllers of MTS, we should
search for controllers K such that the following condition
holds for every labelled transition system LTS |= MTS
(recall that K/LTS denotes the product of LTS and K):
∀w ∈ L(K/LTS) ∃w′ ∈ L(K/LTS)
πa(w) = πa(w′) ∧ δ3(s0, w

′) /∈ SF .
We want to compute the maximal permissive controller K
satisfying this condition.

We proceed in two steps. In a first step, we derive from
MTS an LTS H with the language L(H) = L(MTS) and
with a set of states included in S × P(S). The intended
meaning of these states is as follows. If δ3(s0, w) = s in
MTS, then w should lead in H to the state (s, E) where
E = {s′ ∈ S| ∀LTS : LTS |= MTS ∧ w ∈ L(LTS) ⇒
∃w′ ∈ L(LTS) : πa(w) = πa(w′) ∧ δ3(s0, w

′) = s′}
(thus s ∈ E). As L(w ◦ MTS) is the infimum of L(LTS)
for all LTS such that LTS |= MTS and w ∈ L(LTS),
E = {s′ ∈ S| ∃w′ ∈ L(w ◦ MTS) : πa(w) = πa(w′) ∧
δ3(s0, w

′) = s′}.

Given a model LTS of MTS, let us say that w discloses the
secret Sec in LTS if w ∈ L(LTS) ∩ Sec and w′ ∈ Sec for
any other word w′ ∈ L(LTS) such that πa(w) = πa(w′).
As L(w ◦ MTS) is the infimum of L(LTS) for all LTS
such that LTS |= MTS and w ∈ L(LTS), w discloses
the secret Sec in some model LTS of MTS if and only
if w discloses this secret in w ◦ MTS. So, if w leads to
state (s, E) in H , then w discloses the secret Sec in some
model LTS of MTS if and only if E ⊆ SF . Therefore, in
a second step, we trim down H according to Ramadge and
Wonham’s procedure for avoiding to reach any state (s, E)
with E ⊆ SF . We will show that the labelled transition
system K† obtained in this way is the maximal permissive
controller that enforces the opacity of Sec in MTS.

A preliminary construction

In the sequel, Σua = Σ\Σa denotes the set of actions which
are unobservable from the perspective of the attacker. For
all transition maps δ and for all sets E and L ⊆ Σ∗, we
let δ(E, σ) = {δ(s, σ) | s ∈ E}, δ(s, L) = {δ(s, w) |w ∈ L},
and δ(E, L) = {δ(s, w) | s ∈ E ∧ w ∈ L}.



Definition 2. Let H = (Θ, Σ, δH , θ0) be the LTS with the
set of states Θ ⊆ S×P(S) and the labelled transition map
δH jointly and inductively defined as follows:

• let θ0 = (s0, δ
2(s0, Σ

∗
ua)) and θ0 ∈ Θ,

• inductively, for each state (s, E) ∈ Θ and for each action
σ ∈ Σ such that δ3(s, σ) is defined, let δH((s, E), σ) =
(s′, E′) and (s′, E′) ∈ Θ where s′ = δ3(s, σ) and the set of
states E′ is given according to the case by:

• σ /∈ Σa: E′ = E ∪ δ2(s′, Σ∗
ua),

• σ ∈ Σa: E′ = δ2(E, σ.Σ∗
ua) ∪ δ2(s′, Σ∗

ua). ⋄

Obviously, L(H) = L(MTS). The following lemma, which
is a bit technical, shows that the above construction
achieves the announced goals.

Lemma 2. For any w ∈ L(MTS), δH(θ0, w) = (s, E) ⇒
s = δ3(s0, w) and E = {s′ ∈ S | ∃w′ ∈ L(w ◦ MTS) :
πa(w′) = πa(w) ∧ δ3(s0, w

′) = s′}.

Proof. The proof is by induction on w. The base of the
induction is given by the case w = ε. Then δH(θ0, ε) =
θ0 = (s0, δ

2(s0, Σ
∗
ua)) by Def. 2. Clearly, s0 = δ3(s0, ε).

For w′ ∈ Σ∗, w′ ∈ Σ∗
ua ⇔ πa(w′) = πa(ε), and δ2(s0, w

′)
is defined if and only if w′ ∈ L(MTS) = L(ε◦ MTS) (see
the observations after Def. 1). As δ3(s0, w

′) = δ2(s0, w
′)

if the latter is defined, the lemma holds for w = ε.

Assume now that the lemma holds for w = σ1 . . . σn−1 (by
convention, n = 1 means w = ε), and consider w.σn ∈
L(MTS) with σn ∈ Σ. Let δH(θ0, σ1 . . . σi) = (si, Ei)
for 1 ≤ i ≤ n. As sn = δ3(sn−1, σn) (by Def. 2) and
sn−1 = δ3(s0, w) (by the induction hypothesis), sn =
δ3(s0, w.σn). To simplify the notation, let σ = σn and
s = sn. We prove En = {s′ ∈ S | ∃w′ ∈ L((w.σ) ◦
MTS) : πa(w′) = πa(w.σ) ∧ δ3(s0, w

′) = s′} by case
analysis.

Case σ /∈ Σa. By Def. 2, En = En−1 ∪ δ2(s, Σ∗
ua), and by

induction, En−1 = {s′ ∈ S | ∃w′ ∈ L(w ◦MTS) : πa(w′) =
πa(w) ∧ δ3(s0, w

′) = s′}. As πa(w) = πa(w.σ) and
L((w.σ)◦MTS) = L(w◦MTS)∪w.σ.L(MTS, s) (see the
observations after Def. 1), it suffices to prove δ2(s, Σ∗

ua) =
{s′ ∈ S | ∃w′ ∈ w.σ.L(MTS, s) : πa(w′) = πa(w.σ) ∧
δ3(s0, w

′) = s′}. Now w′ ∈ w.σ.L(MTS, s) ∧ πa(w′) =
πa(w.σ) if and only if w′ = w.σ.v′ and v′ ∈ L(MTS, s) ∩
Σ∗

ua. For v′ ∈ Σ∗
ua, v′ ∈ L(MTS, s) if and only if δ2(s, v′)

is defined, and then δ3(s0, w.σ.v′) = δ2(s, v′). Therefore,
the lemma holds in this case.

Case σ ∈ Σa. By Def. 2, En = δ2(En−1, σ.Σ∗
ua) ∪

δ2(s, Σ∗
ua) and by induction, En−1 = {s′ ∈ S | ∃w′ ∈ L(w◦

MTS) : πa(w′) = πa(w) ∧ δ3(s0, w
′) = s′}. Accord-

ingly, δ2(En−1, σ.Σ∗
ua) = {s” ∈ S | ∃s′ ∈ S ∃w′ ∈ L(w ◦

MTS)∃v′ ∈ Σ∗
ua : πa(w′) = πa(w) ∧ δ3(s0, w

′) =
s′ ∧ δ2(s′, σ.v′) = s”}. For s′, w′ and v′ as above, let
w” = w′.σ.v′. As w′ ∈ L(w ◦ MTS) and δ3(s0, w

′) = s′,
δ2(s′, σ.v′) is defined if and only if w” ∈ L(w ◦ MTS),
and then δ3(s0, w”) = δ2(s′, σ.v′). Moreover, πa(w”) =
πa(w′.σ) = πa(w.σ). The above relation simplifies there-
fore to δ2(En−1, σ.Σ∗

ua) = {s” ∈ S | ∃w” ∈ L(w ◦ MTS) :
πa(w”) = πa(w.σ) ∧ δ3(s0, w”) = s”}. As L((w.σ) ◦
MTS) = L(w ◦ MTS) ∪ w.σ.L(MTS, s) (see the obser-
vations after Def. 1), in order to complete the proof, it
suffices to show δ2(s, Σ∗

ua) = {s” ∈ S | ∃v′ ∈ L(MTS, s) :

πa(w.σ.v′) = πa(w.σ) ∧ δ3(s0, w.σ.v′) = s”}. This follows
easily because πa(w.σ.v′) = πa(w.σ) if and only if v′ ∈ Σ∗

ua

and δ3(s0, w.σ.v′) = δ2(s, v′) if the latter is defined. 2

The construction of K†

As Θ ⊆ S × P(S) where S is the set of logical states
of the modal transition system MTS, H = (Θ, Σ, δH , θ0)
is a finite LTS, with the language L(H) = L(MTS) =
∪{L(LTS) |LTS |= MTS}. Our goal is now to produce
K† from H by removing all words w ∈ L(H) that disclose
the secret Sec in some model of MTS.

As L(w ◦ MTS) is the infimum of L(LTS) for all LTS
such that LTS |= MTS and w ∈ L(LTS), a word
w ∈ L(H) discloses the secret Sec in some model of MTS
if and only if it discloses the secret Sec in w ◦ MTS. By
Lemma 2, a word w ∈ L(H) discloses the secret Sec in
w ◦ MTS if and only if δH(θ0, w) ∈ Bad where we let
Bad = {(s, E) ∈ Θ |E ⊆ SF }. Enforcing the opacity of
the secret Sec in all models of MTS amounts therefore to
barring access to Bad states of H .

As L(H) = ∪{L(LTS) |LTS |= MTS}, a controller K is
an admissible controller of all models LTS of MTS if and
only if it is an admissible controller of H .

So, in order that K = (X, Σ, δK , x0) may, for every model
LTS of MTS, enforce the opacity of the secret in LTS
(w.r.t. Σa) and be an admissible controller of LTS (w.r.t.
Σc), it is necessary that the following two conditions C1
and C2 hold:

• no state (θ, x) with θ ∈ Bad can be reached from
(θ0, x0) in K/H ,

• K is an admissible controller of H (w.r.t. Σc).

According to Ramadge and Wonham’s theory of state-
based supervision, the maximal permissive controller K†

for which both conditions hold is obtained by pruning H
iteratively according to the following method. Throughout
the iteration, one maintains a partition {Good, Bad} of
the set of states X = Θ and a partial transition map
δX : Θ × Σ → Θ. Initially, Bad is the set of Bad states
of H , and δX = δH . At each step in the iteration, one
picks some pair of arguments θ ∈ Good and σ ∈ Σ such
that δX(θ, σ) ∈ Bad, and one removes (θ, σ) from the
domain of definition of δX . Moreover, if σ is uncontrollable
(σ /∈ Σc), then one moves the considered state θ from
the set Good to the set Bad (which may cause the set of
Good states to be disconnected). The iteration stops when
δX(θ, σ) ∈ Bad for no pair of arguments θ ∈ Good and
σ ∈ Σ. At this stage, let K† be the induced restriction of
the LTS (Good, Σ, δX , θ0) on states reachable from θ0. If
θ0 /∈ Good,then no controller can prevent Bad states from
being reached (hence no controller can enforce the opacity
of the secret in all models of MTS). If θ0 ∈ Good, then
K† is the maximal permissive controller preventing Bad
states from being reached in H . However, this does not
entail directly that K† enforces the opacity of the secret
in all models of MTS, since C1 and C2 were only necessary
conditions for achieving this goal. The following lemma is
crucial to prove that K† enforces indeed the opacity of the
secret in all models of MTS.



Lemma 3. When the iterative procedure defined above is
applied to the LTS H specified by Def. 2 and to the set
Bad = {(s, E) ∈ Θ |E ⊆ SF }, the partition {Good, Bad}
of Θ stays unchanged throughout the iteration.

Proof. Assume for the sake of contradiction that (s, E)
is the first element of Θ moved from Good to Bad.
By definition of the iterative procedure, δH((s, E), σ) =
(s′, E′) and (s′, E′) ∈ Bad for some σ ∈ Σ \ Σc. As
Σa ⊆ Σc, σ /∈ Σa. Therefore, by Def. 2, E ⊆ E′. As (s′, E′)
was already in Bad at the initialization of the procedure,
E′ ⊆ SF , hence E ⊆ SF , contradicting the assumption
that (s, E) was Good. 2

Remark 4. If δH((s, E), σ) = (s′, E′) for σ ∈ Σc \ Σa then
E ⊆ E′ by Def. 2, hence (s′, E′) ∈ Bad ⇒ (s, E) ∈ Bad.
Therefore, actions σ in Σc\Σa are in never blocked by K†.

Proposition 1. K† enforces the opacity of the secret in all
models of MTS.

Proof. Let LTS |= MTS and w ∈ L(K†/LTS). We
must show that there exists w′ ∈ L(K†/LTS) such that
πa(w) = πa(w′) and δ3(s0, w

′) /∈ SF (in MTS). By
Lemma 2 and the definition of the set Bad, w ∈ L(K†)
entails that πa(w) = πa(w′) and δ3(s0, w

′) /∈ SF for some
w′ ∈ L(w ◦ MTS). As L(w ◦ MTS) is the infimum of
L(LTS′) for all LTS′ such that LTS′ |= MTS and w ∈
L(LTS′), necessarily w′ ∈ L(LTS). As the secret Sec is an
upper-closed set, δ3(s0, w

′) /∈ SF entails δ3(s0, v
′) /∈ SF

for all prefixes v′ of w′, hence δH(s0, v
′) is not in Bad for

any prefix v′ of w′. As a consequence, w′ ∈ L(K†) and
therefore, w′ ∈ L(K†/LTS). 2

Theorem 5. K† is maximal permissive among all admis-
sible controllers enforcing the opacity of the secret in all
models of MTS.

Proof. K† is maximal permissive among the controllers
of H that satisfy the two necessary conditions C1 and C2.
Prop. 1 completes the proof of the theorem.

7. CONCLUSION

In a first attempt to extend opacity enforcing supervisory
control to classes of transition systems loosely described
by modal transition systems, we have dealt with two
cases where either the attacker or the controller has full
observation. The next case we have begun to investigate
is when Σc ⊆ Σa ⊆ Σo. In this case, Good states may turn
to Bad, and the construction which we have presented
for controller K must be iterated, i.e., the opacity control
problem should be solved recursively for K/LTS. The
difficulty is to show that the iteration stops.
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